信号与系统第三版 第六章习题答案
信号与系统第三版课后答案燕庆明

信号与系统第三版课后答案燕庆明【篇一:信号与系统课后习题】t)?tf(t?td),tf(t?t0)?yf(t?t0)?,yf(t?t0)?(t?t0)f(t?t0)。
(3)令g(t)?f(t?t0),t[g(t)]?g(?t)?f(?t?t0),tf(t?t0)? yf(t?t0),yf(t?t0)?f(?t?t0)1.2.已知某系统输入f(t)与输出y(t)的关系为y(t)?f(t)判断该系统是否为线性时不变系统?解:设t为系统运算子,则y(t)可以表示为y(t)?t[f(t)]?f(t),不失一般性,设f(t)?f1(t)?f2(t)t[f1(t)]?f1(t)?y1(t),t[f(t)]?f1(t)?f2(t)?y(t),显然其不相等,即为非线性时不变系统。
df(t)t??f(x)dx(2):[y(t)]2?y(t)?f(t) 1.3判断下列方程所表示系统的性(1):y(t)?0dt(3):y(t)?2y(t)?3y(t)?f(t)?f(t?2)(4):y(t)?2ty(t)?2y(t)?3f(t) 线性非线性时不变线性时不变线性时变1.4。
试证明方程y(t)+ay(t)=f(t)所描述的系统为线性系统。
证明:不失一般性,设输入有两个分量,且f1(t)→y1(t),f2(t)→y2(t) 则有y1(t)+ay1(t)=f1(t),y2(t)+ay2(t)=f2(t) 相加得y1+ay1(t)+y2(t)+ay2(t)=f1(t)+f2(t) 即d[y1(t)+y2(t)]+a[y1(t)+y2(t)] dt=f1(t)+f2(t)可见f1(t)+f2(t)→y1(t)+y2(t)即满足可加性,齐次性是显然的。
故系统为线性的。
1.5。
证明1.4满足时不变性。
证明将方程中的t换为t-t0,t0为常数。
即y(t-t0)+ay(t-t0)=f(t-t0) 由链导发则,有dy(t?t0)? dtd(t?t0)dy(t?t0)d(t?t0)dy(t?t0)dy(t?t0)?1从而又因t0为常数,故所以有 ??dtd(t?t0)dtdtd(t?t0)dy(t?t0)?ay(t?t0)?f(t?t0)即满足时不变性f(t-t0)→y(t-t0) dty(t)?y(t?t0)f(t)?f(t??t)?所以?t?tlimf(t)?f(t??t)limy(t)?f(t?t0)既有 f(t)?y(t) ??t?0?t?0?t?t1.7 若有线性时不变系统的方程为y(t)+ay(t)=f(t)在非零f(t)作用下其响应y(t)=1-e-t,试求方程y(t)+ay(t)=2f(t)+f(t)的响应。
数字信号处理答案(第三版)清华大学

数字信号处理教程课后习题答案目录第一章离散时间信号与系统第二章Z变换第三章离散傅立叶变换第四章快速傅立叶变换第五章数字滤波器的基本结构第六章无限长单位冲激响应(IIR)数字滤波器的设计方法第七章有限长单位冲激响应(FIR)数字滤波器的设计方法第八章数字信号处理中有限字长效应第一章 离散时间信号与系统1 .直接计算下面两个序列的卷积和)n (h *)n (x )n (y =请用公式表示。
分析:①注意卷积和公式中求和式中是哑变量m ( n 看作参量), 结果)(n y 中变量是 n ,; )()()()()(∑∑∞-∞=∞-∞=-=-=m m m n x m h m n h m x n y ②分为四步 (1)翻褶( -m ),(2)移位( n ),(3)相乘,; )( )( 4n y n n y n 值的,如此可求得所有值的)相加,求得一个(③ 围的不同的不同时间段上求和范一定要注意某些题中在 n00 , 01()0 , ,()0,n n n a n N h n n n n x n n n β-⎧≤≤-=⎨⎩⎧≤⎪=⎨<⎪⎩其他如此题所示,因而要分段求解。
)(5.0)(,)1(2 )()4()(5.0)(,)2( )()3()()(,)( )()2()()(,)( )()1(3435n u n h n u n x n R n h n n x n R n h n R n x n R n h n n x n n n =--==-=====δδ2 .已知线性移不变系统的输入为)n (x ,系统的单位抽样响应 为)n (h ,试求系统的输出)n (y ,并画图。
