图论(Graph Theory)学习笔记4

合集下载

离散图论知识点总结

离散图论知识点总结

离散图论知识点总结一、基本概念图(Graph)是离散数学中的一个重要概念,它由顶点集合V和边集合E组成。

一般用G (V,E)来表示,其中V={v1,v2,…,vn}是有限非空集合,E是V中元素的无序对的集合。

图分为有向图和无向图。

无向图中的边是无序的,有向图中的边是有序的。

图中存在一些特殊的图,比如完全图、树、路径、回路等。

二、图的表示方法1. 邻接矩阵邻接矩阵是一种常见的图的表示方法,它使用一个二维数组来表示图的关系。

对于一个n 个顶点的图,邻接矩阵是一个n*n的矩阵A,其中A[i][j]表示顶点i到顶点j之间是否存在边。

对于无向图,A[i][j]=1表示顶点i与顶点j之间存在边,A[i][j]=0表示不存在。

对于有向图,A[i][j]=1表示i指向j的边存在,A[i][j]=0表示不存在。

2. 邻接表邻接表是另一种常见的图的表示方法。

它将图的信息储存在一个数组中,数组的每个元素与图的一个顶点相对应。

对于每个顶点vi,数组中储存与该顶点邻接的顶点的信息。

邻接表可以用链表或者数组来表示,链表表示的邻接表比较灵活,但是在查找某个边的相邻顶点时需要遍历整个链表。

三、图的性质1. 度图中每个顶点的度是与其相邻的边的数目。

对于无向图,顶点的度等于与其相邻的边的数目;对于有向图,则分为入度和出度。

2. 连通性对于无向图G,若图中任意两个顶点都有路径相连,则称图G是连通的。

对于有向图G,若从任意一个顶点vi到任意一个顶点vj都存在路径,则称G是强连通的。

3. 路径和回路路径是指图中一系列的边,连接图中的两个顶点;回路是指起点与终点相同的路径。

路径的长度是指路径中边的数目。

4. 树和森林一个无向图,如果是连通图且不存在回路,则称为树。

一个无向图,若它不是连通图,则称为森林。

四、图的常见算法1. 深度优先搜索(DFS)深度优先搜索是一种用于图的遍历的算法,它从图的某个顶点vi出发,访问它的所有邻接顶点,再对其中未访问的顶点继续深度优先搜索。

图论知识点

图论知识点

图论知识点摘要:图论是数学的一个分支,它研究图的性质和应用。

图由节点(或顶点)和连接这些节点的边组成。

本文将概述图论的基本概念、类型、算法以及在各种领域的应用。

1. 基本概念1.1 节点和边图由一组节点(V)和一组边(E)组成,每条边连接两个节点。

边可以是有向的(指向一个方向)或无向的(双向连接)。

1.2 路径和环路径是节点的序列,其中每对连续节点由边连接。

环是一条起点和终点相同的路径。

1.3 度数节点的度数是与该节点相连的边的数量。

对于有向图,分为入度和出度。

1.4 子图子图是原图的一部分,包含原图的一些节点和连接这些节点的边。

2. 图的类型2.1 无向图和有向图无向图的边没有方向,有向图的每条边都有一个方向。

2.2 简单图和多重图简单图是没有多重边或自环的图。

多重图中,可以有多条边连接同一对节点。

2.3 连通图和非连通图在无向图中,如果从任意节点都可以到达其他所有节点,则称该图为连通的。

有向图的连通性称为强连通性。

2.4 树树是一种特殊的连通图,其中任意两个节点之间有且仅有一条路径。

3. 图的算法3.1 最短路径算法如Dijkstra算法和Bellman-Ford算法,用于在加权图中找到从单个源点到所有其他节点的最短路径。

3.2 最大流最小割定理Ford-Fulkerson算法用于解决网络流中的最大流问题。

3.3 匹配问题如匈牙利算法,用于解决二分图中的匹配问题。

4. 应用4.1 网络科学图论在网络科学中有广泛应用,如社交网络分析、互联网结构研究等。

4.2 运筹学在运筹学中,图论用于解决物流、交通网络优化等问题。

4.3 生物信息学在生物信息学中,图论用于分析蛋白质相互作用网络、基因调控网络等。

5. 结论图论是数学中一个非常重要和广泛应用的领域。

它不仅在理论上有着深刻的内涵,而且在实际应用中也发挥着关键作用。

随着科技的发展,图论在新的领域中的应用将会不断涌现。

本文提供了图论的基础知识点,包括概念、图的类型、算法和应用。

图论(Graph Theory)

