蛋白酪氨酸激酶综述
蛋白质酪氨酸激酶在细胞信号转导中的作用

蛋白质酪氨酸激酶在细胞信号转导中的作用细胞信号转导是生命活动中非常关键的一环,它调控着细胞内分子的交互作用,从而影响细胞的生长、分化、增殖、凋亡和代谢等生理过程。
蛋白质酪氨酸激酶(protein tyrosine kinase,PTKs)是一类重要的细胞信号分子,它们能够磷酸化酪氨酸残基,从而介导许多细胞信号过程。
PTKs广泛存在于生物界中,包括哺乳动物、鸟类、爬行动物、两栖动物、鱼类以及低等生物等等。
它们的结构和功能各不相同,但都有一个共同的特点,那就是能够发挥酪氨酸激酶的作用。
PTKs的酪氨酸激酶活性可以通过多种方式调节,其中包括磷酸化、去磷酸化、自身磷酸化等等。
这些调控机制能够影响PTKs的催化活性、稳定性、互作性等方面的功能,从而对细胞信号传递发挥着非常重要的作用。
目前已经发现了许多PTKs家族成员,在细胞信号转导中发挥了不同的作用。
其中比较经典的有EGFR、PDGFR、FGFR、VEGFR、Src、Abl、Jak、Syk、BTK等等。
这些PTKs参与了多种不同的细胞信号路径,包括G蛋白偶联受体(GPCR)信号、细胞内受体(tyrosine kinase receptor)信号等等。
在这些信号通路中,PTKs作为下游的信号传递分子,能够接收细胞外信号,转导到下游的信号通路,发挥信号放大和传递的作用。
以EGF为例,它是一种官能肽类似物,能够结合到EGFR上,进而激活EGFR 的酪氨酸激酶活性。
激活的EGFR会磷酸化其自身酪氨酸残基,进而招募其他下游蛋白质,如Grb2、Sos等等。
这些下游蛋白质能够进一步激活Ras/MAPK和PI3K/AKT等细胞信号通路,从而影响细胞增殖、运移、存活等过程。
类似地,在PDGF等其他酪氨酸激酶受体和Src等非激酶受体信号通路中,PTKs都扮演着非常关键的角色。
PTKs的酪氨酸激酶活性能够介导多种信号转导路径的调控,从而影响细胞的生理过程。
此外,PTKs还可以与其他下游蛋白质相互作用,形成信号转导的复杂网络,从而进一步放大和调控信号转导的效应。
蛋白酪氨酸激酶 酪氨酸酶

蛋白酪氨酸激酶酪氨酸酶蛋白酪氨酸激酶和酪氨酸酶是两类重要的蛋白质调节因子,它们在细胞的信号转导过程中扮演着重要的角色。
本文将对这两类蛋白质的结构、功能以及其在生理和病理过程中的作用进行探讨。
一、蛋白酪氨酸激酶蛋白酪氨酸激酶(protein tyrosine kinase,PTK)是一类主要负责磷酸化酪氨酸残基的酶。
它们是一种膜相关或可逆性质的酵素,在多个细胞信号转导通路中发挥着重要的调节作用。
1. 结构特征蛋白酪氨酸激酶有多种结构,基本上都是由膜结合域、负载域、催化域以及调控结构域组成。
其中催化域是最重要的结构,它由300个氨基酸缀合而成,具有保守的核心酶活性结构。
2. 功能特征蛋白酪氨酸激酶的功能主要是磷酸化酪氨酸残基,并发挥调节作用,从而影响多个细胞信号转导通路。
如PTK 参与调节细胞增殖、分化、凋亡、分泌等生理调节过程。
3. 生理和病理作用蛋白酪氨酸激酶在细胞增殖、分化等生理过程中具有积极的作用,但当PTK在恶性肿瘤等病理过程中异常激活时,就会诱导癌细胞生长、分化,从而促进肿瘤的发展。
此外,一些致病性细菌和病毒也能通过干扰PTK活性来引起脱落的细胞增殖、炎症反应的激活等。
二、酪氨酸酶酪氨酸酶(Tyrosine phosphatase,PTP)是一类可以选择性地去磷酸化酪氨酸残基的酶类,主要通过神经系统的信号转导链路来调控细胞内的生物过程。
1. 结构特征酪氨酸酶结构由几个反应中具有活性的序列域组成,包括催化域(Cys-X(5)-Arg或Cys-X(3)-Cys)和配体结合域。