分析:①如果是因果序列)(n y 可表示成)(n y ={)0(y ,)1(y ,)2(y ……},例如小题(2)为)(n y ={1,2,3,3,2,1} ;②)()(*)( , )()(*)(m n x n x m n n x n x n -=-=δδ ;③卷积和求解时,n 的分段处理。
信号与系统--完整版答案--纠错修改后版本

1)
3)
5)
3.8、求下列差分方程所描述的离散系统的单位序列响应。
2)5)
3.9、求图所示各系统的单位序列响应。
(a)
(c)
3.10、求图所示系统的单位序列响应。
3.11、各序列的图形如图所示,求下列卷积和。
(1)(2)(3)(4)
4.34 某LTI系统的频率响应,若系统输入,求该系统的输出。
4.35 一理想低通滤波器的频率响应
4.36 一个LTI系统的频率响应
若输入,求该系统的输出。
4.39 如图4-35的系统,其输出是输入的平方,即(设为实函数)。该系统是线性的吗?
(1)如,求的频谱函数(或画出频谱图)。
(2)如,求的频谱函数(或画出频谱图)。
(1) (2) (3) (4) (5)
4.19 试用时域微积分性质,求图4-23示信号的频谱。
图4-23
4.20 若已知,试求下列函数的频谱:
(1)(3) (5)
(8)(9)
4下列方式求图4-25示信号的频谱函数 (1)利用xx和线性性质(门函数的频谱可利用已知结果)。
(1)
5-18 已知系统函数和初始状态如下,求系统的零输入响应。
(1),
(3),
5-22 如图5-5所示的复合系统,由4个子系统连接组成,若各子系统的系统函数或冲激响应分别为,,,,求复合系统的冲激响应。
5-26 如图5-7所示系统,已知当时,系统的零状态响应,求系数a、b、c。
5-28 某LTI系统,在以下各种情况下起初始状态相同。已知当激励时,其全响应;当激励时,其全响应。
(7)(8)
1-7 已知序列的图形如图1-7所示,画出下列各序列的图形。
信号与系统第六章习题答案

第六章 离散系统的Z域分析 6.1学习重点 1、离散信号z 域分析法—z变换,深刻理解其定义、收敛域以及基本性质;会根据z变换的定义以及性质求常用序列的z变换;理解z变换与拉普拉斯变换的关系。
2、熟练应用幂级数展开法、部分分式法及留数法,求z 反变换。
3、离散系统z 域分析法,求解零输入响应、零状态响应以及全响应。
4、z 域系统函数()z H 及其应用。
5、离散系统的稳定性。
6、离散时间系统的z 域模拟图。
7、用MATLAB 进行离散系统的Z 域分析。
6.2 教材习题同步解析 6.1 求下列序列的z 变换,并说明其收敛域。
(1)n 31,0≥n (2)n−−31,0≥n(3)nn−+ 3121,0≥n (4)4cos πn ,0≥n(5)+42sin ππn ,0≥n 【知识点窍】本题考察z 变换的定义式 【逻辑推理】对于有始序列离散信号[]n f 其z 变换的定义式为()[]∑∞=−=0n nzn f z F解:(1)该序列可看作[]n nε31()[][]∑∑∞=−∞=− == =010313131n n n nn n z z n n Z z F εε对该级数,当1311<−z ,即31>z 时,级数收敛,并有 ()13331111−=−=−z zz z F其收敛域为z 平面上半经31=z 的圆外区域 (2)该序列可看作[]()[]n n nnεε331−=−−()()[][]()[]()∑∑∞=−∞=−−=−=−=010333n nn nnnzzn n Z z F εε对该级数,当131<−−z ,即3>z 时,级数收敛,并有()()33111+=−−=−z zz z F 其收敛域为z 平面上半经3=z 的圆外区域(3)该序列可看作[][]n n nn n n εε+ = + −3213121()[][]()∑∑∑∞=−∞=−∞=−+ =+ = + =01010*********n nn n n nn n n n z z z n n Z z F εε对该级数,当1211<−z 且131<−z ,即3>z 时,级数收敛,并有 ()3122311211111−+−=−+−=−−z zz z z zz F 其收敛域为z 平面上半经3=z 的圆外区域(4)该序列可看作[]n n επ4cos()[]∑∑∑∑∞=−−∞=−−∞=−∞=−+=+== =0140140440*******cos 4cos n nj n nj nn j j n n z e z e z e e z n n n Z z F πππππεπ对该级数,当114<−ze j π且114<−−zejπ,即1>z 