蛋白酪氨酸激酶简介

合集下载

蛋白酪氨酸激酶 酪氨酸酶

蛋白酪氨酸激酶 酪氨酸酶

蛋白酪氨酸激酶酪氨酸酶蛋白酪氨酸激酶和酪氨酸酶是两类重要的蛋白质调节因子,它们在细胞的信号转导过程中扮演着重要的角色。

本文将对这两类蛋白质的结构、功能以及其在生理和病理过程中的作用进行探讨。

一、蛋白酪氨酸激酶蛋白酪氨酸激酶(protein tyrosine kinase,PTK)是一类主要负责磷酸化酪氨酸残基的酶。

它们是一种膜相关或可逆性质的酵素,在多个细胞信号转导通路中发挥着重要的调节作用。

1. 结构特征蛋白酪氨酸激酶有多种结构,基本上都是由膜结合域、负载域、催化域以及调控结构域组成。

其中催化域是最重要的结构,它由300个氨基酸缀合而成,具有保守的核心酶活性结构。

2. 功能特征蛋白酪氨酸激酶的功能主要是磷酸化酪氨酸残基,并发挥调节作用,从而影响多个细胞信号转导通路。

如PTK 参与调节细胞增殖、分化、凋亡、分泌等生理调节过程。

3. 生理和病理作用蛋白酪氨酸激酶在细胞增殖、分化等生理过程中具有积极的作用,但当PTK在恶性肿瘤等病理过程中异常激活时,就会诱导癌细胞生长、分化,从而促进肿瘤的发展。

此外,一些致病性细菌和病毒也能通过干扰PTK活性来引起脱落的细胞增殖、炎症反应的激活等。

二、酪氨酸酶酪氨酸酶(Tyrosine phosphatase,PTP)是一类可以选择性地去磷酸化酪氨酸残基的酶类,主要通过神经系统的信号转导链路来调控细胞内的生物过程。

1. 结构特征酪氨酸酶结构由几个反应中具有活性的序列域组成,包括催化域(Cys-X(5)-Arg或Cys-X(3)-Cys)和配体结合域。

其中催化域的含硫的半胱氨酸(Cys)残基与底物酪氨酸残基反应,从而实现去除底物酪氨酸残基上的磷酸基团。

2. 功能特征酪氨酸酶的主要功能是去除酪氨酸残基上的磷酸基团,并对多个细胞信号转导通路的调节发挥重要作用。

3. 生理和病理作用酪氨酸酶可以对与不同类型的细胞信号转导相关的酪氨酸激酶降解。

在有些肿瘤细胞中,酪氨酸酶的表达水平降低,从而不能去除酪氨酸酶相关的活性激酶上的磷酸基团,导致磷酸化的酪氨酸激酶异常激活,从而引起了癌症的发生、发展。

信号通路5—Tyrosine Kinase

信号通路5—Tyrosine Kinase

信号通路5—Tyrosine KinaseAPExBIO一、Tyrosine Kinase酪氨酸激酶(tyrosine kinase)是细胞中将磷酸基团从ATP转移到蛋白质的酶。

磷酸基与蛋白质上的酪氨酸连接。

酪氨酸激酶属于蛋白激酶的较大类别亚组,将磷酸基团连接到其它氨基酸(丝氨酸和苏氨酸)。

酪氨酸残基的磷酸化影响蛋白质的很多性质,如酶活性,亚细胞定位和分子之间的相互作用。

酪氨酸激酶在许多信号转导级联中发挥重要作用。

突变可能导致一些酪氨酸激酶具有组成型活性,促进癌症的发生或发展。

酪氨酸激酶可分为三类:①受体酪氨酸激酶,为单次跨膜蛋白,在脊椎动物中已发现50余种;②胞质酪氨酸激酶,如Src家族、Tec家族、ZAP70家族、JAK 家族等;③核内酪氨酸激酶如Abl和Wee。

受体酪氨酸激酶在跨膜信号传导中起作用,胞质酪氨酸激酶在信号转导至细胞核过程中起作用,核中的酪氨酸激酶活性与细胞周期控制和转录因子功能有关。

通路图:二、相关蛋白或基因1. Bcl-AblBcl-Abl是组成型激活的嵌合酪氨酸激酶。

Bcr-Abl酪氨酸激酶失活导致慢性粒细胞白血病(CML)。

Bcr-Abl酪氨酸激酶抑制剂用于大多数CML患者的一线治疗。

2. GSK-3Glycogen synthase kinase 3,糖原合成酶激酶3。

GSK-3是一种丝氨酸/苏氨酸激酶,主要作用是使糖原合成酶发生磷酸化而失活。

GSK-3基因家族包括GSK-3α和 GSK-3β。

胰岛素引起的Akt激活,上皮生长因子、血小板衍化生长因子等引起的Ras/Raf/ERK/p90Rsk1激活以及p90Rsk、P70S6K均能引起GSK-3α和 GSK-3β磷酸化使其失去活性,参与调节多种疾病的生理过程,包括II型糖尿病,阿尔茨海默病,炎症,癌症和双相情感障碍。

