第十二章随机过程及其统计描述概率论和数理统计

合集下载

数理统计与随机过程

数理统计与随机过程

数理统计与随机过程一、数理统计的基本概念和方法1.1 数理统计的定义数理统计是应用数学和统计学的原理与方法,对各种现象进行观察、收集、整理、分析和解释,从而得出有关这些现象的规律性和特征性的科学。

1.2 数理统计的基本方法数理统计的基本方法包括:数据收集、数据整理、数据分析和结论推断等。

1.3 数据收集数据收集是指通过各种手段获取有关某一现象或问题的信息。

常见的数据收集方式包括问卷调查、实验观测、抽样调查等。

1.4 数据整理数据整理是指对收集到的原始数据进行加工处理,使其变成可分析和可比较的形式。

常见的数据整理方式包括分类汇总、编码标记等。

1.5 数据分析数据分析是指通过各种统计方法对已经整理好的数据进行描述性分析和推断性分析。

常见的数据分析方法包括频率分布、中心位置测度、离散程度测度等。

1.6 结论推断结论推断是指根据已经得出的结果,对所研究问题作出科学合理判断。

常见的结论推断方式包括假设检验、置信区间估计等。

二、随机变量及其分布2.1 随机变量的定义随机变量是指在一次试验中可能取到不同值的变量,其取值不仅受试验本身的性质决定,还受到随机因素的影响。

2.2 随机变量的分类随机变量可以分为离散型和连续型两种。

离散型随机变量只能取有限个或可数个值,而连续型随机变量可以取任意实数值。

2.3 随机变量的分布函数随机变量的分布函数是指对于任何实数x,求出X≤x的概率。

对于离散型随机变量,其分布函数为累积分布函数;对于连续型随机变量,其分布函数为概率密度函数。

2.4 常见离散型随机分布常见离散型随机分布包括:伯努利分布、二项式分布、泊松分布等。

2.5 常见连续型随机分布常见连续型随机分布包括:均匀分布、正态分布、指数分布等。

三、参数估计和假设检验3.1 参数估计的基本概念参数估计是指通过样本数据对总体分布的某些未知参数进行估计。

常见的参数估计方法包括点估计和区间估计。

3.2 点估计点估计是指用样本数据直接求出总体分布的某个未知参数的值。

第十二章随机过程及其统计描述概率论与数理统计

第十二章随机过程及其统计描述概率论与数理统计

20
当n充分大时, n维分布函数族能够近似地描 述随机过程的统计特性. 显然, n取得越大, 则 n维分布函数族描述随机过程的特性也越趋 完善. 一般, 可以指出(科尔莫戈罗夫定律):有 限维分布函数族, 即{FX(x1,x2,...,xn, n=1,2,...,t1, t2, ...,tn), tiT}完全地确定了随机过程的统计 特性.
4
随机过程可看作多维随机变量的延伸. 随机过 程与其样本函数的关系就象数理统计中总体 与样本的关系一样. 因此, 热噪声电压的变化过程{V(t), t0}是一 随机过程, 它的状态空间是(-, +), 一次观 测到的电压-时间函数就是这个随机过程的一 个样本函数. 在以后的叙述中, 为简便起见, 常以X(t), tT 表示随机过程. 在上下文不致混淆的情况下, 一般略去记号中的参数集T.
13
随机过程的不同描述方式在本质上是一致的. 在理论分析时往往以随机变量族的描述方式 作为出发点, 而在实际测量和数据处理中往往 采用样本函数族的描述方式. 这两种描述方式 在理论和实际两方面是互为补充的. 随机过程可依其在任一时刻的状态是连续型 或离散型随机变量而分成连续型随机过程和 离散型随机过程. 热噪声电压, 例2和例3是连 续型随机过程, 例1, 例4和例5是离散型随机过 程.
12
工程技术中有很多随机现象, 例如, 地震波幅, 结构物承受的风荷载, 时间间隔(0, t]内船舶甲 板"上浪"的次数, 通讯系统和自控系统中的 各种噪声和干扰, 以及生物群体的生长等等变 化过程都可用随机过程这一数学模型来描绘. 不过, 这些随机过程都不能象随机相位正弦波 那样, 很方便, 很具体地用时间和随机变量(一 个或几个)的关系式表示出来, 其主要原因是 自然界和社会产生随机因素的机理极为复杂, 甚至不可能观察到, 因此只有通过分析样本函 数才能掌握它们的规律性.