时,级数收敛,并有()122214cos 24cos 21112111212222441414+−−=+−−=−+−=−×+−×=−−−−z z zz z z z z e z z e z z z eze z F j j j j ππππππ其收敛域为z 平面上半经1=z 的圆外区域 (5)该序列可看作[][][]n n n n n n n n εππεππππεππ+=+= +2cos 2sin 222sin 4cos 2cos 4sin 42sin()[]()122212212212cos 22cos 2212cos 22sin 222cos 222sin 222cos 2sin 222222222200++=+++=+−−++−=+=+=∑∑∞=−∞=−z z z z z z z z z z z z z z z n z n n n n Z z F n nn n ππππππεππ 其收敛域为z 平面上半经1=z 的圆外区域 6.2 已知[]1↔n δ,[]a z z n a n −↔ε,[]()21−↔z z n n ε, 试利用z 变换的性质求下列序列的z 变换。
数字信号处理第三版 教材第六章习题解答

6.2 教材第六章习题解答1. 设计一个巴特沃斯低通滤波器,要求通带截止频率6p f kHz =,通带最大衰减3p a dB =,阻带截止频率12s f kHz =,阻带最小衰减3s a dB =。
求出滤波器归一化传输函数()a H p 以及实际的()a H s 。
解:(1)求阶数N 。
lg lg sp spk N λ=-0.10.30.1 2.51011010.0562101101p s asp a k --==≈--332121022610s sp p πλπΩ⨯⨯===Ω⨯⨯将sp k 和sp λ值代入N 的计算公式得lg 0.05624.15lg 2N =-=所以取N=5(实际应用中,根据具体要求,也可能取N=4,指标稍微差一点,但阶数低一阶,使系统实现电路得到简化。
) (2)求归一化系统函数()a H p ,由阶数N=5直接查表得到5阶巴特沃斯归一化低通滤波器系统函数()a H p 为54321() 3.2361 5.2361 5.2361 3.23611a H p p p p p p =+++++或 221()(0.6181)( 1.6181)(1)a H p p p p p p =+++++ 当然,也可以按(6.12)式计算出极点:121()22,0,1,2,3,4k j Nk p ek π++==按(6.11)式写出()a H p 表达式41()()a k k H p p p ==-代入k p 值并进行分母展开得到与查表相同的结果。
(3)去归一化(即LP-LP 频率变换),由归一化系统函数()a H p 得到实际滤波器系统函数()a H s 。
由于本题中3p a dB =,即32610/c p rad s πΩ=Ω=⨯⨯,因此()()a a cH s H p s p ==Ω5542332453.2361 5.2361 5.2361 3.2361c c c cc cs s ss s Ω=+Ω+Ω+Ω+Ω+Ω对分母因式形式,则有()()a a cH s H p s p ==Ω52222(0.6180)( 1.6180)()c c c c cc s s s s s Ω=+Ω-Ω+Ω-Ω+Ω如上结果中,c Ω的值未代入相乘,这样使读者能清楚地看到去归一化后,3dB 截止频率对归一化系统函数的改变作用。
信号与系统课后答案第六章作业答案

⋅
2⎤⎥⎦
⋅
u
(n
−
3)
=
2⋅
( −1)n
⎡2 ⎢⎣ k =0
( −1)− k
⎤ ⎥⎦
⋅
u
(n
−
3)
∑ y
f
(3)
=
2
⋅
(
−1)3
⎡ ⎢⎣
k
2 =0
(
−1)−k
⎤ ⎥⎦
=
2
⋅
( −1)
⋅
(1
−1
+
1)
=
−2
∑ y
f
(4)
=
2
⋅
(
−1)4
⎡ ⎢⎣
k
2 =0
(
−1)−k⎤ ⎥⎦=2⋅(1)
⋅
(1
−1
+
1)
-1
对应时刻点相乘后累加得 y(1) = 4 。 由于 f1(n) 和 f2 (n) 为有限序列,故该题可采用数乘法进行计算:
11112 2 2 2 ↑ 1 1 1 1 −1 −1 −1 ↑
−1 −1 −1 −1 − 2 − 2 −2 −2 −1 −1 −1 −1 − 2 − 2 −2 −2 −1 −1 −1 −1 − 2 − 2 −2 −2
u
(
n
+
4)