其中催化域的含硫的半胱氨酸(Cys)残基与底物酪氨酸残基反应,从而实现去除底物酪氨酸残基上的磷酸基团。
2. 功能特征酪氨酸酶的主要功能是去除酪氨酸残基上的磷酸基团,并对多个细胞信号转导通路的调节发挥重要作用。
3. 生理和病理作用酪氨酸酶可以对与不同类型的细胞信号转导相关的酪氨酸激酶降解。
在有些肿瘤细胞中,酪氨酸酶的表达水平降低,从而不能去除酪氨酸酶相关的活性激酶上的磷酸基团,导致磷酸化的酪氨酸激酶异常激活,从而引起了癌症的发生、发展。
信号通路5—Tyrosine Kinase

信号通路5—Tyrosine KinaseAPExBIO一、Tyrosine Kinase酪氨酸激酶(tyrosine kinase)是细胞中将磷酸基团从ATP转移到蛋白质的酶。
磷酸基与蛋白质上的酪氨酸连接。
酪氨酸激酶属于蛋白激酶的较大类别亚组,将磷酸基团连接到其它氨基酸(丝氨酸和苏氨酸)。
酪氨酸残基的磷酸化影响蛋白质的很多性质,如酶活性,亚细胞定位和分子之间的相互作用。
酪氨酸激酶在许多信号转导级联中发挥重要作用。
突变可能导致一些酪氨酸激酶具有组成型活性,促进癌症的发生或发展。
酪氨酸激酶可分为三类:①受体酪氨酸激酶,为单次跨膜蛋白,在脊椎动物中已发现50余种;②胞质酪氨酸激酶,如Src家族、Tec家族、ZAP70家族、JAK 家族等;③核内酪氨酸激酶如Abl和Wee。
受体酪氨酸激酶在跨膜信号传导中起作用,胞质酪氨酸激酶在信号转导至细胞核过程中起作用,核中的酪氨酸激酶活性与细胞周期控制和转录因子功能有关。
通路图:二、相关蛋白或基因1. Bcl-AblBcl-Abl是组成型激活的嵌合酪氨酸激酶。
Bcr-Abl酪氨酸激酶失活导致慢性粒细胞白血病(CML)。
Bcr-Abl酪氨酸激酶抑制剂用于大多数CML患者的一线治疗。
2. GSK-3Glycogen synthase kinase 3,糖原合成酶激酶3。
GSK-3是一种丝氨酸/苏氨酸激酶,主要作用是使糖原合成酶发生磷酸化而失活。
GSK-3基因家族包括GSK-3α和 GSK-3β。
胰岛素引起的Akt激活,上皮生长因子、血小板衍化生长因子等引起的Ras/Raf/ERK/p90Rsk1激活以及p90Rsk、P70S6K均能引起GSK-3α和 GSK-3β磷酸化使其失去活性,参与调节多种疾病的生理过程,包括II型糖尿病,阿尔茨海默病,炎症,癌症和双相情感障碍。
3. SykSpleen tyrosine kinase,脾脏酪氨酸激酶。
Syk是非受体细胞质酪氨酸激酶家族,在各种细胞表面受体(包括CD74,Fc受体和整合素)信号传导中起作用。
蛋白酪氨酸激酶小分子抑制剂

状态影响激酶的活性。
蛋白质相互作用
02
与其他蛋白质的相互作用可以调节蛋白酪氨酸激酶的活性,影
响其磷酸化反应。
小分子抑制剂
03
小分子抑制剂是调节蛋白酪氨酸激酶活性的重要手段之一,通
过与激酶结合,抑制其活性。
03
蛋白酪氨酸激酶小分子抑制剂的设计
与发现
小分子抑制剂的设计策略
基于结构的药物设计
利用蛋白质三维结构信息,针对激酶活性位点或调节 位点设计小分子抑制剂。
小分子抑制剂还可以通过影响信号转导通路中其他蛋白质的活性,进一步调节信 号转导通路的输出。
05
蛋白酪氨酸激酶小分子抑制剂的药理
学特性与临床应用
小分子抑制剂的药代动力学特性
01
吸收
小分子抑制剂通常能快速通过胃肠 道吸收,进入血液循环。
代谢
小分子抑制剂在体内经过代谢,产 生药效。
03
02
分布
小分子抑制剂在体内广泛分布,能 快速到达靶组织。
排泄
小分子抑制剂主要通过肾脏排泄, 部分通过胆汁排泄。
04
小分子抑制剂的抗肿瘤活性与作用机制
抑制肿瘤细胞增殖
小分子抑制剂能抑制肿瘤细胞内的蛋白酪氨酸激酶活性,从而阻 止肿瘤细胞增殖。
诱导肿瘤细胞凋亡
