蛋白酪氨酸激酶综述

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蛋白酪氨酸激酶综述

目前至少已有近六十种分属20个家族的受体酪氨酸激酶被子识别。所有受体酷氨酸激酶都属于I型膜蛋白,其分子具有相似的拓朴结构:糖基化的胞外配体结合区,疏水的单次跨膜区,以及胞内的酪氨酸激酶催化结构域及调控序列。不同受体酪氨酸激酶结合,将导致受体发生三聚化,并进一步使受体胞内区特异的受体酪氨酸残基发生自身磷酸化或交叉磷酸化,从而激活下游的信号转导通路。许多肿瘤的发生、发展都与酪氨酸激酶的异常表达有着极其密切的联系,下面将对几类与肿瘤的发生发展最为密切的受体酪氨酸激酶的研究迸展做一简介。

一、表皮生长因子受体(Epidermal grovth factor receptor, EGFR)家族

EGFRPE包括EGFR、ErbB2、ErbB4等4个成员,其家族受体酪氨酸激酶(RTK)以

单体形式存在,在结构上由胞外区、跨膜区、胞内区3个部分组成,胞外区具有2个半氨酸丰富区,胞内区有典型的ATP结合位点和酪氨酸激酶区,其酪氨酸激酶活性在调节细胞增殖及分化中起着至关重要的作用。

人的egfr基因定位于第7号染色体的短臂(7p12.3-p12.1),它编码的产物EGFR由1210个氨基酸组成,蛋白分子量约为170kDa,其中,712-979位属于酪氨酸激酶区。EGFR的专一配体有EGF、TGF、amphiregulin,与其他EGFR家庭成员共有的配体有(cellulin(BTC)、heparin-binding

EGF(HB-EGF)、Epiregulin(EPR) )等。

EGFR在许多上皮业源的肿瘤细胞中表达,如非小细胞性肺癌,乳腺癌、头颈癌,膀胱癌,胃癌,前列腺癌,卵巢癌、胶质细胞瘤等。另外,在一些肿瘤如恶性胶质瘤、非小细胞性肺癌、乳腺癌、儿童胶质瘤、成神经管细胞瘤及卵巢癌等中还可检测到EGFR缺失。最为常见的EGFR缺失突变型是EGFRⅧ,EGFR Ⅷ失去了配体结合区,但是可自身活化酪氨酸激酶,刺激下游信号通路的激活,而不依赖于与其配全结合。EGFR在许多肿瘤中的过表达和/或突变,借助信号转导至细胞生长失控和恶性化。另外,EGFR的异常表达还与新生血管生成,肿瘤的侵袭和转移,肿瘤的化疗抗性及预后密切相关。EGFR高表达的肿瘤患者,肿瘤恶性程度高,易发生转移,复发间期短,复发率高,患者的存活期短。

ErbB2,又名HER-2/neu,是EGFR家族的第二号成员,ErbB2通过与EGFR家族中其它三位成员构成异源二聚体,而发挥生物学作用,尚未发现能与其直接结合的配体。编码ErbB2的基因neu最早从大鼠神经母细胞瘤中分离得到,人类体细胞内neu基因的同源基因,又称为HER-2或erbB2,位于人第17号染色体的长臂(17q21.1),它编码的产物ErbB2由1255个氨基酸组成,蛋白分子量约为185Kda,其中,720-987位属于酪氨酸激酶区。

ErbB2通常只在胎儿时期表达,成年以后只在极少数组织内低水平表达。然而在多种人类肿瘤中却过度表达,如乳腺癌(25-30%)、卵巢癌(25-32%、肺静癌(30-35%)、原发性肾细胞癌(30-40%)等。过度表达的原因主要是ErbB2基因扩增(95%)或转录增多(5%)。

1987年,Slamon等人首行先报道了ErbB2扩增和乳腺癌临床预后不良之间的显著关系,其显著性高于雌激素、孕激素等指标,并在以后的研究中得到大量证实。随后,ErbB2表达水平和乳腺癌治疗效果间的关系得到广泛研究,人们发现ErbB2高表达乳腺癌患者对他莫昔芬(tamoxifen)治疗、单独的激素疗法、以及环磷酰胺、甲氨喋呤、5-氟脲嘧啶联合化疗产生耐受。研究还表明,ErbB2在细胞的恶性转化中发挥重要作用,并能促进恶性肿瘤转移。ErbB2受体过度表达往往提示乳腺癌恶性程度高,转移潜力强,进展迅速,化疗缓解期短,易产生化疗和激素治疗抗性,生存率和生存期短,复发率高。

和ErbB4对肿瘤的作用目前尚不清楚,但在肿瘤形成模型的临床前研究发现,ErbB3、Erb3与EGFR、ErbB2共表达后会使肿瘤恶性程度明显增加。

二、血管内皮细胞生长因子受体(Vascular endothelial growth factor receptor, VEGFR)家族VEGFR家族的成员包括:VEGFR1(Flt-1)、VEGFR2(KDR/Flk-1)、VEGFR3(Flt-4),这一家族的受体在细胞外存在着7个免疫球蛋白样的结构域,在胞内酪氨酸激酶区则含有一段亲水手插入序列。