(4)利用卷积的性质( f (n) *δ(n − m) = f (n − m) )可得:
nu(n) * δ(n + 3) = nu(n) n=n+3 = (n + 3) u(n + 3)
6-7 如题图 6-4 所示,如果 y(n) = f1(n) * f2 (n) ,则试求 y(−2)、y(0)、y(1) 的值。
信号与系统第三版 第六章习题答案

2 t 2
cos
2 2
t ]u (t )
6.13 一个因果LTI系统的频率响应为:
5 jw 7 H ( jw) ( jw 4)[( jw) 2 jw 1]
(a) 求该系统的冲激响应
(b) 试确定由一阶系统和二阶系统构成的串联型结构 (c)试确定由一阶系统和二阶系统构成的串联型结构 解:(a) 5 jw 7 1 jw 2
I 2 (w) 2 jw H ( jw) E (w) 8 jw 3
(b) 对H(jw)作反傅立叶变换可得h(t)
2 jw 1 H ( jw) 8 jw 3 4
h(t ) F 1{H ( jw)}
3 32 3 jw 8 3t 1 3 8 (t ) e u (t ) 4 32
(b) 对H(jw)作反傅立叶变换可得h(t)
3 3 3( jw 3) 2 H ( jw) 2 ( jw 2)( jw 4) ( jw 2) jw 4
3 2t h(t ) F {H ( jw)} (e e 4t )u (t ) 2 (c) 3( jw 3) 3 jw 9 Y ( w) H ( jw) 2 ( jw 2)( jw 4) ( jw) 6 jw 8 X ( w)
1 X ( w) ( jw 2) 2
Y (w) H ( jw) X (w)
2 Y ( w) 3 ( jw 2) ( jw 4)
1 1 4 2 3 ( jw 2) ( jw 2) ( jw 2) ( jw 4) 1 4 1 2
1 2t 1 2t 1 2 2t 1 4t y (t ) F {Y ( w)} ( e te t e e )u (t ) 4 2 2 4 2 2 ( jw ) 2 (c) H ( jw) ( jw) 2 2 jw 1
随机信号分析(第3版)第六章习题及答案

随机信号分析(第3版)第六章习题及答案6.1 复随机过程0()()j t Z t eω+Φ=,式中0ω为常数,Φ是在(0,2)π上均匀分布的随机变量。
求:(1)[()()]E Z t Z t τ*+和[()()]E Z t Z t τ+;(2)信号的功率谱。
解:(1)0000[()][]201[()()]212j t j t j j E Z t Z t e e d e d e ωτωπωτωττππ+∞++Φ-+Φ*-∞+=Φ=Φ=?0000[()][]2[(2)2]2(2)201[()()]212120j t j t j t j t j E Z t Z t e e d e d ee d ωτωπωτπωττπππ+∞++Φ+Φ-∞++Φ+Φ+=Φ=Φ=Φ=?[]2()Z Z j S F R F E Z t Z t F eωτωττπδωω*==+==-6.2 6.36.4 已知()a t 的频谱为实函数()A ω,假定ωω>?时,()0A ω=,且满⾜0ωω?,试⽐较:(1) 0()cos a t t ω和0(12)()exp()a t j t ω的傅⽴叶变换。
(2) 0()sin a t t ω和0(2)()exp()j a t j t ω-的傅⽴叶变换。
(3)0()cos a t t ω和0()sin a t t ω的傅⽴叶变换。
解:由傅⽴叶变换的定义可以得到:(1)00000()cos [()()]1()()2FTj t FT a t t A A a t e A ωωπωωωωπωω←?→-++←?→-01()2j t a t e ω的傅⽴叶变换是0()cos a t t ω的傅⽴叶变换的正频率部分。
(2)00000()s i n [()()]()()2FTj t FTa t t A A jj a t e A jωπωωωωωπωω←?→--+-←?→-0()2j t ja t e ω-的傅⽴叶变换是0()sin a t t ω的傅⽴叶变换的正频率部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.9 一个因果系统的输入和输出由如下微分方程描述:
y(t ) 6 y(t ) 8 y(t ) 2 x(t )
(a) 求该系统的冲激响应和阶跃响应 (b) 若x(t)=te-2tu(t),该系统的响应是什么?
