贵阳市中心城区土壤重金属污染现状及其评价

合集下载

贵州土壤环境污染现状及其防治建议

贵州土壤环境污染现状及其防治建议

药污染 、 化肥污染和固体废物对土壤环境的污染
等 几方 面。
农作物和牧草产量大幅度下降。而且一些污染物
在植物体 内 积 累残 留 ,既影 响植 物 的生 长发 育 ,
2 1 土壤重金属污染 .
贵州省是矿产资源大省 ,不合理 的矿藏资源
开 采 ,造 成 了 土 壤 的严 重 污 染 。土 壤 受 到 污染 后 ,含重 金属浓 度较 高 的污 染表 土容易 在风力 和 水 力 的作 用 下分别进 人大气 和水 体 中 ,导致大气 污 染 、地表水 污染 、地下水 污染 和生态 系统退 化 等其 他 次 生 生态 环境 问题 。如 贵 阳市 、黔 东南
章等地 土法 炼锌排 出 的铅 锌 渣 中 ,除 尚未取尽 的 铅锌外 ,还 含 有大 量 的银 、铬 、锗 等 多 种元 素 。 铜仁地 区在对 汞矿 开采过 程 中 ,造成 土壤 的汞 污
市综合污染 指数 为 3 o ,污染 等级 为重 污染 , .3
污染 水平 为土壤 、作物 受污染 已相 当严重 ;其余 地 区污 染 等 级 为 轻 污 染 ,土 壤 、作 物 开 始 受 到
州 、铜仁地区及黔南州的汞 ( g H )污染;贵阳
[ 收稿 日期 ]20 — 9 2 07 0 — 5 [ 目基金 ]贵州省地质矿产勘查开发局资助 (《 项 贵州环境地质研究》筑地矿函 [07 1 。 20 ]9 号) [ 作者简介 ]张建江 (92 )男,重庆市綦江县人,高级工程帅 ,长期从事水文地质、工程地质、 16 ~ 环境地质及其管理工作。
2 92・
GUI ZHOU GEOL0GY
第 4期 ( 总第 9 7期 )
贵 州土壤 环境 污 染 现状 及 其 防治建 议

城市表层土壤重金属污染分析

城市表层土壤重金属污染分析

城市表层土壤重金属污染分析一、引言随着城市化进程的加快,城市土壤受到重金属等污染物的威胁问题日益凸显。

城市表层土壤是城市生态环境中的重要组成部分,受到重金属污染的影响会对人类健康和生态系统造成重大影响。

因此,对城市表层土壤中重金属污染的分析具有重要意义。

二、重金属在城市表层土壤中的来源城市表层土壤中重金属主要来源于工业排放、交通尾气、生活垃圾填埋和农药施用等活动。

这些活动导致了土壤中重金属含量的逐渐积累,从而引发了土壤污染问题。

三、常见的城市表层土壤重金属污染物种城市表层土壤中常见的重金属污染物种包括铅(Pb)、镉(Cd)、铬(Cr)、汞(Hg)等。

这些重金属对人体健康和环境造成严重危害,需要引起重视。

四、城市表层土壤重金属污染的影响1.对人体健康的影响–长期暴露于重金属污染土壤中会导致慢性中毒,严重影响身体健康。

–儿童和孕妇更容易受到重金属污染的影响,引起神经系统和生殖系统的损伤。

2.对生态系统的影响–土壤中的重金属会影响土壤微生物的活性,破坏土壤生态系统平衡。

–重金属还会进一步污染地下水,威胁周围生态环境的稳定性。

五、城市表层土壤重金属污染分析方法1.采样方法–选择合适的采样点位,并采用土壤钻孔或其它方法获取土壤样品。

2.实验分析–利用化学分析方法,对土壤样品中的重金属进行检测和分析,包括原子吸收光谱等技术手段。

3.数据处理–对实验数据进行统计分析和处理,得出城市表层土壤中重金属的含量及分布情况。

六、城市表层土壤重金属污染治理建议1.减少污染源–减少工业废气排放、加强交通管理,从源头减少重金属排放。

2.土壤修复–利用植物吸收、土壤修复技术等手段,对污染土壤进行修复和改良。

3.加强监测–定期对城市表层土壤进行监测,及时发现并处理重金属污染问题。

结论城市表层土壤中的重金属污染是一个严重的环境问题,对人类健康和生态系统造成威胁。

因此,开展城市表层土壤重金属污染的分析研究具有重要意义,可以为环境保护和城市可持续发展提供科学依据。

城市表层土壤重金属污染分析

城市表层土壤重金属污染分析

城市表层土壤重金属污染分析
城市表层土壤重金属污染是指城市地区表层土壤中存在着超出安全标准的重金属元素。

这些重金属元素包括镉(Cd)、铬(Cr)、铜(Cu)、汞(Hg)、铅(Pb)和锌(Zn)等。

分析城市表层土壤重金属污染需要进行以下步骤:
1. 采样:在城市不同区域选择代表性的采样点,并按照一定的网格密度进行采样。

采样深度一般为0-20厘米。

2. 样品处理:将采集的土壤样品进行样品分割、筛分、干燥等预处理步骤,以获得均匀的土壤样品。

3. 重金属含量测定:采用化学分析方法,如原子吸收光谱(AAS)、电感耦合等离子体质谱(ICP-MS)等对土壤样品中的重金属元素含量进行测定。

4. 数据分析:将测定得到的重金属元素含量与环境质量标准进行比较,评估土壤重金属污染状况。

可以使用统计学方法对数据进行处理和分析。

5. 风险评估:根据土壤重金属污染状况,结合土壤用途和人体暴露途径,进行风险评估,评估不同重金属对人体健康和环境的潜在风险。

6. 污染防治:根据评估结果,采取相应的污染防治措施,如土壤修复、农田污染控制、废弃物管理等,降低土壤重金属污染对环境和人体健康的潜在风险。

需要注意的是,城市表层土壤重金属污染分析是一个复杂的过程,需要搜集大量的样品和数据,并结合多种分析方法进行综合评估,以准确评估土壤重金属污染的程度和潜在风险。

土壤重金属污染报告

土壤重金属污染报告

土壤重金属污染报告1. 引言土壤重金属污染是当代环境问题中的一个重要方面。

随着工业化进程的加速和人类活动的扩大,大量的重金属污染物被排放到土壤中,对生态环境和人类健康造成了严重威胁。

本报告旨在对土壤重金属污染现状进行调查和分析,并提供相应的解决方案。

2. 调查方法2.1 样本选择我们选择了某市的5个不同地区作为研究对象,这些地区代表了不同的土壤类型和污染源。

2.2 采样和分析我们在每个地区随机选择了10个采样点,对每个采样点的土壤样本进行了采集和分析。

采样时,我们使用无污染的塑料袋将土壤样本收集起来,并尽量避免污染。

采样完成后,我们将土壤样本送往实验室进行重金属含量的分析。

2.3 数据处理通过实验室分析,我们得到了每个采样点的土壤中不同重金属元素的含量数据。

我们使用统计学方法对数据进行了处理,计算了平均值、标准差和相关系数等指标,以便更好地理解土壤重金属污染的程度和分布规律。

3. 结果分析3.1 重金属含量分布通过对采样点的分析,我们发现不同地区的土壤中普遍存在重金属污染物。

其中,铅、镉和汞是最常见的重金属元素,其含量普遍超过了环境质量标准的允许范围。

3.2 土壤污染程度评价根据我国环境质量标准,我们将土壤污染程度分为轻度、中度和重度。

经过计算和评估,我们发现所调查地区的土壤重金属污染普遍为中度污染,其中某些区域甚至达到了重度污染水平。

3.3 污染源分析为了深入理解土壤重金属污染的原因,我们对样本采集地区的污染源进行了调查。

我们发现这些地区附近常见的污染源包括工业排放、农药使用和废弃物处理等,这些活动都可能导致土壤重金属污染。

4. 解决方案4.1 修复受污染土壤土壤修复是解决土壤重金属污染的有效手段之一。

我们建议采用物理、化学和生物等多种修复技术,如土壤剥离、化学固化和植物修复等,以减少土壤中重金属的含量,恢复土壤的生态功能。

4.2 控制污染源为了防止土壤重金属污染进一步扩散,我们建议加强对污染源的监管和控制。

贵州省典型污染区土壤重金属的污染特征

贵州省典型污染区土壤重金属的污染特征

贵州省典型污染区土壤重金属的污染特征作者:高海燕来源:《科学与财富》2017年第20期(贵州省环境科学研究设计院贵州贵阳 550081)摘要:针对贵州省不同污染区进行土壤重金属污染特征对比、总结,探究导致土壤重金属受到污染的原因,以及影响污染程度的主要因素。