浙江大学概率论与数理统计第4版复习笔记详解

浙江大学概率论与数理统计第4版复习笔记详解

浙江大学概率论与数理统计第4版复习笔记详解|才聪学习网浙江大学《概率论与数理统计》(第4版)笔记和课后习题(含考研真题)详解文章来源:才聪学习网/概率论与数理统计内容简介本书是浙江大学盛骤等主编的《概率论与数理统计》(第4版)的学习辅导书,主要包括以下内容:(1)梳理知识脉络,浓缩学科精华。

本书每章的复习笔记均对该章的重难点进行了整理,并参考了国内名校名师讲授该教材的课堂笔记。

因此,本书的内容几乎浓缩了该教材的知识精华。

(2)详解课后习题,巩固重点难点。

本书参考大量相关辅导资料,对盛骤主编的《概率论与数理统计》(第4版)的课后思考题进行了详细的分析和解答,并对相关重要知识点进行了延伸和归纳。

(3)精选考研真题,培养解题思路。

本书从历年考研真题中挑选最具代表性的部分,并对之做了详尽的解析。

所选考研真题基本涵盖了每章的考点和难点,考生可以据此了解考研真题的命题风格和难易程度,并检验自己的复习效果。

目录第1章概率论的基本概念1.1 复习笔记1.2 课后习题详解1.3 考研真题详解第2章随机变量及其分布2.1 复习笔记2.2 课后习题详解2.3 考研真题详解第3章多维随机变量及其分布3.1 复习笔记3.2 课后习题详解3.3 考研真题详解第4章随机变量的数字特征4.1 复习笔记4.2 课后习题详解4.3 考研真题详解第5章大数定律及中心极限定理5.1 复习笔记5.2 课后习题详解5.3 考研真题详解第6章样本及抽样分布6.1 复习笔记6.2 课后习题详解6.3 考研真题详解第7章参数估计7.1 复习笔记7.2 课后习题详解7.3 考研真题详解第8章假设检验8.1 复习笔记8.2 课后习题详解8.3 考研真题详解第9章方差分析及回归分析9.1 复习笔记9.2 课后习题详解9.3 考研真题详解第10章bootstrap方法10.1 复习笔记10.2 课后习题详解10.3 考研真题详解第11章在数理统计中应用Excel软件11.1 复习笔记11.2 课后习题详解11.3 考研真题详解第12章随机过程及其统计描述12.1 复习笔记12.2 课后习题详解12.3 考研真题详解第13章马尔可夫链13.1 复习笔记13.2 课后习题详解13.3 考研真题详解第14章平稳随机过程14.1 复习笔记14.2 课后习题详解14.3 考研真题详解复习笔记详解第1章概率论的基本概念1.1 复习笔记在个别试验中其结果呈现出不确定性,在大量重复试验中其结果又具有统计规律性的现象,称为随机现象.一、随机试验1.定义试验包括各种各样的科学实验,甚至对某一事物的某一特征的观察也认为是一种试验.2.试验的特点(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.在概率论中,将具有上述三个特点的试验称为随机试验.二、样本空间、随机事件1.样本空间随机试验E的所有可能结果组成的集合称为E的样本空间,记为S.样本空间的元素,即E的每个结果,称为样本点.2.随机事件一般地,称试验E的样本空间S的子集为E的随机事件,简称事件.在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别地,由一个样本点组成的单点集,称为基本事件.样本空间S包含所有的样本点,它是S自身的子集:(1)在每次试验中它总是发生的,S称为必然事件.(2)空集不包含任何样本点,也是样本空间的子集,它在每次试验中都不发生,称为不可能事件.3.事件间的关系与事件的运算事件间的关系与事件的运算按照集合论中集合之间的关系和集合运算来处理.设试验E的样本空间为S,而A,B,A k(k=1,2,…)是S的子集.(1)包含关系①若,则称事件B包含事件A,即事件A发生必导致事件B发生;②若且,即A=B,则称事件A与事件B相等.(2)和事件事件A∪B={x|x∈A或x∈B)称为事件A与事件B的和事件.当且仅当A,B 中至少有一个发生时,事件A B发生.称为n个事件A1,A2,…,A n的和事件;称为可列个事件A1,A2,…的和事件.(3)积事件事件A∩B={x|x∈A且x∈B)称为事件A与事件B的积事件.当且仅当A,B 同时发生时,事件A∩B发生.A∩B也记作AB.称为n个事件A1,A2,…,A n的积事件;称为可列个事件A1,A2,…的积事件.(4)差事件事件A-B={x|x∈A且x B)称为事件A与事件B的差事件.当且仅当A发生、B不发生时事件A-B发生.(5)互斥若,则称事件A与B是互不相容的,或互斥的.即事件A与事件B不能同时发生.基本事件是两两互不相容的.(6)逆事件若A∪B=S且,则称事件A与事件B互为逆事件,又称事件A与事件B互为对立事件.对每次试验而言,事件A、B中必有一个发生,且仅有一个发生.A的对立事件记为.(7)定律设A,B,C为事件,则有:①交换律:A∪B=B∪A;A∩B=B∩A;②结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C;③分配律:A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A ∩C);④德摩根律:;.。