小分子抑制剂能诱导肿瘤细胞凋亡,加速肿瘤细胞的死亡。
抑制肿瘤血管生成
小分子抑制剂能抑制肿瘤血管生成,切断肿瘤的营养供给,从而 抑制肿瘤的生长。
蛋白酪氨酸激酶小分子抑 制剂
• 引言 • 蛋白酪氨酸激酶的分类与结构 • 蛋白酪氨酸激酶小分子抑制剂的设计
与发现 • 蛋白酪氨酸激酶小分子抑制剂的作用
机制
• 蛋白酪氨酸激酶小分子抑制剂的药理 学特性与临床应用
酪氨酸激酶异常活化在恶性血液病发病中的作用(1)(精)

酪氨酸激酶异常活化在恶性血液病发病中的作用(1)】蛋白酪氨酸激酶(protein tyrosine kinase, PTK)在调节细胞生长、活化和分化的信号转导中起着重的作用。
基因突变(多半由染色体移位)或者激酶的过度表达可使PTK活力异常增高,并介导异常的信号转导途径,在多种恶性血液病的发生发展中起着主的作用。
在慢性骨髓增殖性疾病(CMPD)、急性髓性白血病(AML)和间变性大细胞淋巴瘤的发病中,均存在着PTK的异常活化。
进一步研究PTK相关的恶性血液病的发病机理,可以加快特异性的分子靶向治疗的研究进展。
【关键词】酪氨酸激酶恶性血液病;基因突变Abnormal Activation of Tyrosine Kinases and Its Role in the Pathogenesis of Hematological Malignancies ——ReviewAbstractProtein tyrosine kinases are key participants in signal transduction pathways that regulate cellular growth, activation and differentiation. Aberrant PTK activity resulting from gene mutation (often accompanying chromosome translocation) or overexpression of these enzymes plays an etiologic role in several clonal hematopoietic malignancies. Other than the causative effect of PTK product of the bcr/abl fusion gene on chronic myelogenous leukemia (CML), more evidence suggests that mutated tyrosine kinases are pivotal in the pathogenesis of most of other chronic myeloproliferative disorders, such as chronic myelomonocytic leukemia (CMML) and hypereosinophilic syndrome (HES). And the exciting results in several dependent groups in 2005 showed that a single nucleotide JAK2 somatic mutation(JAK2V617F mutation) was found to be involved in the pathogenesis of polycythemia vera (PV), essential thrombocythemia (ET) and chronic idiopathic myelofibrosis (CIMF). In the leukogenesis of acute