本文首先对贵州省污染区做了简要介绍,具体分析了污染区土壤重金属污染特征,从而提供良好的解决措施。

关键词:贵州省;土壤;重金属前言:近年来,我国耕地受重金属污染比例范围在逐渐扩大,一旦重金属受到污染,则土壤的稳定性会相应降低,同时,土壤肥力也会受到不利影响,农产品质量会随之下降。

贵州省土壤重金属污染存在地区差异性,对此展开化学特征探究,能够在掌握污染现状、原因的基础上,提出有效治理措施,进而优化食物链结构,保障人体健康。

1污染区基本介绍1.1研究区域本文所选贵州省研究对象主要有毕节赫章野马川(a区)、开阳县金中镇(b区)、白云区曹关村(c区)、六盘水市水城县倮摩村(d区)、清镇市后午(e区)、幸福村(f区)、花溪区久安乡(g区)、大湾镇安乐村(h区)、青岩镇二关村(i区)、乌当区新庄(j 区)。

1.2样品收集由于样品采集存在明显的地域差异性,应用蛇形布点法进行样点采集活动,每一样点采集样品数量为8——17个,每一样品采集0——19厘米耕层土壤,选取最少6个点的混合样,应用四分法取1.5千克后放入标好号码的试验袋。

然后使其自然风干,待风干后研磨、筛选、均匀混合,样品处理的过程中常用玛瑙、木质用具,同时避免用具污染[1]。

1.3样品分析取0.11克样品数量于26毫升比色容器中,加入2.5毫升王水将其消溶,消融世间120分钟后,静置定容,然后用X2型号的ICP-MS对其进行重金属测量,样品回收率在91%——106%之间,证明回收率较好。