数理统计与随机过程

数理统计与随机过程

数理统计与随机过程
数理统计是一门研究如何从数据中提取信息的学科,它是现代统计学的基础。

数理统计的主要任务是通过对数据的分析和处理,得出数据的规律性和特征,从而对数据进行预测和决策。

数理统计的应用范围非常广泛,包括经济、金融、医学、环境、社会等各个领域。

随机过程是一种随机变量的序列,它描述了随机事件在时间上的演化过程。

随机过程是概率论和统计学中的重要概念,它在信号处理、通信、控制、金融等领域中有着广泛的应用。

数理统计和随机过程有着密切的联系。

在数理统计中,我们通常需要对数据进行建模,而随机过程提供了一种自然的建模方式。

例如,我们可以将时间序列数据看作是一个随机过程,然后通过对随机过程的分析和处理,得出数据的规律性和特征。

另外,在随机过程中,我们通常需要对随机变量的分布进行估计,而数理统计提供了一种有效的估计方法。

在实际应用中,数理统计和随机过程经常被用来解决各种问题。

例如,在金融领域中,我们可以使用随机过程来建立股票价格的模型,然后使用数理统计的方法对模型进行分析和预测。

在医学领域中,我们可以使用数理统计的方法对疾病的发病率进行分析,然后使用随机过程来建立疾病传播的模型。

数理统计和随机过程是现代统计学和概率论的重要组成部分,它们
在各个领域中都有着广泛的应用。

通过对数据的分析和建模,我们可以更好地理解数据的规律性和特征,从而为决策和预测提供更加准确的依据。

数理统计与随机过程

数理统计与随机过程

数理统计与随机过程
数理统计与随机过程是现代科学技术的重要基础,它们广泛应用于各个学科和领域。

在本文中,我们将介绍数理统计和随机过程的概念、应用及其重要性。

数理统计是一种研究统计规律的方法,它主要以概率论为基础,应用数学方法对数据进行分析和解释。

它可以帮助我们了解数据的分布、趋势和变化规律,从而提高决策的准确性。

数理统计应用广泛,包括经济学、环境科学、医学、社会科学等领域。

例如,在医学领域,数理统计可以帮助我们确定药物的有效性和安全性,从而提高临床治疗的质量和效果。

随机过程是一种研究随机现象的模型,它描述了随机变量随时间的变化规律。

随机过程在信号处理、通信、金融等领域应用广泛。

例如,在金融领域,随机过程可以用于模拟股票价格的变化,帮助投资者进行风险管理和决策。

数理统计和随机过程在现代科学技术中具有重要的地位。

它们可以提高决策的准确性和效率,帮助我们更好地理解和应对复杂的现实问题。

同时,它们也为我们提供了一种深入思考和探索科学世界的方法和工具。

数理统计和随机过程是现代科学技术的重要基础,它们在各个学科和领域中应用广泛,具有重要的理论和实践意义。

我们应该积极学
习和应用数理统计和随机过程的知识,不断拓展我们的科学视野和能力。

随机过程及其统计描述

随机过程及其统计描述

{v1 (t ), v2 (t ),
, vk (t ), }
在给定的时刻 t j观测热噪声电压 V, 它是一个随机变量,其取值是
{v1 (t j ), v2 (t j ),
中的任意一个。
, vk (t j ), }
对热噪声电压的重复观测