3. SykSpleen tyrosine kinase,脾脏酪氨酸激酶。

Syk是非受体细胞质酪氨酸激酶家族,在各种细胞表面受体(包括CD74,Fc受体和整合素)信号传导中起作用。

蛋白酪氨酸激酶小分子抑制剂

蛋白酪氨酸激酶小分子抑制剂

状态影响激酶的活性。
蛋白质相互作用
02
与其他蛋白质的相互作用可以调节蛋白酪氨酸激酶的活性,影
响其磷酸化反应。
小分子抑制剂
03
小分子抑制剂是调节蛋白酪氨酸激酶活性的重要手段之一,通
过与激酶结合,抑制其活性。
03
蛋白酪氨酸激酶小分子抑制剂的设计
与发现
小分子抑制剂的设计策略
基于结构的药物设计
利用蛋白质三维结构信息,针对激酶活性位点或调节 位点设计小分子抑制剂。
小分子抑制剂还可以通过影响信号转导通路中其他蛋白质的活性,进一步调节信 号转导通路的输出。
05
蛋白酪氨酸激酶小分子抑制剂的药理
学特性与临床应用
小分子抑制剂的药代动力学特性
01
吸收
小分子抑制剂通常能快速通过胃肠 道吸收,进入血液循环。
代谢
小分子抑制剂在体内经过代谢,产 生药效。
03
02
分布
小分子抑制剂在体内广泛分布,能 快速到达靶组织。
排泄
小分子抑制剂主要通过肾脏排泄, 部分通过胆汁排泄。
04
小分子抑制剂的抗肿瘤活性与作用机制
抑制肿瘤细胞增殖
小分子抑制剂能抑制肿瘤细胞内的蛋白酪氨酸激酶活性,从而阻 止肿瘤细胞增殖。
诱导肿瘤细胞凋亡
小分子抑制剂能诱导肿瘤细胞凋亡,加速肿瘤细胞的死亡。
抑制肿瘤血管生成
小分子抑制剂能抑制肿瘤血管生成,切断肿瘤的营养供给,从而 抑制肿瘤的生长。
蛋白酪氨酸激酶小分子抑 制剂
• 引言 • 蛋白酪氨酸激酶的分类与结构 • 蛋白酪氨酸激酶小分子抑制剂的设计
与发现 • 蛋白酪氨酸激酶小分子抑制剂的作用
机制
• 蛋白酪氨酸激酶小分子抑制剂的药理 学特性与临床应用

蛋白酪氨酸激酶综述

蛋白酪氨酸激酶综述

蛋白酪氨酸激酶综述目前至少已有近六十种分属20个家族的受体酪氨酸激酶被子识别。

所有受体酷氨酸激酶都属于I型膜蛋白,其分子具有相似的拓朴结构:糖基化的胞外配体结合区,疏水的单次跨膜区,以及胞内的酪氨酸激酶催化结构域及调控序列。

不同受体酪氨酸激酶结合,将导致受体发生三聚化,并进一步使受体胞内区特异的受体酪氨酸残基发生自身磷酸化或交叉磷酸化,从而激活下游的信号转导通路。

许多肿瘤的发生、发展都与酪氨酸激酶的异常表达有着极其密切的联系,下面将对几类与肿瘤的发生发展最为密切的受体酪氨酸激酶的研究迸展做一简介。

一、表皮生长因子受体(Epidermal grovth factor receptor, EGFR)家族EGFRPE包括EGFR、ErbB2、ErbB4等4个成员,其家族受体酪氨酸激酶(RTK)以单体形式存在,在结构上由胞外区、跨膜区、胞内区3个部分组成,胞外区具有2个半氨酸丰富区,胞内区有典型的ATP结合位点和酪氨酸激酶区,其酪氨酸激酶活性在调节细胞增殖及分化中起着至关重要的作用。

人的egfr基因定位于第7号染色体的短臂(7p12.3-p12.1),它编码的产物EGFR由1210个氨基酸组成,蛋白分子量约为170kDa,其中,712-979位属于酪氨酸激酶区。

EGFR的专一配体有EGF、TGF、amphiregulin,与其他EGFR家庭成员共有的配体有(cellulin(BTC)、heparin-bindingEGF(HB-EGF)、Epiregulin(EPR) )等。