在规格为55毫升的烧杯中加入6克过筛风干土,然后加入不含二氧化碳的纯净水,土水比例为1:4,将烧杯均匀摇晃,静置半小时后,用PUS-3C型酸度计检测。

贵阳市高雁垃圾填埋场周边土壤和农作物重金属污染特征及健康风险评价

贵阳市高雁垃圾填埋场周边土壤和农作物重金属污染特征及健康风险评价

㊀山东农业科学㊀2023ꎬ55(2):92~99ShandongAgriculturalSciences㊀DOI:10.14083/j.issn.1001-4942.2023.02.013收稿日期:2022-05-21基金项目:国家自然科学基金青年基金项目(42007021)ꎻ湖南省自然科学基金青年基金项目(2020JJ5250)ꎻ中国博士后科学基金面上项目(2020M672498)ꎻ湖南农业大学青年基金项目(19QN39)作者简介:赵升(1998 )ꎬ男ꎬ硕士研究生ꎬ研究方向:农业资源利用ꎮE-mail:2019651404@qq.com通信作者:欧阳凯(1989 )ꎬ男ꎬ博士ꎬ副教授ꎬ研究方向:土壤生物化学ꎮE-mail:Kai_ouyang@hunau.edu.cn罗绪强(1976 )ꎬ男ꎬ博士ꎬ教授ꎬ研究方向:生态环境地球化学ꎮE-mail:xuqiangluo@163.com贵阳市高雁垃圾填埋场周边土壤和农作物重金属污染特征及健康风险评价赵升1ꎬ欧阳凯1ꎬ罗绪强2ꎬ王绍英3ꎬ文翊1ꎬ李宇佳1ꎬ骆乐丹1(1.湖南农业大学资源环境学院ꎬ湖南长沙㊀410125ꎻ2.贵州师范学院地理与资源学院ꎬ贵州贵阳㊀550018ꎻ3.贵州大学茶学院ꎬ贵州贵阳㊀550025)㊀㊀摘要:本试验以贵阳市高雁城市生活垃圾卫生填埋场附近农田为研究区域ꎬ在此区域内采集5种农作物(大豆㊁玉米㊁青菜㊁莴笋㊁葱)及其根系周围的土壤样品ꎬ测定分析其Cd㊁Pb㊁Cr㊁Ni㊁Cu含量ꎬ并运用污染指数法㊁目标危险系数法(THQ)评估重金属污染程度及暴露人群健康风险ꎮ结果显示:(1)研究区土壤中Cd㊁Pb㊁Cr㊁Ni㊁Cu平均含量分别为4.14㊁58.91㊁289.29㊁44.21mg/kg和94.20mg/kgꎬ相较于贵州省土壤元素背景值ꎬCd㊁Cr㊁Cu㊁Ni㊁Pb的超标率分别为527.27%㊁202.92%㊁194.38%㊁13.07%和67.36%ꎬ且土壤中的这5种重金属可能有相同的来源ꎻ(2)5种重金属向农作物可食用部分迁移能力依次为Cd>Ni>Cu>Cr>Pbꎻ青菜对Cu㊁Cd㊁Pb的富集能力均大于其他几种作物ꎬNi㊁Cd分别向葱㊁莴笋迁移的能力较强ꎬ应尽量避免在重金属污染的土壤上种植蔬菜ꎻ(3)单因子污染指数分析表明ꎬ5种农作物可食用部分均受到Cr㊁Ni㊁Pb的污染ꎬ除玉米果穗外其他4种农作物可食用部分均受到Cd污染ꎬ葱茎受到Cu污染ꎻ综合污染指数评价表明ꎬ5种农作物可食用部分受重金属污染程度依次为葱>莴笋>大豆>玉米>青菜ꎬ且均为重污染ꎻ(4)THQ值显示研究区暴露人群受Cr㊁Cd危害的可能性更大ꎻ玉米㊁葱㊁大豆㊁青菜㊁莴笋的多种重金属复合风险(TTHQ)值分别为21.85㊁65.77㊁20.10㊁19.37㊁17.83ꎬ均大于10.00ꎬ表明这5种农作物具有慢性毒性风险效应ꎬ长期食用这类农作物产品存在很大的健康风险ꎬ且对儿童健康造成的危害显著高于成人ꎮ综上表明ꎬ垃圾填埋场周边土壤及农作物重金属污染对周边生态环境和居民健康生活已构成严重威胁ꎮ关键词:土壤ꎻ重金属ꎻ农作物ꎻ垃圾填埋场ꎻ污染特征ꎻ健康风险评价中图分类号:S154.4:X53㊀㊀文献标识号:A㊀㊀文章编号:1001-4942(2023)02-0092-08CharacteristicsandHealthRiskAssessmentofHeavyMetalPollutioninSoilandCropsnearGaoyanLandfillinGuiyangCityZhaoSheng1ꎬOuyangKai1ꎬLuoXuqiang2ꎬWangShaoying3ꎬWenYi1ꎬLiYujia1ꎬLuoYuedan1(1.SchoolofResourcesandEnvironmentꎬHunanAgriculturalUniversityꎬChangsha410125ꎬChinaꎻ2.SchoolofGeographyandResourcesꎬGuizhouEducationUniversityꎬGuiyang550018ꎬChinaꎻ3.CollegeofTeaScienceꎬGuizhouUniversityꎬGuiyang550025ꎬChina)Abstract㊀WiththefarmlandsneartheGaoyanlandfillinGuiyangCityasresearchareaꎬtheCdꎬPbꎬCrꎬNiandCucontentsinfivecrops(soybeanꎬcornꎬgreenvegetablesꎬlettuceandonion)andsurroundingsoilswereanalyzedinthisexperimentꎬandthedegreeofheavymetalpollutionandthehealthrisktoexposedpeoplewereevaluatedbythepollutionindexandthetargethazardcoefficient(THQ)methods.Theresultswereasfollows.(1)TheaveragecontentsofCdꎬPbꎬCrꎬNiandCuinthesoilwere4.14ꎬ58.91ꎬ289.29ꎬ44.21and94.20mg/kgꎬrespectively.ComparedwiththebackgroundvalueofsoilelementsinGuizhouProv ̄inceꎬtheexceedingrateofCdꎬCrꎬCuꎬNiandPbwere527.27%ꎬ202.92%ꎬ194.38%ꎬ13.07%and67.36%ꎬrespectively.TheCdꎬCrꎬCuꎬNiandPbinthesoilmighthavethesamesource.(2)ThemigrationabilityofthefiveheavymetalstotheediblepartofcropswassequencedasCd>Ni>Cu>Cr>Pb.Theenrich ̄mentabilityofgreenvegetablesforCuꎬCdandPbwashigherthanthatofothercrops.NiandCdhadastrongabilitytomigrateintoonionandlettucerespectivelyꎬsoitshouldbeavoidedtoplantvegetablesonsoilcon ̄taminatedbyheavymetals.(3)TheediblepartsofthefivecropswereallpollutedbyCrꎬNiandPb.ExceptcornearꎬtheediblepartsoftheotherfourcropswereallcontaminatedbyCdꎬandtheonionstemswerepollu ̄tedbyCuꎻthepollutedlevelofediblepartsofthefivecropsbyheavymetalswasintheorderofonion>lettuce>soybean>corn>greenvegetablesꎬandtheywereallheavilypolluted.(4)TheTHQvalueshowedthattheex ̄posedpopulationintheresearchareawasmorelikelytobeharmedbyCrandCd.TheTTHQvalueofcornꎬon ̄ionꎬsoybeanꎬgreenvegetablesandlettucewere21.85ꎬ65.77ꎬ20.10ꎬ19.37and17.83ꎬrespectivelyꎬandwereallgreaterthan10.00ꎬindicatingthatthe5kindsofcropshadchronictoxicityriskeffects.Long ̄termconsumptionofthesecropsposedgreathealthriskstohumanhealthꎬandtheharmtochildrenwassignificantlyhigherthanthattoadults.Insummaryꎬheavymetalpollutionofsoilandcropsaroundthelandfillhadposedaseriousthreattothesurroundingecologicalenvironmentandthehealthylifeofresidents.Keywords㊀SoilꎻHeavymetalsꎻCropsꎻLandfillꎻPollutioncharacteristicsꎻHealthriskassessment㊀㊀贵阳市高雁垃圾填埋场位于贵阳市乌当区南明河下游流域ꎬ距离市区16kmꎬ占地面积将近89.2hm2ꎬ主要地貌特征为溶蚀侵蚀低山沟谷[1]ꎮ随着我国国民经济的发展和人民生活水平的不断提高ꎬ城市生活垃圾产量正在逐年增加ꎬ而填埋处理依旧是处理垃圾的主要途径ꎮ相关研究表明ꎬ垃圾填埋过程及填埋后产生的渗滤液中的重金属极易向周边环境(土壤和地下水等)迁移ꎬ导致周边环境中重金属含量超过背景值ꎬ使土壤和地下水受到污染[2]ꎮ重金属元素在土壤环境中的可移动性差ꎬ雨水对它的冲刷作用较弱ꎬ微生物也很难将其降解[3ꎬ4]ꎮ过量的重金属不仅会对土壤㊁农作物和地下水等产生重大影响ꎬ还将通过食物链危害人体健康[3ꎬ5]ꎮ垃圾填埋场渗滤液中含有的重金属元素在自然降雨的淋溶下会被释放到土壤中ꎬ不仅在土壤中累积ꎬ还可能转化为危害性更大的化合物ꎬ并通过食物链对暴露人群的生产生活带来一定的潜在危害[6]ꎮ因此ꎬ探讨城市生活垃圾卫生填埋场附近土壤-农作物系统中重金属污染特性及其健康风险具有极其重要的理论和现实意义ꎮ本研究以贵阳市高雁城市生活垃圾卫生填埋场附近农田为研究区域ꎬ在此区域内采集5种农作物(大豆㊁玉米㊁青菜㊁莴笋㊁葱)及其根系周围的土壤作为研究对象ꎬ对土壤和农作物进行重金属含量分析ꎬ并运用污染因子评价法㊁内梅罗综合污染指数法㊁富集系数和目标危险系数法等方法ꎬ探讨城市生活垃圾卫生填埋场运行后ꎬ对附近农田土壤生态环境安全和农作物健康安全的影响ꎬ以期为评估垃圾填埋场周边农田土壤生态环境安全㊁土地安全利用以及暴露人群的健康风险提供科学依据ꎮ1㊀材料与方法1.1㊀供试材料选取贵阳市高雁城市生活垃圾卫生填埋场周边农田作为研究区域(东经106ʎ48ᶄ12ᵡ~104ʎ48ᶄ19ᵡꎬ北纬26ʎ38ᶄ9ᵡ~26ʎ38ᶄ25ᵡ)ꎬ在研究区内选取人们经常食用的叶菜类蔬菜青菜(BrassicachinensisL.)