(c) 对如下表征因果LTI系统的方程,重做(a)
y(t ) 2 y(t ) y(t ) 2x(t ) 2x(t )
由(b)可知,u(t)的响应为:
3t 1 8 e u (t ) 4
Eu(t)的响应为: Eu(t-T)的响应为:
E 83 t e u (t ) 4
3 ( t T ) E 8 e u (t T ) 4
则:e(t)=E[u(t)-u(t-1)]的响应为:
3t 3 ( t T ) E 8 8 I 2 (t ) [e u (t ) e u (t T )] 4
一阶系统为:
y(t ) 4 y(t ) x(t )
二阶系统为: y(t ) y(t ) y(t ) x(t ) 2 x(t )
x( t )
4
y( t )
1
1
2
END
1
2 t 2
cos
2 2
t ]u (t )
6.13 一个因果LTI系统的频率响应为:
5 jw 7 H ( jw) ( jw 4)[( jw) 2 jw 1]
(a) 求该系统的冲激响应
(b) 试确定由一阶系统和二阶系统构成的串联型结构 (c)试确定由一阶系统和二阶系统构成的串联型结构 解:(a) 5 jw 7 1 jw 2
H ( jw) ( jw 4)[( jw) jw 1]
2
( jw 4) [( jw) 2 jw 1]
3 jw 1 3 1 2 2 2 3 2 2 2 2 2 ( jw 4) ( jw 1 ( jw ) ( ) ( ) 2 2 ) 2 2
1 X ( w) ( jw 2) 2
Y (w) H ( jw) X (w)
2 Y ( w) 3 ( jw 2) ( jw 4)
1 1 4 2 3 ( jw 2) ( jw 2) ( jw 2) ( jw 4) 1 4 1 2
1 2t 1 2t 1 2 2t 1 4t y (t ) F {Y ( w)} ( e te t e e )u (t ) 4 2 2 4 2 2 ( jw ) 2 (c) H ( jw) ( jw) 2 2 jw 1
y(t ) y(t ) x(t )
二阶系统为: y(t ) y(t ) y(t ) 5x(t ) 7 x(t )
5
x( t )
4
1
1
7
y( t )
(b) 并联结构
1 jw 2 H ( jw) H1 ( jw) H 2 ( jw) ( jw 4) ( jw) 2 jw 1
解:(a)对系统方程作傅立叶变换,得:
2 2 1 1 H ( jw) 2 ( jw) 6 jw 8 ( jw 2)( jw 4) ( jw 2) jw 4
h(t ) F 1{H ( jw)} (e2t e4t )u(t )
H ( jw) s(t ) h(t )dt S ( jw) ( w) H (0) jw 2 1 S ( jw) ( w) jw( jw 2)( jw 4) 4
1
由此可得系统的微分方程为:
y(t ) 6 y(t ) 8 y(t ) 3x(t ) 9 x(t )
引入中间变量q(t):
q(t ) 6q(t ) 8q(t ) x(t ) q(t ) x(t ) 6q(t ) 8q(t ) y(t ) 3q(t ) 9q(t )
1 1 2 jw 4 X ( w) F {x(t )} jw 1 jw 3 ( jw 1)( jw 3)
2 2 6 Y ( w) F { y (t )} jw 1 jw 4 ( jw 1)( jw 4)
Y ( w) 6 ( jw 1)( jw 3) H ( jw) X ( w) ( jw 1)( jw 4) 2 jw 4 3( jw 3) ( jw 2)( jw 4)