EGFR在许多上皮业源的肿瘤细胞中表达,如非小细胞性肺癌,乳腺癌、头颈癌,膀胱癌,胃癌,前列腺癌,卵巢癌、胶质细胞瘤等。

另外,在一些肿瘤如恶性胶质瘤、非小细胞性肺癌、乳腺癌、儿童胶质瘤、成神经管细胞瘤及卵巢癌等中还可检测到EGFR缺失。

最为常见的EGFR缺失突变型是EGFRⅧ,EGFR Ⅷ失去了配体结合区,但是可自身活化酪氨酸激酶,刺激下游信号通路的激活,而不依赖于与其配全结合。

受体型蛋白酪氨酸激酶

受体型蛋白酪氨酸激酶

(三)其他结构域
PH结构域:血小板-白细胞C激酶底物同 源区,识别膜磷脂成分及其代谢产物如 PIP2、PIP3、IP3等
死亡结构域:涉及死亡结构域蛋白、TNF 受体相关蛋白及其它多种信号转导蛋白
三. 信号分子的种类
(一)接头蛋白与锚定蛋白
特殊的信号分子,不具有酶活性
接头蛋白:具有多个结合其它分子的结构如 蛋白模块或结合蛋白模块的基团 Grb2:SH2、2xSH3
淋巴细胞活化的分子机制
一. 免疫受体信号转导的一般规律
配体的结合 受体交联、聚集、变构 蛋白酪氨酸激酶活化
受体胞浆区磷酸化
下游信号分子募集、活化
(一)配体激发的受体交联和聚集
受体启动信号传导过程的必要条件或充分条件
受体交联和聚集的机制:
重复抗原表位(细菌、病毒) 二聚体(PDGF)或三聚体(TNF) 二价分子(生长激素) 单价分子(大部分细胞因子)--变构
(三)磷脂酶C和磷酸肌醇3激酶
磷脂酶C(phospholipase C, PLC),包括PLCb和 PLCg。PLC以Ca2+依赖的方式水解膜磷脂中磷脂 酰肌醇-4,5二磷酸(PIP2),产生二酰甘油(DAG)和 三磷酸肌醇(IP3)。
PLCg 可被许多免疫受体和接头蛋白活化: 经SLP-76/ZAP70、LAT结合TCR 经LNK和Btk传递BCR的信号。 与活化CD22直接关联并传递信号。 PLCb主要被G蛋白激活,介导相关信号。
G蛋白:a(23种)、b(5种)、g(10种)组成不同的 亚型。a有GTP酶活性,g也能结合膜且与b一 起介导G蛋白与效应蛋白的相互作用。
G蛋白主要激活磷脂酶(如PLCb)和腺苷酸环 化酶(经cAMP调节信号传递)。
小G蛋白是一类与Ga同源的20~30kD蛋白, 分为Ras(Ras、Ral、Rap等)、Rho(Rho、Rac等)、 Rab、Arf、Sar和Ran等6个家族。 小G蛋白结合GDP时无活性,鸟苷酸交换因子 (GEF)使它们转向结合GTP而被激活;GAP则水 解GTP成GDP,负调节小G蛋白活性。 激活的小G蛋白介导TCR、BCR等受体的信号 传导;还能引起肌动蛋白细胞骨架的多聚化,参 与细胞形态变化及内吞、内化、分泌、粘附和移 动等功能。