3
12.1 随机过程的概念
热噪声电压现象的特点
(1)在某一时刻tj,电压V是一个随机变量,有其样本空间:
12.3 泊松过程及维纳过程
2
12.1 随机过程的概念
一个实例:热噪声电压
在一段时间内对热噪声电压进行观测 是随机试验。观测结果将得到某种形 式的v-t函数图象,可能是
v1 (t ), v2 (t ),
中的任意一个。
, vk (t ),
在相同条件下,独立、重复的观 测,所有可能的结果构成一个函 数族:
, tn ), ti T} 称为n维分布函数族
, X (tn ) xn }
,n
xi R, i 1, 2,
12
12.2 随机过程的统计描述
(二) 随机过程的数字特征
均值函数
X (t ) 是一个随机变量, 给定随机过程 { X (t ), t T } ,固定 t T , t 时刻的均值(数学期望),记为
mn维分布函数可分离变量两随机过程相互独立的概念互相关函数12extytrt互协方差函数12不相关的判据若对任意恒有二维随机过程的分布函数和数字特征122随机过程的统计描述仍指的是线性不相关24三个随机过程的和wtxtytzt均值函数自相关函数12rttewtwtxxxyxzyxyyyzzxzyzzxtytztxtytzt二维随机过程的分布函数和数字特征122随机过程的统计描述25123泊松过程及维纳过程增量的概念给定二阶矩过程我们称随机变量为随机过程在区间上的增量

《概率论与数理统计》课件-随机过程

《概率论与数理统计》课件-随机过程
《概率论与数理统计》经典课件 -随机过程
目录
• 随机过程基础 • 随机过程的基本类型 • 随机过程的分析与变换 • 随机过程的应用 • 随机过程的计算机模拟 • 随机过程的未来发展与挑战
01
随机过程基础
随机过程的定义与分类
定义
随机过程是由随机变量构成的数 学结构,每个随机变量对应一个 时间点或位置。
分类
根据不同的特性,随机过程可以 分为离散随机过程和连续随机过 程,平稳随机过程和非平稳随机 过程等。
随机过程的统计特性
均值函数
方差函数
自相关函数
谱密度函数
描述随机过程的平均行 为。
描述随机过程的波动程 度。
描述随机过程在不同时 间点的相关性。
描述随机过程的频率特 性。
随机过程的概率模型
01
02
蒙特卡洛方法在金融、物理、工程等领域有广泛应用,如期权定价、核反应堆模拟 等。
离散事件模拟方法
离散事件模拟方法是一种基于 事件驱动的模拟方法,通过模 拟离散事件的发生和影响来逼 近真实系统。
离散事件模拟方法适用于描述 离散状态变化的过程,如交通 流模拟、排队系统模拟等。
离散事件模拟方法的关键在于 事件的时间点和顺序的确定, 以及事件影响的计算。
连续时间模拟方法
连续时间模拟方法是一种基于时间连 续变化的模拟方法,通过模拟时间连 续变化的过程来逼近真实系统。
连续时间模拟方法的关键在于时间步 长的选择和状态变化的计算,需要保 证模拟结果的准确性和稳定性。
连续时间模拟方法适用于描述连续状 态变化的过程,如人口增长模拟、生 态系统模拟等。
06
随机过程的未来发展与挑战
控制系统
利用随机过程理论,分析和设计 控制系统,提高系统的稳定性和