myeloid leukemias (AML), the losing of the control of the proliferation of hematopoietic progenitor cells was principally the results of the aberrant PTK activity, such as FLT3 and C kit overexpression. It works together with the loss of function mutation genes in promoting progenitor cell differentiation to confer AML's phenotypes. These upregulated PTK molecules represent attractive disease specifictargets, to which a new class of therapeutic agents are being developed. This review focuses on abnormal tyrosine kinases that have been involved in the pathogenesis of hematopoietic malignancies.Key wordsprotein tyrosine kinase; hematopoietic malignancy; gene mutation蛋白酪氨酸激酶(protein tyrosine kinase, PTK)活力增高,介导的异常的信号转导途径在多种恶性血液病的发生发展中起着主的作用[1]。
src激酶抑制剂综述

Src(sarcoma gene)受体激酶家族抑制剂研究综述药学0703班U200717953周俊Src(sarcoma gene)受体激酶家族抑制剂研究综述摘要;本文介绍了src的组成,作用以及与相关疾病的作用,总结了近几年研究src激酶家族的方向,以src激酶家族作为靶点寻找抗癌药物中的一些进展和成果,并逐一分析比较有代表性的药物,如喹啉衍生物,嘧啶衍生物等等化合物,最后总结近期成果,指出现有工作的不足和未来的研究方向。
关键词鸡肉瘤病毒基因(src)酪氨酸蛋白激酶抑制因子A TP结合位点引言:sarcoma gene(鸡肉瘤病毒基因,以下简称src)的组成Src是一类癌基因,其表达产物主要是酪氨酸蛋白激酶类。
Src在许多组织细胞中表达,在癌症发病机制中处于重要的地位,是肿瘤,癌症分子表达途径的重要的激酶。
Src家族是研究最早最深入的家族,包括Blk, Brk, Fgr, Frk,Fyn, Hck, Lck, Lyn, c-Src, Srm,c-Yes等成员。
根据氨基酸序列,可以分为两个亚族:一族是Src, Fyn, Yes and Fgr并且广泛在不同的组织中表达,Lck, Blk, Lyn and Hck和造血细胞有关.研究表明,Src与其他众多酶类可联合在一起促进多个细胞反应进程。
Src 与多种激酶受体偶联,包括酪氨酸激酶受体,整合单白受体,G蛋白偶联受体等。
.通过偶联作用影响细胞生长,发育,乃至转移扩散。
最好的例子就是与EGFR(一种有关细胞生长的受体)的结合,Src可以使EGFR自身磷酸化,降低EGFR 的中间体的调节与胞吞作用。
除了牵涉到细胞内的反应,Src可能也在初级肿瘤细胞的转移中扮演着一个重要的角色。
实际上Src转移细胞的存在减少了ECM反应以及组织反应的损失。
分子调节这些过程的机理建立在Src和FAK的反应的基础上。
Src与粘附分子有关。
Src的磷酸化使得在粘附分子上的整联蛋白受体接收的黏着性与转移信号得以传播。