课件生物学基础酪氨酸蛋白激酶

课件生物学基础酪氨酸蛋白激酶

03
生物学作用
激活的MAPK能够进入细胞核并调节特定基因的表达,从而影响细胞
的生长、分化和凋亡等过程。
PI3K-Akt信号通路
PI3K-Akt信号通路概述
PI3K-Akt信号通路在细胞生长、存活和代谢中具有重要作用,尤其是在肿瘤、神经退行性 疾病和糖尿病等疾病中。
激活过程
当细胞受到生长因子、胰岛素或其他外部刺激时,酪氨酸蛋白激酶可激活PI3K,生成的 PIP3进一步激活Akt,最终导致Akt的激活。
酪氨酸蛋白激酶抑制剂的应用
总结词
酪氨酸蛋白激酶抑制剂在肿瘤、神经性疾病、心血管 疾病等治疗中具有广泛的应用前景。
详细描述
酪氨酸蛋白激酶抑制剂的应用范围广泛,涉及肿瘤、 神经性疾病、心血管疾病等多个领域。在肿瘤治疗中 ,酪氨酸蛋白激酶抑制剂可以抑制肿瘤细胞的生长和 扩散,提高肿瘤患者的生存率和生活质量。在神经性 疾病和心血管疾病的治疗中,酪氨酸蛋白激酶抑制剂 也可以发挥重要作用,如改善神经细胞的存活和心血 管系统的功能。
潜在的治疗靶点与挑战
总结词
酪氨酸蛋白激酶作为潜在的治疗靶点,仍面临许多挑战 和问题需要解决。
详细描述
虽然酪氨酸蛋白激酶作为潜在的治疗靶点备受关注,但 是其作为治疗靶点仍面临许多挑战和问题需要解决。首 先,酪氨酸蛋白激酶具有多种亚型和变异体,这增加了 治疗的难度和复杂性。其次,酪氨酸蛋白激酶抑制剂的 疗效和安全性需要进一步研究和验证。此外,酪氨酸蛋 白激酶抑制剂的耐药性问题也需要考虑和解决。
酪氨酸蛋白激酶的作用:催化蛋白质分子中的酪氨酸残基发 生磷酸化,从而改变蛋白质的活性。
酪氨酸蛋白激酶的结构
酪氨酸蛋白激酶由两部分组成:一个是激酶结构域,另一 个是调节结构域。

简述酪氨酸蛋白激酶的作用和有关信号通路

简述酪氨酸蛋白激酶的作用和有关信号通路

简述酪氨酸蛋白激酶的作用和有关信
号通路
酪氨酸蛋白激酶(Tyrosine protein kinase,TPK)是一类催化蛋白质酪氨酸残基磷酸化的酶,在细胞的生长、分化、增殖和凋亡等过程中起着重要的调节作用。

酪氨酸蛋白激酶的主要作用是通过将蛋白质上的酪氨酸残基磷酸化,从而改变蛋白质的结构和活性,影响其功能。

这种磷酸化修饰可以引发一系列的细胞内信号转导事件,进而调节细胞的行为。

与酪氨酸蛋白激酶相关的信号通路包括:
1. MAPK(丝裂原活化蛋白激酶)通路:这是一条重要的细胞增殖和分化信号通路,涉及到多种酪氨酸蛋白激酶的激活,如 ERK、JNK 和 p38。

2. PI3K(磷脂酰肌醇-3-激酶)通路:这条通路参与细胞的存活、增殖和代谢等过程,与 AKT 等酪氨酸蛋白激酶的激活有关。

3. STAT(信号转导和转录激活因子)通路:这是一条涉及细胞因子和生长因子信号转导的通路,通过酪氨酸蛋白激酶的激活,引发 STAT 家族蛋白的磷酸化和转录激活。

4. RTK(受体酪氨酸激酶)通路:这类通路通过细胞膜上的受体酪氨酸激酶与外部信号分子结合,引发细胞内的信号转导,调节细胞的生长、增殖和分化。

综上所述,酪氨酸蛋白激酶通过对蛋白质的酪氨酸残基进行磷酸化修饰,参与了众多细胞信号通路的调节,对细胞的生长、分化、代谢和免疫等过程具有重要的影响。

酪氨酸激酶

酪氨酸激酶

KIT 功能获得性突变导致GIST的发生,黑素细胞功能失调和皮肤肥大细胞增生
March 11, 2014
伊马替尼抑制KIT信号通路
KIT激酶的ATP结合
口袋被伊马替尼占据 底物磷酸化被阻断和 信号通路被抑制 伴随着信号抑制,增殖 和存活被阻断
激酶区
P ATP PPP
伊马替尼
表达
March 11, 2014
肿瘤与酪氨酸激酶
March 11, 2014
概述
肿瘤是一种常见且多发病,而恶性肿瘤目前正极 大的危胁着人类的健康,当今生命科学中抗肿瘤研究 成为极富挑战性且意义重大的领域。 研发的焦点正在从传统细胞毒性药物转移到针对 肿瘤细胞内异常信号系统靶点的特异性抗肿瘤药物。 传统细胞毒药物选择性差、毒副作用强、易产生 耐药性等特点,而靶点特异性抗肿瘤药针对于正常细 胞和肿瘤细胞之间的差异,达到了高选择性、低毒性、 特异性强的治疗效果。
酪氨酸激酶受体
EGFR(ErbB1) HER-2/neu(ErbB2)
恶性肿瘤或骨髓增生紊乱
非小细胞肺癌,头颈部肿瘤, 结肠癌,胰腺癌 乳腺癌,卵巢癌,头颈部肿瘤
PDGFR
FGFR3 c-KIT FLT-3 RET c-MET
高嗜酸性粒细胞综合征,肥大 细胞症,胃肠道间质瘤
膀胱癌,多发性骨髓瘤 胃肠道间质瘤,系统性肥大细 胞增生 急性髓系白血病 2 型多发性内分泌腺瘤,家族 性髓样甲状腺瘤 肝细胞肿瘤,黑色素瘤,胶质 母细胞瘤,上皮性恶性肿瘤
癌、肾细胞癌(RCC)、卵巢癌、头颈部癌、恶性黑色素瘤。
本品最常见不良反应是痤疮样皮疹和腹泻,最严重不良
反应是间质性肺病,发生率为3%-5%。
March 11, 2014
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蛋白酪氨酸激酶简介
癌症极大威胁人类健康,抗肿瘤研究是当今生命科学中极富挑战性且意义重大的领域。