数理统计与随机过程

数理统计与随机过程

数理统计与随机过程数理统计与随机过程1. 引言数理统计与随机过程是两个密切相关的概念,既有相似之处又有一些区别之处。

数理统计是一种研究数据收集、分析和解释的方法,而随机过程则是研究时间上的随机变化的数学模型。

本文将深入探讨数理统计与随机过程的基本概念、应用以及相互关系,以期帮助读者更全面地理解这两个领域。

2. 数理统计数理统计是一种通过收集、处理和解释数据来进行推断和决策的学科。

它包括描述统计和推断统计两个方面。

描述统计主要包括对数据的总结、图形展示和基本统计指标的计算,通过这些方法可以揭示数据的特征和分布。

推断统计则是基于样本数据对总体特征进行估计和推断的方法,其中包括参数估计和假设检验。

数理统计在各个领域都有广泛的应用,如市场调研、医学研究和金融风险评估等。

3. 随机过程随机过程是一种描述随机现象演变的数学模型,它涉及到时间上不确定性的变化。

随机过程可以看作是一系列随机变量的集合,这些随机变量在时间上有关联,并且它们的取值取决于某个随机事件的结果。

随机过程可以分为离散时间和连续时间两种类型。

离散时间下的随机过程通常用更简单的概率论工具进行描述,如马尔可夫链和随机游走。

而连续时间下的随机过程则需要用到更为复杂的数学方法,如随机微分方程和布朗运动。

随机过程在物理学、通信系统和金融工程等领域有着广泛的应用。

4. 数理统计与随机过程的联系数理统计和随机过程有着密切的联系,两者既有相互支持的关系,也有独立发展的特点。

数理统计可以用来对随机过程进行建模和推断。

通过收集随机过程的样本数据,可以应用数理统计中的方法来估计空间分布、预测未来变化趋势等。

而随机过程则为数理统计提供了数据来源,将现实世界的随机现象进行数学描述,为数理统计的分析提供了基础。

随机过程的理论和方法也常常被运用到数理统计中。

在时间序列分析中,随机过程的模型可以用来描述数据随时间变化的规律,从而可以对未来的观测结果进行预测和分析。

数理统计和随机过程的融合使得对数据的分析更加全面和准确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12
工程技术中有很多随机现象, 例如, 地震波幅, 结构物承受的风荷载, 时间间隔(0, t]内船舶甲 板"上浪"的次数, 通讯系统和自控系统中的 各种噪声和干扰, 以及生物群体的生长等等变 化过程都可用随机过程这一数学模型来描绘. 不过, 这些随机过程都不能象随机相位正弦波 那样, 很方便, 很具体地用时间和随机变量(一 个或几个)的关系式表示出来, 其主要原因是 自然界和社会产生随机因素的机理极为复杂, 甚至不可能观察到, 因此只有通过分析样本函 数才能掌握它们的规律性.
是一随机过程. 且它们的状态空间是(-, +).
10
例4 设某城市的120急救电话台迟早会接到用 户的呼叫, 以X(t)表示时间间隔(0,t]内接到的 呼叫次数, 它是一个随机变量, 且对于不同的 t0, X(t)是不同的随机变量. 于是, {X(t),t0}是 一随机过程. 且它的状态空间是{0,1,2,...}.
13
随机过程的不同描述方式在本质上是一致的. 在理论分析时往往以随机变量族的描述方式 作为出发点, 而在实际测量和数据处理中往往 采用样本函数族的描述方式. 这两种描述方式 在理论和实际两方面是互为补充的. 随机过程可依其在任一时刻的状态是连续型 或离散型随机变量而分成连续型随机过程和 离散型随机过程. 热噪声电压, 例2和例3是连 续型随机过程, 例1, 例4和例5是离散型随机过 程.
均值函数mX(t)表示了随机过程X(t)在各个时
刻的摆动中心.
23
把随机变量X(t)的二阶原点矩和二阶中心矩 分别记作
2 X
(t
)
E[ X
2 (t )]
(2.2)

