Ultrasonic removal of heavy metals from waste oils

合集下载

冶金专业英语词汇(U-Z)

冶金专业英语词汇(U-Z)

冶金专业英语词汇(U-Z)冶金专业英语词汇(U-Z)冶金专业英语词汇(U-Z)u bar 槽钢u forming 弯成u形u ing 弯成u形u notch u形缺口u press u形压弯机u tube manometer u形管压力计u tube pressure gage u形管压力计uhp electric arc furnace 超高功率电炉ullmannite 锑硫镍矿ulrichite 方铀矿ultimate analysis 元素分析ultimate deformation 极限形变ultimate strength 极限强度ultimate tensile strength 极限抗强度ultimate tensile stress 极限拉伸应力ultrafine powder 超细粉ultrahigh strength steel 超高强度钢ultralight alloy 超轻合金ultramicroscope 超显微镜ultrasonic cleaning 超声波清洗ultrasonic drawing 超声拉拔ultrasonic echo method 超声波回声法ultrasonic flaw detector 超声波探伤器ultrasonic inspection 超音波探伤法ultrasonic reflectoscope 超声波探伤器ultrasonic thickness gage 超声波测厚仪ultrasonic wave 超声波ultrasonic welding 超声波焊接ultrasonics 超声波学ultraviolet rays 紫外线umklapp transformation 反相变unburned pellets 未焙烧球团矿unburned refractory 未烧耐火材料uncoated electrode 裸焊条uncoiler 开卷机uncoiling 开卷uncombined carbon 游离碳underannealing 不完全退火underbead crack 焊道下裂纹undercooling 过冷undercut 底部沟槽underfilling 未充满underground leaching 地下浸出underhardening 欠热淬火undersintering 欠烧结undersize powder 筛下粉末underwater cutting 水下切割unequal angle 不等边角钢unequal angles 不等边角钢unequal draft 不均匀压下unfilled section 未充满的断面unfired pellets 冷固结球团矿uniaxial compression 单轴压缩uniaxial crystal 单轴晶体uniaxial tension 单轴拉伸unidirectional freezing 单向凝固unidirectional solidification 单向凝固unionmelt welding 埋弧自动焊unit cell 单位晶胞unit cell vector 点阵矢unit dislocation 单位位错unit load 单位负载unit metal consumption 金属单位消耗unit power 动力单位unitary system 一元系unitemper mill 双二辊式平整机universal beam mill 万能式钢梁轧机universal coiler 通用卷取机universal coupling 万向联轴节universal indicator 通用指示剂universal mill 万能轧机universal plate 齐边中厚板universal rolling 万能轧机上轧制universal slabbing mill 万能扁捧轧机universal spindle coupling 万向联轴节universal stand 万能轧机机座universal testing machine 万能试验机unmixing 分层unnotched specimen 无切口试样unprepared scrap 未选废金属unrestricted spread 自由宽展unshielded arc welding 无保护电弧焊unslaked lime 生石灰unstable equilibrium 不稳定平衡upcut shears 下切式剪切机updraft 向上通凤updraught 向上通凤upgraded ore 精矿upgrading 选矿uphand welding 仰焊uphill casting 底注uphill diffusion 富集扩散uphill pouring 底注uphill welding 上向斜焊upper bainite 上贝茵体upper critical cooling rate 上部临界冷却速率upper punch 上冲头upper yield point 上屈服点upright converter 竖式吹炉upset 镦锻upset forging 顶锻upset test 顶锻试验upset tube 镦粗管upset welding 电阻对接焊upsetter 顶锻机upsetting 顶锻upsetting machine 顶锻机upsetting press 镦头机uptake 垂直管道;上升道upward welding 上行焊uraconite 土硫铀矿uranate 铀酸盐uranic acid 铀酸uranic oxide 三氧化铀uraninite 沥青铀矿uranium 铀uranium base alloy 铀基合金uranium carbide 碳化铀uranium compound 铀化合物uranium dioxide 二氧化铀uranium hexafluoride 六氟化铀uranium lump 铀块uranium nitrate 硝酸铀uranium oxalate 草酸铀uranium reactor 铀反应堆uranium rod 铀棒uranium slug 铀块uranium tetrafluoride 四氟化铀uranium trioxide 三氧化铀uranium yellow 铀黄uranophane 硅钙铀矿uranopilite 铀钙矿uranospatite 水磷铀矿uranospherite 纤铀铋矿uranospinite 砷钙铀矿uranothallite 铀碳钙石uranothorite 方铀钍矿uranotile 硅钙铀矿uranouranic oxide 八氧化三铀uranous oxide 二氧化铀uranous uranic oxide 八氧化三铀uranyl 铀酰uranyl nitrate 硝酸铀酰uranyl phosphate 磷酸氢铀酰uranyl sulfate 硫酸铀酰used sand 旧砂useful volume 有效容积utilization degree 利用率uvanite 