㊁根茎类蔬菜莴笋(LactucasativaL.var.angustataIrishexBremer)㊁葱(Alliumfistulosum)㊁玉米(Zeamays)和大豆[Glycinemax(Linn.)Merr.]共5种农作物和根系周围的土壤为材料ꎮ1.2㊀样品的采集与制备1.2.1㊀农作物样品的采集与预处理㊀2019年6月下旬ꎬ在研究区采集5种农作物的根㊁茎㊁叶㊁果39㊀第2期㊀㊀㊀㊀赵升ꎬ等:贵阳市高雁垃圾填埋场周边土壤和农作物重金属污染特征及健康风险评价等不同器官ꎬ将样品存储在信封中尽快带回实验室ꎮ之后迅速将其表面尘土等污染物用自来水冲洗干净ꎬ去除不常食用部分ꎬ并用去离子水再次冲洗3次ꎬ放至70ħ烘箱内烘干至恒重ꎬ研磨过筛(100目)后密封备用ꎮ1.2.2㊀土壤样品的采集与预处理㊀采集农作物样品的同时ꎬ根据五点取样法采集土样ꎮ即在清除土表碎屑后ꎬ在靠近农作物根部的3个不同点处用土壤采样器采集0~20cm耕层土壤ꎬ混匀后按四分法ꎬ取大约1000g样品装入信封ꎬ带回实验室ꎮ土样置于室内自然风干ꎬ去掉其中的植物根和砾石等杂物ꎬ研磨过筛(100目)后密封备用ꎮ1.2.3㊀样品的消解㊀土壤和农作物样品均采用混合酸(HNO3-HF)消解[7ꎬ8]ꎮ待消煮液冷却后ꎬ将消煮液全部转移至容量瓶中ꎬ用1%的硝酸溶液定容(土样容量瓶体积25mLꎬ农作物样50mL)ꎬ待测ꎮ1.3㊀测定项目及方法样品中Cd㊁Ni㊁Pb㊁Cu㊁Cr含量均采用Nex ̄ION300X型电感耦合等离子体质谱仪(ICP-MS) (珀金埃尔默股份有限公司ꎬ美国)测定ꎮ以植物成分分析标准物质GBW07604(GSV-3)杨树叶作质量控制ꎬ标样元素含量测定结果均在标准值范围内ꎮ重金属各元素含量均以干样计ꎮ测定工作在中国科学院地球化学研究所环境地球化学国家重点实验室完成ꎮ1.4㊀污染评价方法1.4.1㊀土壤重金属的污染程度㊀用土壤污染因子(CF)评价[5]ꎮ计算公式如下:CF重金属=C重金属/C背景值㊀ꎮ(1)式中ꎬCF重金属表示土壤中某一种重金属的污染因子ꎻC重金属表示土壤中某一种重金属含量的实测值(mg/kg)ꎻC背景值表示研究区土壤中该重金属的背景值(mg/kg)ꎮ土壤污染等级评价标准见表1ꎮ1.4.2㊀农作物对土壤中重金属的富集㊀农作物对重金属的富集程度用富集系数(BCF)评价[8]ꎮ计算公式如下:TBCF=TCV/TCS㊀ꎮ(2)式中ꎬTBCF为农作物组织或器官对某种重金属的富集系数ꎻTCV为农作物组织或器官中某种重金属㊀㊀表1㊀土壤污染因子评价污染因子污染等级污染评价CFɤ1Ⅰ无污染1<CFɤ2Ⅱ轻度污染2<CFɤ3Ⅲ中度污染3<CFɤ4Ⅳ污染较为严重4<CFɤ5Ⅴ严重污染5<CFɤ6Ⅵ严重污染到非常严重污染CF>6Ⅶ非常严重污染的含量(mg/kg)ꎻTCS为土壤中某种重金属的含量(mg/kg)ꎮTBCF的大小与农作物抵抗重金属污染的能力成反比ꎮ1.4.3㊀农作物中重金属的污染状况㊀农作物受重金属污染状况ꎬ用单因子污染指数法和内梅罗综合指数法来评价[8-11]ꎮ污染评价等级见表2ꎮ㊀㊀表2㊀单因子污染指数和综合污染指数评价等级内梅罗综合污染指数综合污染指数污染评价单因子污染指数单因子污染指数污染评价P综合ɤ0.7安全等级PTɤ1农作物未受重金属污染0.7ɤP综合<1.0警戒限PT>1农作物受到重金属污染1.0ɤP综合<2.0轻污染2.0ɤP综合<3.0中污染P综合ȡ3.0重污染㊀㊀单因子污染指数用下列公式计算:PT=CT/ST㊀ꎮ(3)式中ꎬPT为重金属T的污染指数值ꎻCT为农作物中重金属T的实际测量值(mg/kg)ꎻST为农作物中重金属T的评价标准值(mg/kg)ꎮ内梅罗综合污染指数用下列公式计算:P综合=[(P2avg+P2max)/2]1/2㊀ꎮ(4)式中ꎬP综合为综合污染指数值ꎻPavg为农作物中5种重金属单因子污染指数的平均值ꎻPmax为农作物中5种重金属单因子污染指数的最大值ꎮ1.5㊀健康风险评价方法目标危险系数法(targethazardquotientꎬTHQ)是一种健康风险的评价模型[12-14]ꎮ该模型的物理意义是评估污染物对暴露人群是否导致健康风险以及健康风险的大小ꎬTHQ值越大表明污染物对暴露人群的健康风险越大ꎮ计算公式如下:THQ=EFRˑEDˑFIRˑCTRfDˑBWˑAT㊀ꎮ(5)49㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第55卷㊀多种重金属复合健康风险(TTHQ)[14]:是评估多种重金属对暴露人群的复合作用ꎬ是否存在复合健康风险或慢性毒性效应[15]ꎮTTHQ值越大暴露人群存在的复合健康风险或慢性毒性效应越大ꎮ计算公式如下:TTHQ=THQ1+THQ2+ +THQn㊀ꎮ(6)THQ和TTHQ的健康风险评判及各参数物理意义如表3所示ꎮ㊀㊀表3㊀农作物重金属的目标危险系数和复合目标风险系数评价参数物理意义单位参考值EFR农作物暴露频率d/a365[15ꎬ16]ED农作物暴露年限a70[16]CT农作物中重金属浓度mg/kg见表4FIR蔬菜日摄入量g/d300(儿童200)[17]BW体重kg70(儿童16)[17]AT农作物平均作用时间dEDˑ365[16]RfD重金属暴露参考计量mg/(kg d)Cd㊁Cr㊁Ni㊁Cu㊁Pb的RfD分别为0.001㊁0.003㊁0.02㊁0.04㊁0.0035[15-17]THQ单一重金属健康风险THQ<1(没有风险)ꎬTHQȡ1(有风险)TTHQ多种重金属复合健康风险TTHQɤ1(没有风险)ꎬ1<TTHQɤ10(有风险)ꎬTTHQ>10(存在慢性毒性效应)1.6㊀数据处理与分析采用MicrosoftExcel2016和IBMSPSSStatis ̄tics19软件对试验数据进行处理和统计分析ꎮ2㊀结果与分析2.1㊀垃圾填埋场周边土壤中的重金属含量及污染评价由表4可以看出ꎬ研究区土壤中Cd㊁Cr㊁Cu㊁Ni㊁Pb平均含量分别为4.14㊁289.29㊁94.20㊁44.21mg/kg和58.91mg/kgꎬ全部高于乌当区土壤元素平均值㊁贵阳市土壤元素基线值[18-20]及贵州省土壤元素背景值[21ꎬ22]和中国土壤环境背景值[23]ꎬ说明土壤中5种重金属平均含量均远高于土壤自然丰度ꎬ超标率排序为Cd>Cr>Cu>Pb>Niꎬ这与之前的研究结果相似[24]ꎮ其中Cu㊁Ni㊁Pb含量均低于农用地土壤污染风险筛选值(SRS)(pH6.5~7.5)ꎬ但Cd和Cr含量均远超过SRS值ꎮ土壤中5种重金属的土壤污染因子(CF)大小为Cd>Cr>Cu>Pb>Niꎬ根据CF值显示ꎬCd污染非常严重ꎬCr污染较为严重ꎬCu中度污染ꎬNi和Pb为轻度污染ꎮ垃圾填埋场周边农作物生长或土壤生态环境很可能存在Cd和Cr污染的风险ꎬ应当加强土壤环境监测和产品协同监测[25ꎬ26]ꎮ变异系数的大小用来表示数据的离散程度ꎬ小于16%属于弱变异ꎬ16%~35%属于中等变异ꎬ大于36%属于高度变异[27ꎬ28]ꎮ从表4可以看出ꎬ㊀㊀表4㊀土壤中的重金属含量(n=14)统计参数CdCrCuNiPb标准偏差2.82171.3845.9813.1516.67变异系数(%)68.1559.2448.8129.7528.31偏度0.360.250.370.790.43峰度1.791.801.600.790.90最小值(mg/kg)0.4075.3129.0229.8032.87最大值(mg/kg)7.26509.75150.1475.2783.62平均值(mg/kg)4.14289.2994.2044.2158.91中国土壤环境背景值(mg/kg)0.09761.022.626.926.0贵州省土壤元素背景值(mg/kg)0.6695.5032.0039.1035.20贵阳市土壤元素基线值(mg/kg)0.06844.018.817.014.8乌当区土壤元素平均值(mg/kg)0.32989.632.928.052.1土壤污染因子(CF)值6.683.032.941.131.67农用地土壤污染风险筛选值(mg/kgꎬpH6.5~7.5)0.320010010012059㊀第2期㊀㊀㊀㊀赵升ꎬ等:贵阳市高雁垃圾填埋场周边土壤和农作物重金属污染特征及健康风险评价Cd㊁Cr㊁Cu㊁Ni和Pb的变异系数分别为68.15%㊁59.24%㊁48.81%㊁29.75%和28.31%ꎬ其中Cd㊁Cr㊁Cu属于高度变异ꎬ说明该地区表层土壤中这3种重金属元素来源受外界干预影响较大ꎻNi和Pb属于中等变异ꎬ该地区表层土壤中Ni和Pb受人为干预影响不显著ꎮ有研究认为土壤重金属元素含量之间呈显著负相关ꎬ表明它们可能有不同的来源ꎻ而呈显著正相关则表明它们可能有相同的来源[17ꎬ29ꎬ30]ꎮ为了解研究区土壤中重金属的来源ꎬ对这5种重金属含量进行相关性分析ꎮ结果(表5)表明ꎬCd㊁Cr㊁Cu㊁Ni㊁Pb之间均呈极显著正相关(P<0.01)ꎬ土壤㊀㊀表5㊀土壤重金属含量相关性分析(n=14)重金属CrNiCuCdPbCr1.00Ni0.895∗∗1.00Cu0.988∗∗0.867∗∗1.00Cd0.996∗∗0.892∗∗0.992∗∗1.00Pb0.873∗∗0.727∗∗0.926∗∗0.878∗∗1.00㊀㊀注: ∗∗ 表示极显著相关(P<0.01)ꎮ中Cd㊁Cr㊁Cu㊁Ni㊁Pb很可能有相同的来源ꎬ即来源于运营的垃圾填埋场ꎮ2.2㊀垃圾填埋场周边农作物中的重金属含量分析由表6可知ꎬ5种重金属在玉米和葱中的含量均表现为Cr>Ni>Cu>Pb>Cdꎬ大豆和青菜中为Cu>Cr>Ni>Pb>Cdꎬ莴笋中为Cu>Cr>Ni>Cd>Pbꎮ5种农作物中的Cr㊁Ni㊁Pbꎬ葱中的Cu和葱㊁大豆㊁青菜㊁莴笋中的Cd含量均超过了GB2762 2017«食品安全国家标准食品中污染物限量»[31]中的限量要求ꎬ葱中的Cu含量超过食品中Cu限量的卫生标准[32]ꎮ青菜和大豆中Pb含量超标最严重ꎬ葱和玉米中Cr超标最严重ꎬ莴笋中Cd超标最严重ꎮ葱中Cr㊁Ni㊁Cu的平均含量和超标率均远高于其他农作物ꎬ特别是Cr的平均含量高达37.68mg/kgꎬ远远超过其标准值0.50mg/kgꎬ而葱根周围的土壤重金属元素平均值也远远高于其他采样点ꎬ说明土壤-农作物系统中ꎬ农作物重金属的污染程度与其土壤重金属浓度呈正相关性[33]ꎮ㊀㊀表6㊀5种农作物中的重金属含量(mg/kg)农作物器官样本数Cr含量标准Ni含量标准Cu含量标准Cd含量标准Pb含量标准玉米果穗311.321.008.771.006.3210.000.070.102.370.20葱茎337.680.5017.681.0012.5110.000.950.102.300.30大豆籽粒37.661.006.411.008.7720.000.810.202.830.20青菜叶38.420.506.851.009.8010.000.230.203.220.30莴笋茎34.040.503.441.005.4010.002.040.101.680.302.3㊀农作物中重金属含量的相关性农作物对不同元素的吸收存在协同或拮抗作用ꎬ通过相关性分析可以反映出元素间是否存在复合污染或同源关系ꎮ如果元素间呈显著或极显著正相关ꎬ表明它们存在同源关系或将产生复合污染ꎻ如果元素间呈显著或极显著负相关ꎬ则说明它们不具备同源关系[34-36]ꎮ对研究区农作物中重金属含量进行相关分析ꎬ结果(表7)表明ꎬ重金属Ni㊁Pb与Cu均呈显著正相关ꎬCd和Pb呈显著负相关ꎬ其它元素之间相关性不显著ꎮ表明研究区农作物中的Cu和Ni㊁Cu和Pb可能具有复合污染或同源关系ꎬCd和Pb可能不具有同源关系ꎻCu和Ni㊁Cu和Pb可能存在一定的协同作用ꎬCd和Pb可能存在一定的拮抗作用ꎮ㊀㊀表7㊀农作物各重金属含量间的皮尔逊相关系数(n=15)重金属CrNiCuCdPbCr1Ni0.2791Cu0.4290.561∗1Cd0.276-0.321-0.3181Pb-0.2170.1500.557∗-0.542∗1㊀㊀注: ∗ 表示显著相关(P<0.05)ꎮ2.4㊀农作物对重金属的富集重金属富集系数(BCF)为农作物中重金属含量与土壤中重金属含量的比值ꎬBCF的大小既体现了农作物对土壤中重金属吸收能力的强弱ꎬ也体现了土壤中重金属向农作物器官或组织迁移能力的大小[8ꎬ37ꎬ38]ꎮ由表8可知ꎬ葱茎中不同重金69㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第55卷㊀属的BCF为Ni>Cd>Cr=Cu>Pbꎻ大豆籽粒中的BCF为Cd>Ni>Cu>Pb>Crꎻ青菜叶中的BCF为Cd>Cu>Ni>Cr>PbꎬCd㊁Cu和Pb向青菜叶的迁移能力与成瑾等[39]的研究结论一致ꎻ莴笋中的BCF为Cd>Ni>Cu>Pb>Crꎻ玉米果穗中的BCF为Ni>Cr>Cu>Cd>Pbꎬ其中玉米对Cu的吸收大于对Cd和Pb的吸收ꎬ这也与成瑾等[39]的研究结果一致ꎮ土壤中5种重金属向农作物迁移的能力大小总体为Cd>Ni>Cu>Cr>Pbꎬ这与中国蔬菜土壤金属元素富集程度大小的排序一致[24]ꎮ㊀㊀表8㊀重金属在农作物中的富集系数农作物器官CrNiCuCdPb葱茎0.090.350.090.150.03大豆籽粒0.020.120.080.160.05青菜叶0.110.220.330.560.10莴笋茎0.010.070.040.320.02玉米果穗0.120.280.110.060.042.5㊀农作物中重金属污染评价由表9可知ꎬ从单因子污染指数看ꎬ5种农作物均不同程度受到重金属污染ꎮ玉米果穗和大豆籽粒中5种重金属单因子污染指数大小排序为Pb>Cr>Ni>Cd>Cuꎬ葱茎中为Cr>Ni>Cd>Pb>Cuꎬ青菜叶中为Cr>Pb>Ni>Cd>Cuꎬ莴笋中为Cd>Cr>Pb>Ni>Cuꎮ玉米㊁大豆㊁青菜和莴笋中的Cu以及玉米中的Cd单因子污染指数均小于1ꎬ说明玉米㊁大豆㊁青菜㊁莴笋未受Cu污染ꎬ玉米也未受Cd污染ꎻ5种农作物中的Cr㊁Ni㊁Pbꎬ以及葱㊁大豆㊁青菜㊁莴笋中的Cd和葱中的Cu单因子污染指数均远大于1ꎬ说明5种农作物均受到Cr㊁Ni㊁Pb重金属污染及葱㊁大豆㊁青菜㊁莴笋均受到Cd污染ꎬ葱受到Cu污染ꎮ㊀㊀表9㊀农作物重金属污染评价结果农作物器官PCrPNiPCuPCdPPbP综合玉米果穗11.328.770.630.7011.859.61葱茎75.3617.681.259.507.6755.57大豆籽粒7.666.410.444.0514.1511.02青菜叶16.846.850.981.1510.739.18莴笋茎8.083.440.5420.405.6015.40㊀㊀从综合污染指数来看ꎬ所有综合污染指数均远大于3ꎬ表明研究区的农作物均达到了重污染程度ꎮ玉米㊁葱㊁大豆㊁青菜㊁莴笋重金属综合污染指数大小分别为9.61㊁55.57㊁11.02㊁9.18㊁15.40ꎻ农作物受重金属污染程度大小为葱>莴笋>大豆>玉米>青菜ꎻPb对玉米和大豆污染的贡献率最大ꎬCr对葱和青菜的污染贡献率最大ꎬCd对莴笋污染的贡献率最大ꎮ2.6㊀农作物中重金属对暴露人群的健康风险评价农作物中单一重金属所引起的健康风险:对成人而言ꎬ玉米㊁大豆㊁莴笋中的Cuꎬ莴笋中的Niꎬ玉米㊁青菜中的Cd不会对成人产生潜在的健康风险ꎻ5种农作物中的Cr㊁Pbꎬ青菜㊁葱中的Cuꎬ玉米㊁葱㊁大豆㊁青菜中的Ni以及葱㊁大豆㊁莴笋中的Cd均存在潜在的健康风险ꎮ对儿童而言ꎬ除了玉米中的Cd不会对人体产生潜在的健康风险ꎬ其余5种农作物中的Cr㊁Pb㊁Cu㊁Ni和葱㊁大豆㊁青菜㊁莴笋中的Cd均会对儿童产生潜在的健康风险(表10)ꎮ研究区5种农作物TTHQ均大于10.00ꎬ表明这5种农作物均具有慢性毒性风险效应[15]ꎬ其中儿童食用这类农作物产品后的重金属复合风险明显高于成人(成人TTHQ最大值为65.77ꎬ而儿童TTHQ最小值为52.00)ꎬ这与之前的研究结果[40]一致ꎮ就TTHQ值而言ꎬ研究区5种农作物对人体健康所引起的复合风险大小为葱>玉米>大豆>青菜>莴笋ꎬ农作物中重金属造成的慢性毒性效应大小为Cr>Cd>Pb>Ni>Cuꎬ表明暴露人群受重金属危害大小为Cr>Cd>Pb>Ni>Cuꎮ㊀㊀表10㊀㊀农作物重金属的健康风险评价结果类型农作物THQ(Cr)THQ(Pb)THQ(Cu)THQ(Ni)THQ(Cd)TTHQ玉米16.172.820.681.880.3021.85葱53.832.741.343.794.0765.77成人大豆10.943.370.941.373.4720.10青菜12.033.831.051.470.9919.37莴笋5.772.000.580.748.7417.83玉米47.178.231.985.480.8863.73葱157.007.993.9111.0511.88191.82儿童大豆31.929.832.744.0110.1358.61青菜35.0811.183.064.282.8856.48莴笋16.835.831.692.1525.5052.003㊀讨论本研究中ꎬ玉米果穗对Cd的富集能力小于其他4种农作物ꎬ其原因可能是由于玉米根系对重金属Cd吸收和固定能力较强从而限制了Cd向籽粒的转移[39ꎬ41]ꎮ罗绪强等[29]研究表明该垃79㊀第2期㊀㊀㊀㊀赵升ꎬ等:贵阳市高雁垃圾填埋场周边土壤和农作物重金属污染特征及健康风险评价圾填埋场内部土壤中Cd污染已非常严重ꎬCd污染平均值(13.67mg/kg[29])远远超过贵阳市乌当区土壤Cd的平均值(0.33mg/kg[20])ꎮ本研究中所测得的垃圾填埋场周边土壤中Cd的平均值为4.14mg/kgꎬ表明该垃圾填埋场的运行已对其周边土壤产生了严重的影响ꎬ且这一影响还在持续ꎮ研究区土壤中Ni含量和超标率虽不突出ꎬ但在农作物中的富集系数却很高ꎬ特别是在葱和玉米中的富集系数均高于其它4种重金属ꎬ这可能与Ni是农作物生长所必需的微量营养元素有关ꎮ重金属Cd的地球化学活性较强ꎬ相同条件下相较于其他重金属更容易被农作物吸收[8]ꎬ而研究区土壤中Cd的含量远远高于背景值ꎬ这可能是导致农作物受Cd污染严重的主要原因之一ꎮ重金属在农作物组织或器官中的含量ꎬ与重金属元素在土壤中的污染程度㊁性质以及农作物的选择性吸收有关[8ꎬ16ꎬ42-45]ꎮ青菜对重金属的富集能力较强ꎬ对Cu㊁Cd㊁Pb的富集能力均大于其他几种农作物ꎬ表明土壤中Cu㊁Cd㊁Pb向青菜叶中的迁移能力较强ꎬ这是由于叶菜类作物生长周期短ꎬ生长迅速ꎬ蒸腾速率高ꎬ有益于根系吸收重金属向地上部转移[39]ꎮ因此ꎬ应尽量避免在Cu㊁Cd㊁Pb污染的土壤上种植青菜ꎮ铅(Pb)和镉(Cd)具有致癌㊁致畸以及致突变的作用ꎬ低剂量摄入就能损坏人体的内部器官和系统ꎬ严重时可能会危及生命安全[8ꎬ46ꎬ47]ꎬCu㊁Cr和Ni虽然是人体必需或可能必需的微量元素[8ꎬ9]ꎬ但是摄入量过多也会造成人体多功能器官和系统的损伤ꎮ人体健康风险分析表明ꎬ长期食用垃圾填埋场周边的农作物产品存在很大的健康风险ꎬ有必要关注长期暴露人群的健康状况ꎮ本研究虽没有考虑农作物的不可食用部分ꎬ但不可食用部分(如玉米秸秆㊁大豆秸秆等)通常会被加工成动物饲料或就地焚烧还田ꎬ可能会通过食物链再次进入人体或持续污染当地土壤ꎮ综上所述ꎬ结合土壤㊁农作物重金属污染现状ꎬ不建议农户在垃圾填埋场周边种植农作物ꎬ可改种一些非食用的植被ꎮ重金属的污染一般是复合污染ꎬ本研究虽然只涉及重金属Cr㊁Cu㊁Ni㊁Pb㊁Cdꎬ但通过对这5种重金属元素的研究ꎬ足以引起人们对垃圾填埋场周边生态环境安全和健康风险等问题的重视ꎮ4㊀结论(1)研究区农田土壤Cd污染非常严重ꎬCr污染较为严重ꎬCu中度污染ꎬNi和Pb轻度污染ꎬ这5种重金属很可能有相同的来源ꎮCu㊁Cd㊁Pb向青菜叶中的迁移能力较强ꎬ葱㊁莴笋对Cd㊁Ni的富集能力较强ꎬ应尽量避免在重金属污染的土壤上种植蔬菜ꎮ(2)研究区种植的农作物均受到重度污染ꎬ结合土壤重金属污染状况和人群健康风险评价ꎬ不建议农户在垃圾填埋场周边种植农作物ꎮ长期食用垃圾填埋场周边的农作物产品将对人体健康造成很大的危害ꎬ且对儿童健康造成的危害显著高于成人ꎮ(3)垃圾填埋场周边土壤及农作物重金属污染对周边生态环境和居民健康生活已构成严重威胁ꎬ相关部门应该及时关注该地区的生态环境安全和长期暴露人群的健康状况ꎮ参㊀考㊀文㊀献:[1]㊀张颖ꎬ刘方.