图论(Graph Theory)

第一章 图形理论图形理论有明确的起始点,由瑞士数学家尤拉(Leonhard Euler, 1707-1783)于1736年发表的论文开始。

其研究的主要论点,乃在于解决当时的热门问题,即有名K önigsgerg 的七桥问题。

1.1 定义与例题定义1.1:令 V 为非空集合,且E V V ⊆⨯. 序对(),V E 称为(V 上)有向图(directedgraph or digraph),其中 V 为顶点(vertex)或节点(node)的集合,E 为边(edge)的集合。

我们记(),G V E =表示此图形。

图1.1为{}, , , , V a b c d e =上有向图的例子,其中()()()(){}, , , , , , , E a a a b a d b c =。

边的方向由边上的有向箭头表示,如图所示对任意边,如(), b c ,我们说此边接合(incident)顶点, b c ;称b 邻接至(adjacent to) c ;或c 邻接自(adjacent from) b 。

此外, b 称为边的原点(origin)或源点(source), c 称为终点(terminus or terminating vertex)。

边(), a a 为一个循环(loop), 且顶点e 不与任何边接合,称为孤立点(isolated)。

若不考虑边的方向,此图称为无向图(undirected)。

定义1.2:令, x y 为无向图(), G V E =的顶点(不一定相异)。

G 中的X Y -路(x y -walk)是指选自G 的顶点及边的有限交错序列。

01122311,,,,,,...,,,,n n n n x x e x e x e e x e x y --==其中由顶点 1x 开始,终止于顶点y ,n 个边{}1,,1i i i e x x i n -=≤≤路的长度(length)是指该条路的边数n 。

图论笔记

图论笔记

基本概念图(graph)是数学关系的表示,由非空节点集V和有限边集E组成。

不同节点组成的无序对称作边(edge)。

设图G,若令V={v1,v2,...,v n}是包含n个节点的集合,其m条边的集合E={e1,e2,...,e m},其中,每一条边都是集合V的二元素子集{v i,v j},简记为v i v j或v j v i。

集合V(G)中的基数n表示图的阶(rank)。

集合E(G)中的基数m表示图的规模(size)。

若v i∈V(G),v j∈V(G),且v i v j组成的节点对v i v j∈E(G),或者说v i v j 是图G的边,则称v i和v j邻接(adjacency),否则,称v i和v j不邻接(unadjacency)。

结点的度(degree)是指与v邻接的节点数,记作deg(v),若特指图G的结点v的度就写作deg G(v)。

边v i v j与v i和v j相关联(relevancy)。

度为零的点称作孤立点(isolated point)。

度为1的结点称为端结点(end point),若是一个很像树的图,度为1的结点又称为叶子(leaf)。

图G的最小度(min degree)是指所有结点中的最小度数,记作δ(G)。

图G的最大度(max degree)是指所有结点中的最大度数,记作Δ(G)。

若图G的所有结点有相同的度数,那么δ(G)=Δ(G),图G称为正则图(regular graph)。

若图G的所有结点的度都是r,则图G称为r-正则图(r-regular graph)。

基本定理欧拉定理在任何图中,结点度的总和等于边数的两倍。

推论在任何图中,结点度的总和是一个非负偶数。

图论(Graph Theory)学习笔记2

图论(Graph Theory)学习笔记2

图论学习笔记(2)基本概念设图G,u∈V(G),v∈V(G),u-v通道(u-v path)是指从结点u出发,经过一个交互的结点和边的序列,最后回到结点v的路径,其中连续的结点和边是关联的。

通道的长度(length)是指通道经过边的数量。

若一个通道中没有重复的边,则称该通道为迹(trace)。

(注:迹中的结点是可以重复的)若迹开始和结束于相同的结点,则称该迹是闭的(closed),称该迹为回路(loop)。

若一个通道中没有重复的节点,则称该通道为路(pathway)。

若u∈V(G),v∈V(G),则一个将u和v连接起来的路称为u-v路(u-v pathway)。

注:显然,如果结点不重复,则边必然不重复,所以,一个路也是迹,一个闭路称为圈(circle)。

若图中的任意两个结点间都存在路,则称此图为连通图(connected graph),否则,称之为非连通图(disconnected graph)。

在连通图中,各个分支称为连通分量,严格来说,图的连通分量指的是极大连通子图([unknown])。

若u∈V(G),v∈V(G),则节点u和v之间的测地线路是指长度最短的u-v路,简称测地线(geodesic)。

注:当你要在最短时间内从u到达v,测地线路是你的最佳选择。

途中可能存在多条测地线路。

测地线路也常被称为最短路。

图G的结点集V(G),边集E(G)。

当图H满足结点集V(H)的子集,边集E(H)是E(G)的子集,边界对每一条边e=uv∈E(H),其中u∈V(H),v∈V(H),则称图H是G的子图(subgraph),通常称图G为图H的超图(supergraph)。