受体型蛋白酪氨酸激酶

(三)其他结构域
PH结构域:血小板-白细胞C激酶底物同 源区,识别膜磷脂成分及其代谢产物如 PIP2、PIP3、IP3等
死亡结构域:涉及死亡结构域蛋白、TNF 受体相关蛋白及其它多种信号转导蛋白
三. 信号分子的种类
(一)接头蛋白与锚定蛋白
特殊的信号分子,不具有酶活性
接头蛋白:具有多个结合其它分子的结构如 蛋白模块或结合蛋白模块的基团 Grb2:SH2、2xSH3
淋巴细胞活化的分子机制
一. 免疫受体信号转导的一般规律
配体的结合 受体交联、聚集、变构 蛋白酪氨酸激酶活化
受体胞浆区磷酸化
下游信号分子募集、活化
(一)配体激发的受体交联和聚集
受体启动信号传导过程的必要条件或充分条件
受体交联和聚集的机制:
重复抗原表位(细菌、病毒) 二聚体(PDGF)或三聚体(TNF) 二价分子(生长激素) 单价分子(大部分细胞因子)--变构
(三)磷脂酶C和磷酸肌醇3激酶
磷脂酶C(phospholipase C, PLC),包括PLCb和 PLCg。PLC以Ca2+依赖的方式水解膜磷脂中磷脂 酰肌醇-4,5二磷酸(PIP2),产生二酰甘油(DAG)和 三磷酸肌醇(IP3)。
PLCg 可被许多免疫受体和接头蛋白活化: 经SLP-76/ZAP70、LAT结合TCR 经LNK和Btk传递BCR的信号。 与活化CD22直接关联并传递信号。 PLCb主要被G蛋白激活,介导相关信号。
G蛋白:a(23种)、b(5种)、g(10种)组成不同的 亚型。a有GTP酶活性,g也能结合膜且与b一 起介导G蛋白与效应蛋白的相互作用。
G蛋白主要激活磷脂酶(如PLCb)和腺苷酸环 化酶(经cAMP调节信号传递)。
小G蛋白是一类与Ga同源的20~30kD蛋白, 分为Ras(Ras、Ral、Rap等)、Rho(Rho、Rac等)、 Rab、Arf、Sar和Ran等6个家族。 小G蛋白结合GDP时无活性,鸟苷酸交换因子 (GEF)使它们转向结合GTP而被激活;GAP则水 解GTP成GDP,负调节小G蛋白活性。 激活的小G蛋白介导TCR、BCR等受体的信号 传导;还能引起肌动蛋白细胞骨架的多聚化,参 与细胞形态变化及内吞、内化、分泌、粘附和移 动等功能。
蛋白酪氨酸激酶简介

蛋白酪氨酸激酶简介癌症极大威胁人类健康,抗肿瘤研究是当今生命科学中极富挑战性且意义重大的领域。
目前,临床上常用的抗肿瘤药物主要是细胞毒类药物,这类抗癌药具有难以避免的选择性差、毒副作用强、易产生耐药等缺点。
近年来,随着生命科学研究的飞速进展,恶性肿瘤细胞内的信号转导、细胞周期的调、细胞凋亡的诱导、血管生成以及细胞与胞外基质的相互作用等各种基本过程正在被逐步阐明。
以一些与肿瘤细胞分化增殖相关的细胞信号转导通路的关键酶作为药物筛选靶点,发现选择性作用于特定靶点的高效、低毒、特异性强的新型抗癌药物已成为当今抗肿瘤药物研究开发的重要方向。
蛋白酪氨酸激酶是一类具有酪氨酸激酶活性的蛋白质,可分为受体型和非受体型两种,它们能催化ATP上的磷酸基转移到许多重要蛋白质的酪氨酸残基上,使其发生磷酸化。
蛋白酪氨酸激酶在细胞内的信号转导通路中占据了十分重要的地位,调节着细胞体内生长、分化、死亡等一系列生理化过程。
蛋白酪氨酸激酶功能的失调则会引发生物体内的一系列疾病。
已有的资料表明,超过50%的原癌基因和癌基因产物都具有蛋白酪氨酸激酶活性,它们的异常表达将导致细胞增殖调节发生紊乱,进而导致肿瘤发生。
此外,酪氨酸基酶的异常表达还与肿瘤的侵袭和转移,肿瘤新生血管的生成,肿瘤的化疗抗性密切相关。
因此,以酪氨酸激酶为靶点进行药物研发成为国际上抗肿瘤药物研究的热点,为此投入的研究经费也是其它任何一个非传统的肿瘤靶点所无法匹敌的。