贵阳市高雁垃圾填埋场渗滤液水质变化及影响评价[J].广西轻工业ꎬ2009(1):92-93ꎬ131. [2]㊀朱水ꎬ申泽良ꎬ王媛ꎬ等.垃圾处理园区周边土壤-地下水重金属分布特征[J].中国环境科学ꎬ2021ꎬ41(9):4320-4332.[3]㊀崔斌ꎬ王凌ꎬ张国印ꎬ等.土壤重金属污染现状与危害及修复技术研究进展[J].安徽农业科学ꎬ2012ꎬ40(1):373-375ꎬ447.[4]㊀葛婳姣.苏州市吴江区农村土壤重金属污染现状调查分析及评价[D].苏州:苏州大学ꎬ2017.[5]㊀谷蕾.高速公路不同通车时间对路旁土壤重金属污染的影响[D].郑州:河南大学ꎬ2007:1-3.[6]㊀黄益宗ꎬ郝晓伟ꎬ雷鸣ꎬ等.重金属污染土壤修复技术及其修复实践[J].农业环境科学学报ꎬ2013ꎬ32(3):409-417. [7]㊀罗绪强ꎬ张桂玲ꎬ阮英慧ꎬ等.雷公山亚高山灌丛常见植物叶片必需大量营养元素化学计量特征[J].广东农业科学ꎬ2018ꎬ45(8):73-80.[8]㊀张桂玲ꎬ罗绪强ꎬ廖艳梅ꎬ等.贵阳市南明河中下游水东段沿岸菜地农作物重金属污染评价[J].山地农业生物学报ꎬ2019ꎬ38(3):56-62.[9]㊀栗利曼ꎬ刘菊梅ꎬ沈渭寿ꎬ等.包头工业区蔬菜重金属富集及人群健康评价[J].中国蔬菜ꎬ2016(1):54-59. [10]李颖慧ꎬ姜小三ꎬ王振华ꎬ等.基于土壤肥力和重金属污染风险的农用地土壤质量综合评价研究 以山东省博兴县为例[J].土壤通报ꎬ2021ꎬ52(5):1052-1062. [11]高琴ꎬ罗绪强ꎬ张桂玲ꎬ等.喀斯特高原退化生态系统不同类型土壤中的几种重金属分布特征[J].贵阳学院学报(自89㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第55卷㊀然科学版)ꎬ2020ꎬ15(2):11-15.[12]SharmaRKꎬAgrawalMꎬMarshallFM.Heavymetalsinvege ̄tablescollectedfromproductionandmarketsitesofatropicalurbanareaofIndia[J].FoodandChemicalToxicologyꎬ2009ꎬ47(3):583-591.[13]HoughRLꎬBrewardNꎬYoungSDꎬetal.Assessingpotentialriskofheavymetalexposurefromconsumptionofhome ̄pro ̄ducedvegetablesbyurbanpopulations[J].EnvironmentalHealthPerspectivesꎬ2004ꎬ112(2):215-221.[14]徐笠ꎬ陆安祥ꎬ田晓琴ꎬ等.典型设施蔬菜基地重金属的累积特征及风险评估[J].中国农业科学ꎬ2017ꎬ50(21):4149-4158.[15]李如忠ꎬ潘成荣ꎬ徐晶晶ꎬ等.典型有色金属矿业城市零星菜地蔬菜重金属污染及健康风险评估[J].环境科学ꎬ2013ꎬ34(3):1076-1085.[16]夏凤英ꎬ李政一ꎬ杨阳.南京市郊设施蔬菜重金属含量及健康风险分析[J].环境科学与技术ꎬ2011ꎬ34(2):183-187. [17]王彦斌ꎬ杨一鸣ꎬ曾亮ꎬ等.甘肃省榆中县菜地土壤与蔬菜中重金属含量及健康风险评估[J].干旱地区农业研究ꎬ2015ꎬ33(6):234-241.[18]王济ꎬ王世杰ꎬ欧阳自远.贵阳市表层土壤中铅的环境地球化学基线研究[J].生态环境ꎬ2007(4):1154-1159. [19]WangJꎬWangSJꎬOuyangZYꎬetal.GeogenicdistributionandbaselineconcentrationsofCuandZninsurficialsoilofGuiyangꎬChina[J].ChineseJournalofGeochemistryꎬ2006ꎬ25(2):152-161.[20]王济ꎬ王世杰ꎬ欧阳自远.贵阳市表层土壤中镉的环境地球化学基线研究[J].环境科学ꎬ2007ꎬ28(6):1344-1348. [21]杨娅ꎬ季宏兵.贵州煤矿区表层土壤微量重金属污染风险评价[J].环境科学与技术ꎬ2015ꎬ38(S2):365-373ꎬ378. [22]张建ꎬ杨瑞东ꎬ陈蓉ꎬ等.贵州喀斯特地区土壤-辣椒体系重金属元素的生物迁移积累特征[J].食品科学ꎬ2017ꎬ38(21):175-181.[23]魏复盛ꎬ陈静生ꎬ吴燕玉ꎬ等.中国土壤环境背景值研究[J].环境科学ꎬ1991ꎬ12(4):12-19ꎬ94.[24]曾希柏ꎬ李莲芳ꎬ梅旭荣.中国蔬菜土壤重金属含量及来源分析[J].中国农业科学ꎬ2007ꎬ40(11):2507-2517. [25]土壤环境质量农用地土壤污染风险管控标准(节选)[J].腐植酸ꎬ2018(4):58-61.[26]宋绵ꎬ龚磊ꎬ王艳ꎬ等.河北阜平县表层土壤重金属对人体健康的风险评估[J].岩矿测试ꎬ2022ꎬ41(1):133-144. [27]管孝艳ꎬ王少丽ꎬ高占义ꎬ等.盐渍化灌区土壤盐分的时空变异特征及其与地下水埋深的关系[J].生态学报ꎬ2012ꎬ32(4):198-206.[28]郭晗ꎬ孙英君ꎬ王绪璐ꎬ等.县域城市土壤重金属空间分布特征及来源解析[J].环境科学学报ꎬ2022ꎬ42(1):287-297.[29]罗绪强ꎬ阙丹丹ꎬ张桂玲ꎬ等.贵阳市高雁城市生活垃圾卫生填埋场土壤Cd㊁Pb㊁Zn㊁Ni污染及评价研究[J].山地农业生物学报ꎬ2013ꎬ32(2):159-163.[30]陈丹丹ꎬ谭璐ꎬ聂紫萌ꎬ等.湖南典型金属冶炼与采选行业企业周边土壤重金属污染评价及源解析[J].环境化学ꎬ2021ꎬ40(9):2667-2679.[31]食品安全国家标准食品中污染物限量:GB2762 2017[J].中国食品卫生杂志ꎬ2018ꎬ30(3):329-340. [32]中华人民共和国国家卫生和计划生育委员会ꎬ国家食品药品监督管理总局.食品安全国家标准食品中铜的测定:GB5009.13 2017[S].2017-10-06.[33]蒋喜艳ꎬ张述习ꎬ尹西翔ꎬ等.土壤-作物系统重金属污染及防治研究进展[J].生态毒理学报ꎬ2021ꎬ16(6):150-160. [34]孟久灵ꎬ张丽娟ꎬ陈棉彪ꎬ等.某废渣填埋场周边土壤-蔬菜重金属污染研究[J].环境科学与技术ꎬ2017ꎬ40(3):182-189.[35]江洪ꎬ张朝晖.贵州晴隆老万场红土型金矿三种藓类植物及其土壤基质的重金属元素测定及相关性分析[J].广西植物ꎬ2007(4):610-615.[36]杨梦昕ꎬ杨东璇ꎬ李萌立ꎬ等.湘江长沙段沿岸常见农作物重金属污染研究 Zn㊁Cu㊁Pb和Cd的富集规律及污染评价[J].中南林业科技大学学报ꎬ2015ꎬ35(1):126-131. [37]张家春ꎬ林绍霞ꎬ张清海ꎬ等.贵州草海湿地周边耕地土壤与农作物重金属污染特征[J].水土保持研究ꎬ2014ꎬ21(3):273-278.[38]毛岭峰ꎬ彭培好ꎬ陈文德.重庆地区主要作物重金属富集特征[J].生态学杂志ꎬ2009ꎬ28(6):1117-1122. [39]成瑾ꎬ袁旭音ꎬ章海燕ꎬ等.云贵地区磷矿分布区农田土壤重金属污染特征及对农产品质量的影响[J].生态与农村环境学报ꎬ2021ꎬ37(5):636-643.[40]谢团辉ꎬ郭京霞ꎬ陈炎辉ꎬ等.福建省某矿区周边土壤-农作物重金属空间变异特征与健康风险评价[J].农业环境科学学报ꎬ2019ꎬ38(3):544-554.[41]陈建军ꎬ于蔚ꎬ祖艳群ꎬ等.玉米(Zeamays)对镉积累与转运的品种差异研究[J].生态环境学报ꎬ2014ꎬ23(10):1671-1676.[42]刘晗ꎬ何腾兵ꎬ党华美.贵州修文土壤-猕猴桃系统重金属富集特征[J].山地农业生物学报ꎬ2017ꎬ36(2):53-56. [43]柳文广.中华畲药基地土壤质量与中草药重金属富集特征研究[J].山地农业生物学报ꎬ2017ꎬ36(6):21-27. [44]谢正苗ꎬ李静ꎬ陈建军ꎬ等.中国蔬菜地土壤重金属健康风险基准的研究[J].生态毒理学报ꎬ2006ꎬ1(2):172-179. [45]张伯尧.兰州市菜地土壤和蔬菜重金属含量及其健康风险评估[D].兰州:甘肃农业大学ꎬ2009:5-7.[46]刘鸿雁ꎬ涂宇ꎬ顾小凤ꎬ等.地球化学高背景农田土壤重金属镉的累积效应及环境影响[J].山地农业生物学ꎬ2018ꎬ37(5):1-6.[47]吴正卓ꎬ刘桂华ꎬ柴冠群ꎬ等.伴矿景天修复镉污染土壤研究进展[J].山地农业生物学报ꎬ2018ꎬ37(6):70-75.99㊀第2期㊀㊀㊀㊀赵升ꎬ等:贵阳市高雁垃圾填埋场周边土壤和农作物重金属污染特征及健康风险评价。