定义结点都给以标号的图称为标记图(labeled graph),否则,称为非标记图(unlabeled graph)。

注:对标记图G,若S⊆V(G),并且在标记图G中共有k条边连接了S中的所有结点,那么,G的以S为结点集的子图数为2k。

若V(H)=V(G),则称子图H是图G的生成子图(spanning subgraph)。

图论常考知识点总结

图论常考知识点总结

图论常考知识点总结1. 图的基本概念图是由顶点集合和边集合构成的。

顶点之间的连接称为边,边可以有方向也可以没有方向。

若图的边没有方向,则称图为无向图;若图的边有方向,则称图为有向图。

图的表示方式:邻接矩阵和邻接表。

邻接矩阵适合存储稠密图,邻接表适合存储稀疏图。

2. 图的连通性连通图:如果图中任意两点之间都存在路径,则称该图是连通图。

强连通图:有向图中,任意两个顶点之间都存在方向相同的路径,称为强连通图。

弱连通图:有向图中,去掉每条边的方向之后,所得到的无向图是连通图,称为弱连通图。

3. 图的遍历深度优先搜索(DFS):从起始顶点出发,沿着一条路往前走,走到不能走为止,然后退回到上一个分支点,再走下一条路,直到走遍图中所有的顶点。

广度优先搜索(BFS):从起始顶点出发,先访问它的所有邻居顶点,再按这些邻居顶点的顺序依次访问它们的邻居顶点,依次类推。

4. 最短路径狄克斯特拉算法:用于计算图中一个顶点到其他所有顶点的最短路径。

弗洛伊德算法:用于计算图中所有顶点之间的最短路径。

5. 最小生成树普里姆算法:用于计算无向图的最小生成树。

克鲁斯卡尔算法:用于计算无向图的最小生成树。

6. 拓扑排序拓扑排序用于有向无环图中对顶点进行排序,使得对每一条有向边(u,v),满足排序后的顶点u在顶点v之前。

以上就是图论中一些常考的知识点,希望对大家的学习有所帮助。

当然,图论还有很多其他的知识点,比如欧拉图、哈密顿图、网络流等,这些内容都值得我们深入学习和探讨。

图论在实际应用中有着广泛的应用,掌握好图论知识对于提升计算机科学和工程学的技能水平有着重要的意义。

图论第四章

图论第四章

15
Graph Theory
Example of Blocks
4.1.17
If H is a block of G, then H as a graph has no cut-vertex, but H may contain vertices that are cut-vertices of G.
Hence any path in Bi from every vertex in Bi-{v} to any in V(B1)∩V(B2)-{v} is retained. Since the blocks have at least two common vertices, deleting a single vertex leaves a vertex in the intersection. Paths from all vertices to that vertex are retained, so B1∪B2 cannot be disconnected by deleting one vertex.
2
Graph Theory
Example: Connectivity of Kn
4.1.2
Because a clique has no separating set, we need to adopt a convention for its connectivity.
– This explains the phrase “or has only one vertex” in Definition 4.1.1.
1
Proof: The edges incident to a vertex v of minimum degree form an edge cut; hence ’(G) (G) . It remains to show that (G) ’(G).