2 X
(t)
DX
(t)
Var[
X (t)]
E{[ X (t)
-
mXLeabharlann (t)]2 },(2.3)
并分别称它们为随机过程{X(t), tT}的均方值
2
多次试验得到多个电压函数 v1(t) v2(t)
vk(t) tj
t t
t
3
设T是一无限实数集, 把依赖于参数tT的一 族(无限多个)随机变量称为随机过程, 记为 {X(t), tT}, 这里对每一个tT, X(t)是一随机 变量. T叫做参数集. 常把t看作为时间, 称X(t) 为时刻t时过程的状态, 而X(t1)=x(实数)说成是 t=t1时过程处于状态x, 对于一切tT, X(t)所有 可能取的一切值的全体称为随机过程的状态 空间. 对随机过程{X(t), tT}进行一次试验, 其 结果是t的函数, 记为x(t), tT, 称它为随机过 程的一个样本函数或样本曲线. 所有不同的试 验结果构成一族样本函数.
5
例1 抛掷一枚硬币试验, 样本空间是S={H,T},
现藉此定义
X (t) cost,t,
当出现H , 当出现T ,
t
(-,),
x(t)
x=cos t
O t1 t2
t
6
其中P(H)=P(T)=1/2. 对任意固定的t, X(t)是一 定义在S上的随机变量; 对不同的t, X(t)是不同 的随机变量, 所以{X(t), t(-, +)}是一族随 机变量, 即它是随机过程. 另一方面, 作一次试
FX(x1,x2,...,xn;t1,t2,...,tn)= P{X(t1)x1, X(t2)x2,..., X(tn)xn},
xiR, i=1,2,...,n. 对于固定的n, 称{FX(x1,x2,...,xn;t1,t2,...,tn), tiT} 为随机过程{X(t), tT}的n维分布函数族.
验, 若出现H, 样本函数x1(t)=cos t; 若出现T,
样本函数为x2(t)=t, 所以该随机过程对应的一
族样本函数仅包含两个函数:{cos t, t}. 显然
这个随机过程的状态空间为(-, +).
7
例2 考虑
X(t)=a cos(wt+Q), t(-, ), (1.1) 式中a和w是正常数, Q是在(0,2)上服从均匀
{E[X(t1)X(t2)]}E[X2(t1)X2(t2)], t1,t2T. 即知RX(t1,t2)=E[X(t1)X(t2)]存在
28
在实际中, 常遇到一种特殊的二阶矩过程-正 态过程. 随机过程{X(t), tT}称为正态过程, 如 果它的每一个有限维分布都是正态分布, 亦即 对任意整数n1及任意t1,t2,...,tnT, (X(t1), X(t2),..., X(tn))服从n维正态分布. 由第四章的 结论知, 正态过程的全部统计特性完全由它的 均值函数和自协方差函数(或自相关函数)所 确定.
22
给定随机过程{X(t), tT}, 固定tT, X(t)是一
随机变量, 它的一切均值一般与t有关, 记为
mX(t)=E[X(t)],
(2.1)
称mX(t)随机过程{X(t), tT}的均值函数.
注意, mX(t)是随机过程的所有样本函数在时刻
t的函数值的平均值, 通常称这种平均为集平
均或统计平均.
4
随机过程可看作多维随机变量的延伸. 随机过 程与其样本函数的关系就象数理统计中总体 与样本的关系一样. 因此, 热噪声电压的变化过程{V(t), t0}是一 随机过程, 它的状态空间是(-, +), 一次观 测到的电压-时间函数就是这个随机过程的一 个样本函数. 在以后的叙述中, 为简便起见, 常以X(t), tT 表示随机过程. 在上下文不致混淆的情况下, 一般略去记号中的参数集T.
RXX(t1,t2)=E[X(t1)X(t2)],
(2.4)
并称它为随机过程{X(t),tT}的自相关函数,
简称相关函数. RXX也简记为RX(t1,t2). X(t1)和X(t2)的二阶混合中心矩记作
CXX(t1,t2)=Cov[X(t1),X(t2)]