贵阳城区土壤重金属的空间分布特征及污染评价

贵阳城区土壤重金属的空间分布特征及污染评价

贵阳城区土壤重金属的空间分布特征及污染评价张一修;王济;张浩【摘要】以贵阳市区为研究地点,采集贵阳城区工业区、交通区、商业区、居民区、文教区、公园6个类别共89个采样点的表层土壤,分析土壤重金属在不同区域的分布特征,并分析其可能来源。

最后对重金属污染状况进行总体评价。

结果表明:重金属在土壤中已有一定程度的积累,在工业区、商业区、居民区的积累程度比较高。

As的污染较为严重,达警戒水平,Cu、Ni、Zn在居民区的污染比较严重,均达警戒水平,Cu、Ni、Zn在工业区的污染最为严重,达轻度污染以上。

%This study focused on characterization of heavy metals in the soil of the city of Guiyang,89 surface soil samples were collected from 6 land-use types, such as traffic areas, industrial area, commercial area, residential area, education and historical relics, public area. Distribution characterization and possible sources of heavy metals of Hg, Cd, As, Pb, Cr, Cu, Ni and Zn were analysised, and The overall assessment of heavy metals pollution were analysied. The results indicated that the surface soil was contaminated by heavy metals, especially in industrial area, commercial area and residential area. The concentration of As was high and should be paid more attention, the concentration of Cu ,Ni and Zn in residential area was higher and should be paid more attention, however, the concentration of Cu,Ni and Zn in industrial area was highest and above light pollution.【期刊名称】《贵州师范大学学报(自然科学版)》【年(卷),期】2011(029)004【总页数】6页(P20-25)【关键词】重金属;城市土壤;污染评价;贵阳【作者】张一修;王济;张浩【作者单位】贵州师范大学地理与环境科学学院,贵州贵阳550001;贵州省山地资源与环境遥感应用重点实验室,贵州贵阳550001;贵州师范大学地理与环境科学学院,贵州贵阳550001;贵州省山地资源与环境遥感应用重点实验室,贵州贵阳550001;贵州师范大学地理与环境科学学院,贵州贵阳550001;贵州省山地资源与环境遥感应用重点实验室,贵州贵阳550001【正文语种】中文【中图分类】X32土壤重金属污染是指人类活动将重金属带进土壤并累积到一定程度,对土壤生态系统造成损害的现象[1]。

城市土壤重金属污染现状及其生态风险评价

城市土壤重金属污染现状及其生态风险评价

城市土壤重金属污染现状及其生态风险评价随着经济的快速发展和城市化进程的不断加速,城市面积不断扩大,城市化水平不断提高,城市土地利用的强度也越来越大。

城市建设过程中,土地资源的不断推进和利用,也导致了城市土壤重金属污染。

城市土壤重金属污染的影响面广泛,不仅对人类的健康和生命安全产生了一定的威胁,而且还会对城市营造生态环境产生重要的影响。

一、城市土壤重金属污染现状城市土壤重金属是指重金属元素在城市土壤中的积累量超过了浅表土壤中该类元素的含量,这种元素还会有生物、化学、地理学和物理等方面的毒性。

目前,我国城市土壤重金属污染的状况比较严重。

城市土地的使用不规范,工业、交通、垃圾处理等各种行业的产生的废物都是导致城市土壤污染的重要原因。

调查显示,我国大部分城市土壤重金属污染程度都比较严重,表现出污染程度以沿海及工业密集区为重,而内陆城市也逐渐受到污染的影响。

二、生态风险评价城市土壤重金属污染大大降低人类的健康水平,这也需要对其进行生态风险评价。

生态风险评价是指一种量化评价技术,利用有限的数据评价毒物的危险程度和生态风险水平,确保工业受到控制,保护人们的健康。

评价城市土壤的生态风险,需要采取一系列的评价指标、评价标准以及相应的评价方法。

评价指标涉及到土壤级别、土壤环境、土壤重金属含量等方面。

评价标准就是根据土壤重金属特性和污染程度,参考国家和地方政策法规,制定生态风险标准。

评价方法包括物理、化学、数学和地理等多个方面,这些方法可以帮助人们了解土壤污染的程度和对人类健康和生态环境的影响。

通过生态风险评价,可以对城市土壤重金属进行有效的防治。

三、防治城市土壤重金属污染城市土壤重金属污染治理需要深入评估污染情况,制定系列的污染防治手段。

首先,需要增强立法力度,完善相应的法律法规,加强对城市土壤重金属污染的监督和控制。

其次,需要从源头上进行防治措施,加强工业污染防治,加大废弃物的收集和处理力度,减少垃圾的堆放量,以减少城市土壤的污染。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