图论(Graph Theory)学习笔记3

图论(Graph Theory)学习笔记3

图论学习笔记(3)基本概念图G中的结点u与v相邻接当且仅当它们在图H中的相应结点也邻接,则称图G与图H是同构的(isomorphic),记作G≈H,否则,称两者为非同构的(nonisomorphic)。

用函数描述同构:图G与图H同构,即存在一个一一映射函数 f : V(G) →V(H),此时,图G中任何结点对u和v邻接当且仅当f(v)和f(u)在图H中邻接。

函数f 称作从G到H的同构函数(isomorphic function)。

相关推论:令函数 f : V(G) →V(H)为图G与图H的同构函数,那么,对任意结点u∈V(G),都有deg(u)=deg(v),换句话说,如果两个图同构,则对应的结点有相同的度数。

设图G与H同构,同构函数为 f : V(G) →H(G)。

若在图G中,结点v1与v2间的测地线为v1,v2,v3,...,vk,则在图H中,f(v1),f(v2),f(v3),...,f(vk)是结点f(v1)与f(vk)间的测地线。

含n个结点的图G的度序列(degree sequence)是指按照节点度数排列的n-元非递增序列。

若一个非负整数的非递增序列S可以表示某个图的度序列,则称序列S是可绘的。

注:非递增序列可绘⇒图的结点度数之和是非负偶数。

相关算法:可绘图度序列的判定算法从序列S中删除第一个数k。

如果S的第一个数后的k个数都大于等于1,则将这k个数分别都减去1得到新序列S';否则,停止,得出元序列不可绘图的结论。

若S'全是0,停止,得原序列为可绘图。

将步骤2得到的序列S'重新排序,得到非递增序列S*。

令S=S*,转不骤1。

图常量是指根据图的某个性质定义的函数,即同构图将具有相同的函数值。

注:如果f 是图常量,而f(G) ≠f(H),则图G于图H不同构。

用来说明图是否同构的一些量:结点个数连通分量个数边数度序列具有给定唯一度数结点对间的测地线长度图中的最长路具有唯一度数结点的邻接点的度基本定理定理3.1 设S是由以上算法得到的序列,那么当且仅当S'是可绘图序列时,S是可绘图序列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图论学习笔记(4)
基本概念
并:若图G与图H不相交,则G与H的并G∪H是一个新的图,它的结点集V(G∪H) = V(G)∪V(H),边集E(G∪H) = E(G)∪E(H),因此,G∪H是由图G和图H的副本组成。

和:两个不相交的图G与H的和G+H是指在G∪H的基础上,增加图G的每个结点与图H 的每个结点相连接得到的边。

当n ≥3时,轮W1,n是指K1与Cn的和,即W1,n=K1+Cn。

对图G1,G2,G3,...,Gk的序列和(sequence join)G1+G2+G3+...+Gk是在每个图的副本基础上,再增加连接图Gi和Gi+1任意结点的边,其中1 ≤i ≤k-1。

边的删除:
若要删除图中的边,仅删除边即可,不删除与之关联的结点。

若e是图G的一条边,则G-e是指从图G中删除e。

结点的删除:若v是图G的结点,则G-v是指从图G中删除结点v,并将所有与结点v相关联的边删除。

图G的补图满足V() = V(G),并且当且仅当uv不属于E(G)时,uv∈E(G)。

当且仅当图G与其补图同构时,称图G为自补图。

超立方体Qn是递归定义的(即在定义了第一个之后,每一个超立方体是由它前一个构造得到的),定义如下:Q1=K2,Qn=K2×Qn-1。

注:|V(Qn)|=2n
网格(grid):n-网格M(a1,a2,...,an)是由阶数分别为a1,a2,...,an的路的笛卡尔积构成,即M(a1,a2,...,an)=Pa1Pa2,...,Pan。

对任意图G,线图L(G)的结点集是由图G的边组成。

边收缩:设uv是图G的一条边,将结点u,v去掉,并将于这两个结点相关联的边也去掉,然后增加一个结点uv*,uv*与原来和u,v两结点相邻接的结点邻接,如此得到新图G/uv。

基本定理
定理4.1 非连通图的补图是连通图。

定理4.2 若图G为自补图,则它的阶n一定可以表示为4k或者4k+1的形式,其中k为非负整数,且图G有n(n-1)/4条边。

定理4.3
设图G和H的结点集分别为{u1,u2,...,um}和{v1,v2,...,vn},它们的笛卡尔积极做G×H,读作“G叉乘H”,其结点集是由标记(i,j)的mn各节点组成,其中1≤i≤m,1≤j≤n,当且仅当满足下面两条件之一时,(i,j)和(h,k)相邻接:
i=h并且vj和vk在图H中邻接;
j=k并且ui和uh在图G中邻接。

注:
对任意的图G和H,G×H和H×G是同构的,只是标记不同。

对任意的图G、H和K,笛卡尔积满足结合律,即(G×H)×K=G×(H×K)。

相关文档
最新文档