目前为止,已有十多种蛋白酪氨酸激酶抑制剂和抗体进入I-Ⅱ期临床试验阶段,个别的已经上市,并取得了令人鼓舞的治疗结果。
基中,Genentech公司和罗氏药厂联合研究和生产的HerceptinTM(Trastuzumab)是一种抗酪氨酸激酶受体HER2/neu的人源化的单克隆抗体。
1998年,美国食品的药物管理局(Food and Drug Administration, FDA)正式批准Herceptin用于治疗某些HER2阳性的转移性乳腺癌。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蛋白酪氨酸激酶综述目前至少已有近六十种分属20个家族的受体酪氨酸激酶被子识别。
所有受体酷氨酸激酶都属于I型膜蛋白,其分子具有相似的拓朴结构:糖基化的胞外配体结合区,疏水的单次跨膜区,以及胞内的酪氨酸激酶催化结构域及调控序列。
不同受体酪氨酸激酶结合,将导致受体发生三聚化,并进一步使受体胞内区特异的受体酪氨酸残基发生自身磷酸化或交叉磷酸化,从而激活下游的信号转导通路。
许多肿瘤的发生、发展都与酪氨酸激酶的异常表达有着极其密切的联系,下面将对几类与肿瘤的发生发展最为密切的受体酪氨酸激酶的研究迸展做一简介。
一、表皮生长因子受体(Epidermal grovth factor receptor, EGFR)家族EGFRPE包括EGFR、ErbB2、ErbB4等4个成员,其家族受体酪氨酸激酶(RTK)以单体形式存在,在结构上由胞外区、跨膜区、胞内区3个部分组成,胞外区具有2个半氨酸丰富区,胞内区有典型的ATP结合位点和酪氨酸激酶区,其酪氨酸激酶活性在调节细胞增殖及分化中起着至关重要的作用。
人的egfr基因定位于第7号染色体的短臂(7p12.3-p12.1),它编码的产物EGFR由1210个氨基酸组成,蛋白分子量约为170kDa,其中,712-979位属于酪氨酸激酶区。
EGFR的专一配体有EGF、TGF、amphiregulin,与其他EGFR家庭成员共有的配体有(cellulin(BTC)、heparin-bindingEGF(HB-EGF)、Epiregulin(EPR) )等。
EGFR在许多上皮业源的肿瘤细胞中表达,如非小细胞性肺癌,乳腺癌、头颈癌,膀胱癌,胃癌,前列腺癌,卵巢癌、胶质细胞瘤等。
另外,在一些肿瘤如恶性胶质瘤、非小细胞性肺癌、乳腺癌、儿童胶质瘤、成神经管细胞瘤及卵巢癌等中还可检测到EGFR缺失。
最为常见的EGFR缺失突变型是EGFRⅧ,EGFR Ⅷ失去了配体结合区,但是可自身活化酪氨酸激酶,刺激下游信号通路的激活,而不依赖于与其配全结合。
EGFR在许多肿瘤中的过表达和/或突变,借助信号转导至细胞生长失控和恶性化。
另外,EGFR的异常表达还与新生血管生成,肿瘤的侵袭和转移,肿瘤的化疗抗性及预后密切相关。
EGFR高表达的肿瘤患者,肿瘤恶性程度高,易发生转移,复发间期短,复发率高,患者的存活期短。
ErbB2,又名HER-2/neu,是EGFR家族的第二号成员,ErbB2通过与EGFR家族中其它三位成员构成异源二聚体,而发挥生物学作用,尚未发现能与其直接结合的配体。
编码ErbB2的基因neu最早从大鼠神经母细胞瘤中分离得到,人类体细胞内neu基因的同源基因,又称为HER-2或erbB2,位于人第17号染色体的长臂(17q21.1),它编码的产物ErbB2由1255个氨基酸组成,蛋白分子量约为185Kda,其中,720-987位属于酪氨酸激酶区。
ErbB2通常只在胎儿时期表达,成年以后只在极少数组织内低水平表达。
然而在多种人类肿瘤中却过度表达,如乳腺癌(25-30%)、卵巢癌(25-32%、肺静癌(30-35%)、原发性肾细胞癌(30-40%)等。
过度表达的原因主要是ErbB2基因扩增(95%)或转录增多(5%)。