目前,临床上常用的抗肿瘤药物主要是细胞毒类药物,这类抗癌药具有难以避免的选择性差、毒副作用强、易产生耐药等缺点。

近年来,随着生命科学研究的飞速进展,恶性肿瘤细胞内的信号转导、细胞周期的调、细胞凋亡的诱导、血管生成以及细胞与胞外基质的相互作用等各种基本过程正在被逐步阐明。

以一些与肿瘤细胞分化增殖相关的细胞信号转导通路的关键酶作为药物筛选靶点,发现选择性作用于特定靶点的高效、低毒、特异性强的新型抗癌药物已成为当今抗肿瘤药物研究开发的重要方向。

蛋白酪氨酸激酶是一类具有酪氨酸激酶活性的蛋白质,可分为受体型和非受体型两种,它们能催化ATP上的磷酸基转移到许多重要蛋白质的酪氨酸残基上,使其发生磷酸化。

蛋白酪氨酸激酶在细胞内的信号转导通路中占据了十分重要的地位,调节着细胞体内生长、分化、死亡等一系列生理化过程。

蛋白酪氨酸激酶功能的失调则会引发生物体内的一系列疾病。

已有的资料表明,超过50%的原癌基因和癌基因产物都具有蛋白酪氨酸激酶活性,它们的异常表达将导致细胞增殖调节发生紊乱,进而导致肿瘤发生。

此外,酪氨酸基酶的异常表达还与肿瘤的侵袭和转移,肿瘤新生血管的生成,肿瘤的化疗抗性密切相关。

因此,以酪氨酸激酶为靶点进行药物研发成为国际上抗肿瘤药物研究的热点,为此投入的研究经费也是其它任何一个非传统的肿瘤靶点所无法匹敌的。

目前为止,已有十多种蛋白酪氨酸激酶抑制剂和抗体进入I-Ⅱ期临床试验阶段,个别的已经上市,并取得了令人鼓舞的治疗结果。

基中,Genentech公司和罗氏药厂联合研究和生产的HerceptinTM(Trastuzumab)是一种抗酪氨酸激酶受体HER2/neu的人源化的单克隆抗体。

1998年,美国食品的药物管理局(Food and Drug Administration, FDA)正式批准Herceptin用于治疗某些HER2阳性的转移性乳腺癌。

2001年5月,N ovartis公司研发的针对酪氨酸激酶Bcr-Abl的抑制剂GleevecTM (imatinib mesylate)由于对治疗慢性髓样白血病(chronic myelogenous leukemia,CML)具有非常好的疗效,尚未完成Ⅲ期临床就被FDA批准提前上市,用于治疗费城染色体呈阳性(Philadelphia chromosome – positive, Ph+)的慢性髓样白血病患者,引起了巨大的轰动。

GleevecTM是第一个在了解癌症的病因后鸽是设计开发,并取得了显著成效和的肿瘤治疗药物,它的研发成功可以说是癌症治疗的一个里程碑。

这一重大成就被美国《科学》杂志列入2001年度十大科技新闻。

纽约《时代》杂志将其作为杂志的封面,称GleevecTM 开创了药物研发的新时代。

2002年2月,美国FDA又批准GleevecTM 用于胃肠基质瘤(gastrointestinal stromal tumors, GLST)的治疗。

2002年7月,AstraZeneca公司研发的IressaTM (ZD1839又被美国FDA批准用于治疗经过标准含铂类方案和紫杉萜化疗后仍然继续恶化的终未期非小细胞肺癌患者,这也是第一种用于实体瘤治疗的针对特定靶点挑战分子酪氨酸激酶抑制剂。

Herceptin,Gleevec以及Iressa的上市进一步证明了以特定靶点尤其是以酪氨酸激酶为靶点进行抗肿瘤药物的研发是21世纪最有可能获得突破性进展的抗肿瘤药物领域,具有十分广阔的前景。

相关文档
最新文档