VEGFR1位于人第13号染色体的长臂(13q12),由1338个氨基酸组成,827-1158位属于酪氨酸激酶区。VEGFR2位于第13号染色体的长臂(4q12),由1356个氨基酸组成,845-1173位属于酪氨酸激酶区。VEGFR3位于第5号染色体的长臂(5q35.5),由1298个氨基酸组成,845-1173位属于酪氨酸激酶区。

Flt-1的配体有VEGFR121,VEGFR165,VEGF-B,PIGF;KDR/Flk-1的配体有VEGFR121,VEGFR145,VEGFR165,VEGF-C,VEGF-D;Flk-4的配体有VEGF-C,VEGF-D。这些配体都属于血管内皮生长因子(Vascular Endothelial Grovth Factr, VEGF)超家族,其中VEGFR121,VEGFR145,VEGFR165是VEGF-A(即通常所指的VEGF)经不同剪切形成的不同的多肽形式,VEGFR165又是主要作用形式,与VEGF的生物学活性密切相关。

在实体瘤的恶性生长和转移中,肿瘤的新生血管生成起着非常重要的作用,它为肿瘤的生长提供了所必需的营养和氧气。VEGF作为已知最强的血管渗透剂和内皮细胞特异的有丝分裂源,在内皮细胞的增殖、迁移和血管构建中起着重要的作用。它的表达水平和肿瘤组织的血管化程度及恶性程度呈现明显的正相关。VEGF主要是通过作用于血管内皮细胞上高亲和力的受体Flk-1和KDR/Flk-1而发挥其生物学作用的,两者具有不同信号转导途径。其中KDR/Flk-1在介导VEGF的生物效应中最为重要,与细胞趋化性、细胞的分裂、肌动蛋白重组密切相关。Flk-1虽然与VEGF结合的亲和力更强,而且磷酸化作用也相似,但对细胞的促分裂作用却小得多。基因剔除小鼠的研究发现,在KDR/Flk-1缺失的小鼠中,内皮细胞无法生成,从而使血管岛,血管的开成无法进行;而在Flk-1缺失的小鼠中,内皮细胞可以生成,但是内皮细胞排列形成血管管腔的过程受到了抑制。

Flk-4高度表达于胚胎血管发生时的血管母细胞、静脉和淋巴管,但是在发育到胎儿以后,Flk-4仅在淋巴内皮细胞表达。在多种肿瘤的病程中,Flk-4介导了VEGF-C,VEGF-D的生物学效应,诱导肿瘤淋巴管形成,促进肿瘤淋巴侵入和淋巴结转移。此外,Flk-4缺失的小鼠中,务砭和新生血管可以生成,但是由于血管管腔的缺乏,使得一些较大的血管无法规则地排列,这一结果提示,Flk-4在新生血管生成中发挥了重要的作用。

三、血小板衍生生长因子受体(Platelet-derived growth factor receptor, PDGFR)家族

PDGFR家族的成员除了PDGFRα和PDGFRβ这外,还包括集落刺激因子1受体(Colony stimulating factor-1receptor, CSF-1R)、干细胞生长因子受体(Stem cell factor receptor, SCFR/KIT)、FLK2/FLT3。这一家族的受体在细胞外存在着5个免疫球蛋白样的结构域,在胞内酪氨酸激酶区则含有一段亲水插入序列。

PDGFRα位于人第4号染色体的长臂(4q12),由1089个氨基酸组成,593-954位属于

酪氨酸激酶区。PDGFRβ位于人第5号染色体的长臂(5q3-q32),由1106个氨基酸组成,600-962位属于酪氨酸激酶区。

PDGFRα、PDGFRβ的配体为血小板衍生生长因子PDGF,功能性的PDGF是由A链和B链通过二硫键连接成的二聚体,包括:PDGF-AA、PDGF-BB和PDGF-AB。PDGFRAA只能与受体二聚体PDGFRαα结合;PDGF-AB可以与PDGFRαα和PDGFRαβ结合;而PDGFR-BB与PDGFRαα、PDGFRαβ、PDGFRββ三种PDGFRα二聚体类型都能结合。

PDGFR主要存在于成纤维细胞、平滑肌细胞中,但也同时在肾、睾丸、脑中表达。PDGFR与肿瘤发生有密切的关系,在大多数胶质母细胞瘤中,存在着PDGF及其受体形成的自分泌环路,这一环路与肿瘤的发生,发展有着极其密切的关系。另外,相似的环路也在黑色素瘤、脑膜瘤、神经内分泌肿瘤、卵巢癌、前列腺癌、肺癌和胰腺癌中存在。此外,PDGFR

的酪氨酸激酶区和Tel基因发生T(5:12)染色体易位,形成融合蛋白Tel-PDGFR,在慢性粒单核细胞白血病患者的细胞中大量表达。

KIT/SCFR位于人第4号染色体的长臂(4q12),由976个氨基酸组成,589-937位属于蛋白激酶区。干细胞生长因子(Stem cell factor, SCF)是KIT/SCFR的配体。KIT/SCFR与机体的造血功能,肥大细胞的发育,黑素生成,配子形成以及Cajal间质细胞的发育密切相关。

相关文档
最新文档