=E{[X(t1)-mX(t1)][X(t2)-mX(t2)]}, (2.5)
随机过程的一个样本函数
xi(t)=a cos(wt+qi), qi(0,2).
9
例3 在测量运动目标的距离时存在随机误差,
若以e(t)表示在时刻t的测量误差, 则它是一个
随机变量. 当目标随时间t按一定规律运动时,
测量误差e(t)也随时间t而变化, 换句话说, e(t) 是依赖于时间t的一族随机变量, 亦即{e(t), t0}
14
随机过程还可依时间(参数)是连续或离散进 行分类. 当时间集T是有限或无限区间时, 称 {X(t), tT}为连续参数随机过程(以下如无特 别指明, "随机过程"总是指连续参数而言的). 如果T是离散集合, 例如T={0,1,2,...}, 则称 {X(t), tT}为离散参数随机过程或随机序列, 此时常记成{Xn, n=0,1,2,...}等, 如例5.
第十章 随机过程及其统计描述
§1 随机过程的概念
1
热噪声电压 电子元件或器件由于内部微观粒 子(如电子)的随机热骚动所引起的端电压称 为热噪声电压, 它在任一确定时刻t的值是一 随机变量, 记为V(t). 不同时刻对应不同的随 机变量, 当时间在某区间, 譬如[0,+)上推移 时, 热噪声电压表现为一族随机变量, 记为 (V(t), t0), 在无线电通讯技术中, 接收机在接 收信号时, 机内的热噪声电压要对信号产生持 续的干扰. 通过某种装置对元件两端的热噪声 电压进行长期测量, 并记录结果, 作为试验结 果, 得到一电压-时间函数.
RX(t1,t2)=E[X(t1)X(t2)]=E[(At1+B)(At2+B)] =t1t2E[A2]+(t1+t2)E[AB]+E[B2] =t1t2+4/3, t1,t2T.
11
例5 考虑抛掷一颗骰子的试验. (i) 设Xn是第n 次(n1)抛掷的点数, 对于n=1,2,...的不同值, Xn是不同的随机变量, 因而{Xn, n1}构成一随 机过程, 称为伯努利过程或伯努利随机序列. (ii)设Xn是前n次抛掷中出现的最大点数, {Xn, n1}也是一随机过程. 它们的状态空间都是 {1,2,3,4,5,6}.
20
当n充分大时, n维分布函数族能够近似地描 述随机过程的统计特性. 显然, n取得越大, 则 n维分布函数族描述随机过程的特性也越趋 完善. 一般, 可以指出(科尔莫戈罗夫定律):有 限维分布函数族, 即{FX(x1,x2,...,xn, n=1,2,...,t1, t2, ...,tn), tiT}完全地确定了随机过程的统计 特性.
分布的随机变量.
x(t)
x2(t), q2=3/2
O
t
x1(t),q1=0
8
显然, 对于每一个固定的时刻t=t1,
X(t1)=a cos(wt1+Q)是一个随机变量, 因而由
(1.1)式确定的X(t)是一个随机过程, 通常称它
为随机相位正弦波. 它的状态空间是[-a, a]. 在(0,2)内随机地取一数qi, 相应地即得这个
15
有时为了数字化的需要, 实际中也常将连续参 数随机过程转化为随机序列处理. 例如, 我们 只在时间集T={Dt, 2Dt, ...,nDt, ...}上观察电阻 热噪声电压V(t), 这时就得到一个随机序列
{V1,V2,...,Vn,...}, 其中Vn=V(nDt), 显然, 当Dt充分小时, 这个随 机序列能够近似地描述连续时间情况下的热 噪声电压.
2 X
(t)
CX
(t,
t)
RX
(t,
t)
-
m
2 X
(t ).
(2.8)
由上面可知诸数字特征中最主要的是均值 函数和自相关函数.
27
随机过程{X(t), tT}, 如果对每一个tT, 二阶 矩E[X2(t)]都存在, 则称它为二阶矩过程. 二阶矩过程的相关函数总存在. 事实上, 由于 E[X2(t1)], E[X2(t2)]存在, 根据柯西-许瓦兹不等 式有
相关文档
最新文档