1987年,Slamon等人首行先报道了ErbB2扩增和乳腺癌临床预后不良之间的显著关系,其显著性高于雌激素、孕激素等指标,并在以后的研究中得到大量证实。
随后,ErbB2表达水平和乳腺癌治疗效果间的关系得到广泛研究,人们发现ErbB2高表达乳腺癌患者对他莫昔芬(tamoxifen)治疗、单独的激素疗法、以及环磷酰胺、甲氨喋呤、5-氟脲嘧啶联合化疗产生耐受。
研究还表明,ErbB2在细胞的恶性转化中发挥重要作用,并能促进恶性肿瘤转移。
ErbB2受体过度表达往往提示乳腺癌恶性程度高,转移潜力强,进展迅速,化疗缓解期短,易产生化疗和激素治疗抗性,生存率和生存期短,复发率高。
和ErbB4对肿瘤的作用目前尚不清楚,但在肿瘤形成模型的临床前研究发现,ErbB3、Erb3与EGFR、ErbB2共表达后会使肿瘤恶性程度明显增加。
二、血管内皮细胞生长因子受体(Vascular endothelial growth factor receptor, VEGFR)家族VEGFR家族的成员包括:VEGFR1(Flt-1)、VEGFR2(KDR/Flk-1)、VEGFR3(Flt-4),这一家族的受体在细胞外存在着7个免疫球蛋白样的结构域,在胞内酪氨酸激酶区则含有一段亲水手插入序列。
VEGFR1位于人第13号染色体的长臂(13q12),由1338个氨基酸组成,827-1158位属于酪氨酸激酶区。
VEGFR2位于第13号染色体的长臂(4q12),由1356个氨基酸组成,845-1173位属于酪氨酸激酶区。
VEGFR3位于第5号染色体的长臂(5q35.5),由1298个氨基酸组成,845-1173位属于酪氨酸激酶区。
Flt-1的配体有VEGFR121,VEGFR165,VEGF-B,PIGF;KDR/Flk-1的配体有VEGFR121,VEGFR145,VEGFR165,VEGF-C,VEGF-D;Flk-4的配体有VEGF-C,VEGF-D。
这些配体都属于血管内皮生长因子(Vascular Endothelial Grovth Factr, VEGF)超家族,其中VEGFR121,VEGFR145,VEGFR165是VEGF-A(即通常所指的VEGF)经不同剪切形成的不同的多肽形式,VEGFR165又是主要作用形式,与VEGF的生物学活性密切相关。
在实体瘤的恶性生长和转移中,肿瘤的新生血管生成起着非常重要的作用,它为肿瘤的生长提供了所必需的营养和氧气。
VEGF作为已知最强的血管渗透剂和内皮细胞特异的有丝分裂源,在内皮细胞的增殖、迁移和血管构建中起着重要的作用。
它的表达水平和肿瘤组织的血管化程度及恶性程度呈现明显的正相关。
VEGF主要是通过作用于血管内皮细胞上高亲和力的受体Flk-1和KDR/Flk-1而发挥其生物学作用的,两者具有不同信号转导途径。
其中KDR/Flk-1在介导VEGF的生物效应中最为重要,与细胞趋化性、细胞的分裂、肌动蛋白重组密切相关。
Flk-1虽然与VEGF结合的亲和力更强,而且磷酸化作用也相似,但对细胞的促分裂作用却小得多。
基因剔除小鼠的研究发现,在KDR/Flk-1缺失的小鼠中,内皮细胞无法生成,从而使血管岛,血管的开成无法进行;而在Flk-1缺失的小鼠中,内皮细胞可以生成,但是内皮细胞排列形成血管管腔的过程受到了抑制。
Flk-4高度表达于胚胎血管发生时的血管母细胞、静脉和淋巴管,但是在发育到胎儿以后,Flk-4仅在淋巴内皮细胞表达。
在多种肿瘤的病程中,Flk-4介导了VEGF-C,VEGF-D的生物学效应,诱导肿瘤淋巴管形成,促进肿瘤淋巴侵入和淋巴结转移。
此外,Flk-4缺失的小鼠中,务砭和新生血管可以生成,但是由于血管管腔的缺乏,使得一些较大的血管无法规则地排列,这一结果提示,Flk-4在新生血管生成中发挥了重要的作用。