hazard index method by Hakanson. The result indicated that the contents of heavy metals in soil in the central city were
quite different,the contents of heavy metals in the industrial area were relatively high,and in the commercial area were
污染指数法和综合污染指数法[1,3]。 我国于 1995 年 颁 布 施 行 了 土 壤 环 境 质 量 标 准
( GB15618-1995) ,该标准把土壤环境质量分为了 3 个等级。国内对土壤重金属污染多采用 2 类标准,主 要适用于农田、蔬菜地、果园、牧场等。为了能准确地 反映研究区土壤重金属污染状况,本研究选用土壤环 境质量 2 级标准[10,11]。综合污染指数全面反映了各 污染物对土壤污染的不同程度,同时又突出高浓度对 土壤环境质量的影响,因此用综合污染指数评定和划 分土壤质量更为客观。本研究参照中华人民共和国 土壤环境 质 量 标 准[11],选 用 单 因 子 污 染 指 数 法 分 级 标准和多项综合污染指数法分级标准[1,3]。
由于各种因素的影响,城市土壤具有混杂性的特 征,本 研 究 在 贵 阳 市 代 表 性 功 能 区———工 业 区、商 业 区、行政区、文教区、居民区选取 25 个采样点( 图 1) , 每个采样点分层采集 0 ~ 10 cm、10 ~ 20 cm 表层土壤 5 个样品。土壤采样按多点混合法( 同一地点采 3 ~ 5 个样品,就地混合为 1 个样品) ,土壤样品自然风干, 剔除样品中 的 植 物 根 系、有 机 残 渣 以 及 可 见 侵 入 体, 用木质工具碾碎并用玛瑙研钵研磨,分别过 20 目和 100 目尼龙筛,备用。
* 基金项目: 国家自然科学基金项目( 3937055,39670586) ; 陕西省软科学项目( 2003KR02) 收稿日期: 2010-09-08; 修订日期: 2010-12-20
6
城市环境与城市生态 24 卷 3 期 2011 年
点,资源丰富,能源充足,自然环境得天独厚。年均气 温 15. 3 ℃ ,年日照时数 1 353 h,年降雨量1 196. 9 mm, 无霜期 270 d。土壤类型有黄壤、石灰土、水稻土和少 量紫色土。辖 6 个区( 云岩区、南明区、花溪区、乌当 区、白云区、小河区) ,3 个县( 开阳县、修文县、息烽县) , 1 个县级市( 清镇市) 。人口约 390 万,其中非农业人口 250 万,本研究主要集中在云岩区和南明区 2 个区。 1. 2 样品的采集
lowest value was on alert; the other three functional areas were lightly polluted. From the single pollution index,the
industrial,commercial,and administrative areas were mainly As- based,the residential area was mainly Hg- based,
YU Fei,XIAO Ling,KANG Miao-miao,JI Fu-rong,ZHU Yan
( College of Tourism and Environmental Sciences,Shaanxi Normal University,Xi'an 710062,China)
Abstract: At the five functional areas in Guiyang City,namely,industrial,commercial,administrative,cultural and
while heavy metal pollution in soil in the cultural and educational area was lower than the stipulated pollution level.
Ecological risk index with the value of 148. 01 showed that Hg was the main factor to cause potential ecological hazard,
化学特征具有重要的意义[1-4]。
1 材料与方法
1. 1 研究区域概况 贵阳市位于贵州省中部的云贵高原东斜坡地带,
地处东经 106°07' ~ 107°17',北纬 26°11' ~ 27°22' 之 间,属东部平 原 向 西 部 高 原 的 过 渡 地 带,地 形 地 貌 多 样,海拔高,纬度低,具有亚热带湿润温和型气候的特
因子污染指数来看,工业区、商业区、行政区的土壤重金属污染主要以 As 为主,居民区的土壤重金属污染以 Hg 为主,而
文教区土壤中各重金属尚未达到污染级别。土壤中重金属存在强度生态危害,其潜在生态危害综合指数为 RI =
148. 01,潜在生态危害的重金属主要是 Hg,居民区土壤重金属污染生态危害程度最强。
为了进一步反映土壤环境中不同污染物和多种 污染物的综合影响,本研究应用 Hakanson 潜在生态 危害 指 数 法[2],以 贵 州 省 土 壤 背 景 值[9] 作 为 参 比 值, 结合 Hakanson 潜在生态危害评价分级标准[2,3],对贵 阳市中心城区土壤重金属潜在生态风险进行评价。
2 结果与分析
关键词:重金属污染; 城市土壤; 功能区; 土壤环境质量评价; 潜在生态危害
中图分类号:X825
文献标识码:A
文章编号:( K)11088( 原 1002-1264) (2011)03-0005-04
Heavy Metal Pollution and Its Assessment in Urban Soil of Guiyang City
ecological hazard
土壤是人类赖以生存和发展的重要资源,城市土 壤 是 城 市 环 境 的 一 个 重 要 的 组 成 部 分,在 城 市 环 境 内,各种各样 的 人 类 活 动,将 大 量 的 重 金 属 带 入 表 层 土壤中,造成这些元素在土壤中的积累,并通过大气、 水体或食物链进而直接或间接地威胁着人类的健康 甚至生命。随 着 城 市 发 展,环 境 压 力 增 大,加 强 对 城 市土壤中重金属污染研究具有迫切性和重要性。因 此,研究城市内表层土壤重金属污染元素的环境地球
and the residential area had the highest ecological hazard.
Key words: heavy metal pollution; urban soil; functional zone; assessment of soil environment quality; potential
按照国家标 准,结 合 贵 阳 市 实 际,选 取 了 该 市 中 心城区影响较大的 5 种重金属元素( Hg、As、Cu、Cr 和 Zn) 作为该市的土壤评价因子。评价方法采用单因子
2. 1 贵阳市中心城区土壤重金属累积状况 贵阳市中心城区土壤重金属的含量变化较大,其
平均含量均高于贵州省的土壤环境背景值。贵阳市 中心城区 5 种重金属的含量由高到低的排序为 Zn > Cr > Cu > As > Hg,其 中,Hg 的 含 量 为 0. 01 ~ 2. 77 mg / kg,平均值为 0. 49 mg / kg,最高含量为最低含量的 277 倍,最 高 值 出 现 在 居 民 区; As 的 含 量 为 0. 26 ~ 48. 94 mg / kg,平均值为 20. 51 mg / kg,最高含量是最 低含量的 188 倍,最高值出现在工业区; Cu 的含量为 0. 97 ~ 195. 76 mg / kg,平均值 58. 78 mg / kg,最高含量 为最低含量的 202 倍,最高值出现在居民区; Cr 的含 量为 2. 98 ~ 178. 96 mg / kg,平均值为 83. 01 mg / kg,最 高含量为最低含量的 60 倍,最高值出现在工业区; Zn 的含 量 为 4. 90 ~ 397. 47 mg / kg,平 均 值 为 155. 58 mg / kg,最高含量为最低含量的 81 倍,最高值出现在 工业区。区域内有明显的重金属积累,Hg、As、Cu、Cr、 Zn 的平均含量分别为贵州省背景值的 3. 13 倍、0. 99 倍、1. 80 倍、1. 02 倍和 1. 36 倍,由此看出以 Hg 的积 累较为明显。
摘要:以贵阳市中心城区五大功能区( 工业区、商业区、行政区、文教区、居民区) 的土壤为对象,研究土壤中重金属
( Hg、As、Cu、Cr 和 Zn) 污染的特征,采用单因子污染指数和内梅罗( N. L. Neiow) 综合污染指数法对土壤重金属污染现
状进行了检测与初步评价,Hakanson 潜在生态危害指数评价法评价了土壤重金属的潜在生态危害,其结果表明: 贵阳市
从各污染元素平均含量的功能区分布来看 ( 图 2) 。土壤中 Hg、As、Cu、Cr、Zn 的最高含量分别出现 在居民区、工 业 区、居 民 区、工 业 区 和 工 业 区。其 中 Hg 的最高含量较小,为 1. 303 mg / kg,这与贵阳市中
中心城区土壤重金属含量差异较大,工业区各重金属污染元素的含量相对较高,商业区各重金属最高,Hg 的含量最低。土壤重金属多因子综合污染指数为 1. 95,处于轻度污染状态,以居民
区的污染指数最高,污染程度最为严重,文教区污染最轻,处于警戒状态,其余 3 个功能区均处于轻度污染水平。从单
relatively low. Comprehensive pollution index with the value of 1. 95 indicated the soil was lightly polluted by heavy
相关文档
最新文档