s(t ) h(t )dt
t
H ( jw) S ( jw) ( w) H (0) jw
3t 1 8 s(t ) F {S ( jw)} e u(t ) 4
S ( jw)
1 4 3 jw 8
1
(c) 由e(t)的波形可写出其表达式为:
e(t ) E[u(t ) u(t 1)]
t
1 1 1 1 1 1 2 ( w) 4 jw 4 ( jw 2) 4 ( jw 4) 1 1 2t 1 4t 1 s (t ) F {S ( jw)} ( e e )u (t ) 4 2 4
(b)
x(t ) te u (t )
2t
h(t ) F {H ( jw)} (e
1
4t
e
1 t 2
cos
3 2
t 3e
1 t 2
sin
3 2
t )u(t )
(b) 串联结构
1 5 jw 7 H ( jw) H1 ( jw) H 2 ( jw) ( jw 4) ( jw) 2 jw 1
一阶系统为:
(b) 对H(jw)作反傅立叶变换可得h(t)
3 3 3( jw 3) 2 H ( jw) 2 ( jw 2)( jw 4) ( jw 2) jw 4
3 2t h(t ) F {H ( jw)} (e e 4t )u (t ) 2 (c) 3( jw 3) 3 jw 9 Y ( w) H ( jw) 2 ( jw 2)( jw 4) ( jw) 6 jw 8 X ( w)
I 2 (w) 2 jw H ( jw) E (w) 8 jw 3
(b) 对H(jw)作反傅立叶变换可得h(t)
2 jw 1 H ( jw) 8 jw 3 4
h(t ) F 1{H ( jw)}
3 32 3 jw 8 3t 1 3 8 (t ) e u (t ) 4 32
H ( jw) S ( jw) ( w) H (0) jw 2( jw) 2 2 ( w) 2 jw[( jw) 2 jw 1]
2
2 4 jw 2 2 2 ( w) 2 jw ( jw) 2 jw 1 4( jw 22 ) 1 2[ ( w)] jw ( jw 22 ) 2 ( 22 ) 2 s (t ) F {S ( jw)} [2 4e
6.7 考虑一个LTI系统,它对输入 x(t ) [et e3t ]u(t ) 的响应为: t 4t
y(t ) [2e 2e ]u(t )
(a) 求该系统的频率响应
(b) 确定该系统的冲激响应
(c) 求出联系输入和输出的方程,并用积分器、相加器 和系数相乘器实现该系统。
解: (a)
第六章
习 题
6.2 图P6.2所示电路的初始状态为零,开关在t=0时接通,
其输入电压e(t)为图示单个矩形脉冲。 (a) 求电路的频率响应H(jw) (b) 求电路的冲激响应h(t)和阶跃响应s(t) (c) 用傅立叶分析法求流过R2中的电流i2(t)
R1=1Ω R2=3Ω
E (w)
e(t)
jwL L=2H
1
2 2 ( jw 22 ) 2 2 22 2 2 2 2 2 ( jw 2 ) ( 2 ) ( jw 22 ) 2 ( 22 ) 2
h(t ) F {H ( jw)} 2 (t ) 2 2e
1
2 t 2
[cos
2 2
t sin
2 2
t ]u (t )
i2 (t )
I 2 (w)
解: (a)先画出电路的频域模型如上图,则有: E ( w) jwL E ( w) 2 jw 2 jw I 2 ( w) E ( w) jwLR2 jwL R2 6 jw 2 jw w 3