三、血小板衍生生长因子受体(Platelet-derived growth factor receptor, PDGFR)家族PDGFR家族的成员除了PDGFRα和PDGFRβ这外,还包括集落刺激因子1受体(Colony stimulating factor-1receptor, CSF-1R)、干细胞生长因子受体(Stem cell factor receptor, SCFR/KIT)、FLK2/FLT3。
这一家族的受体在细胞外存在着5个免疫球蛋白样的结构域,在胞内酪氨酸激酶区则含有一段亲水插入序列。
PDGFRα位于人第4号染色体的长臂(4q12),由1089个氨基酸组成,593-954位属于酪氨酸激酶区。
PDGFRβ位于人第5号染色体的长臂(5q3-q32),由1106个氨基酸组成,600-962位属于酪氨酸激酶区。
PDGFRα、PDGFRβ的配体为血小板衍生生长因子PDGF,功能性的PDGF是由A链和B链通过二硫键连接成的二聚体,包括:PDGF-AA、PDGF-BB和PDGF-AB。
PDGFRAA只能与受体二聚体PDGFRαα结合;PDGF-AB可以与PDGFRαα和PDGFRαβ结合;而PDGFR-BB与PDGFRαα、PDGFRαβ、PDGFRββ三种PDGFRα二聚体类型都能结合。
PDGFR主要存在于成纤维细胞、平滑肌细胞中,但也同时在肾、睾丸、脑中表达。
PDGFR与肿瘤发生有密切的关系,在大多数胶质母细胞瘤中,存在着PDGF及其受体形成的自分泌环路,这一环路与肿瘤的发生,发展有着极其密切的关系。
另外,相似的环路也在黑色素瘤、脑膜瘤、神经内分泌肿瘤、卵巢癌、前列腺癌、肺癌和胰腺癌中存在。
此外,PDGFR的酪氨酸激酶区和Tel基因发生T(5:12)染色体易位,形成融合蛋白Tel-PDGFR,在慢性粒单核细胞白血病患者的细胞中大量表达。
KIT/SCFR位于人第4号染色体的长臂(4q12),由976个氨基酸组成,589-937位属于蛋白激酶区。
干细胞生长因子(Stem cell factor, SCF)是KIT/SCFR的配体。
KIT/SCFR与机体的造血功能,肥大细胞的发育,黑素生成,配子形成以及Cajal间质细胞的发育密切相关。
研究发现,KIT/SCFR存在着30多种功能获得性(gain-of-function, GOF)突变形式,它们是许多肿瘤发生、发展的直接诱因。
在大多数胃肠道基质瘤(gastrointestinal stronal tumor, GIST)患者中,c-kit基因在近膜区(外显子11)发生了GOF点突变,使得KIT/SCFR结构性地激活;促进了肿瘤的生长;c-kit基因在激酶区(外显17)的GOF 点突变与肥大细胞白血病,无性细胞瘤的发生密切相关;c-kit 基因的GOF点突变及及部分基因缺失还与急性髓样白血病(acute myeloid leukemia)的发生发展密切相关。
此外,在70%的小细胞肺癌患者中存在着SCF及KIT/SCFR自分泌环路,这一环路的存在有利于肿瘤不依赖于生长因子的生长。
FLK2/FLT3位于人第13号染色体的长臂(13q12),由993个氨基酸组成,610-943位属于蛋白激酶区。
FL是FLK2/FLT3的配体。
FLK2/FLT3主要表达于未成熟的造血细胞、胎盘及脑中,与其他造血生长因子协同作用,共同维持干细胞、祖细胞以及抗原递呈细胞DC、自然杀伤细胞的生长。
研究发现,约1/3的急性粒细胞白血病(acute myeloblastic leukaemias)患者联重复序列发生突变,使近膜区的长度出现多态性,引起FLK2/FLT3酪氨酸激酶不依赖配体持续活化,它可能性与其它染色体易位协同作用。