钒铀矿uvarovite 钙铬榴石uvarowite 钙铬榴石v belt v形皮带v belt drive v形皮带传动v belt transmission v形皮带传动v notch v 形缺口vacancy 空位vacancy cluster 空位团vacancy condensation 空位凝聚vacancy diffusion 空位扩散vacancy loop 空位环vacancy ring 空位环vacancy source 空位源vacuometer 真空计vacuum 真空vacuum annealing 真空退火vacuum arc decarburization process 电弧真空脱碳法vacuum arc double electrode remelting process 双电极式电弧真空重熔法vacuum arc furnace 真空电弧炉vacuum arc remelting 真空电弧重熔vacuum arc remelting process 真空电弧重熔法vacuum carbonitriding 真空碳氮化vacuum casting 真空铸造vacuum chamber 真空室vacuum converter 真空转炉vacuum decarburization 真空脱碳vacuum degassing 真空脱气vacuum deposition 真空淀积vacuum desiccator 真空干燥器vacuum diffusion pump 扩散真空泵vacuum distillation 真空蒸馏vacuum drier 真空干燥器vacuum drying 真空干燥vacuum etching 真空腐蚀vacuum evaporation 真空蒸发vacuum extrusion 真空挤压vacuum filter 真空过滤器vacuum filtration 真空过滤vacuum furnace 真空炉vacuum fusion method 真空溶化法vacuum gage 真空计vacuum heat treatment 真空热处理vacuum heating 真空加热vacuum impregnating 真空浸渍vacuum impregnation 真空浸渍vacuum induction furnace 真空感应炉vacuum induction melting 真空感应熔炼vacuum ladle 真空铸罐vacuum manometer 真空计vacuum melted steel 空熔炼钢vacuum melting 真空熔炼vacuum metal 真空熔炼金属vacuum metallization 真空金属喷镀vacuum metallizing 真空金属喷镀vacuum metallurgy 真空冶金vacuum nitriding 真空渗氮vacuum oxygen decarburization converter vod转炉vacuum oxygen decarburization process 真空氧气脱碳法vacuum plating 真空电镀vacuum process 真空法vacuum pump 真空泵vacuum refining 真空精炼vacuum rolling mill 真空轧机vacuum sintering 真空烧结vacuum slag cleaning 真空除渣vacuum system 真空系统vacuum tempering 真空回火vacuum treatment 真空处理vacuum treatment installation 真空处理装置vacuum vaporizer 真空蒸发器vad process 电弧真空脱碳法vader process 双电极式电弧真空重熔法valence 原子价valence band 价带valence bond 价键valence electron 价电子valence forces 原子价力valence linkage 价键valency 原子价valentinite 锑华valve 阀valve reversal 阀倒转valve steel 阀钢van der waals bond 范德瓦尔斯引力van der waals force 范德瓦尔斯引力vanadate 钒酸盐vanadic acid 钒酸vanadic anhydride 钒酸酐vanadinite 钒铅矿vanadium 钒vanadium alloy 钒合金vanadium bronze 钒青铜vanadium chloride 氯化钒vanadium oxide 氧化钒vanadium slag 钒渣vanadium steel 钒钢vane pump 轮叶泵vanner 淘矿机vanoxite 复钒矿vapor 蒸汽vapor blasting 蒸汽喷砂清理vapor deposition 气相淀积vapor phase 气相vapor plating 蒸发镀层vapor pressure 蒸汽压力vapor pressure curve 蒸汽压曲线vaporization 蒸发vaporization heat 蒸发热vaporization point 蒸发温度vaporizer 蒸发器var 真空电弧重熔var process 真空电弧重熔法variable crown roll 连续改变辊凸度的轧辊variable resistance 可变电阻variscite 磷酸铝石vat 槽vault 拱顶vc roll 连续改变辊凸度的轧辊vector 向量vector product 向量积vein gold 山金vein tin 脉锡veining 亚晶界组织velocity constant 速度常数velocity distribution 速度分布velocity head 速度头velocity of transformation 转变速度vent 通气孔vent pipe 通风管vent wire 通气针ventilation 通风ventilator 通风机venting quality 透气性venturi port 文丘里式口venturi scrubber 汾丘里管除尘器venturi tube 文丘里管verdigris 铜绿vermiculite 蛭石vertical continuous caster 立式连铸机vertical downward welding 向下立焊vertical drawn out and bending machine 立弯式连续铸造机vertical furnace 竖炉vertical mold 垂直结晶器vertical position 立焊位置vertical retort 竖式蒸馏罐vertical retort process 竖罐蒸馏法vertical roll 立辊vertical upward welding 向上立焊vertical welding 立焊very fine drawing 极细拉拔vesicular structure 多孔结构vessel mouth 转炉炉咀vesuvian 符山石vesuvianite 符山石vibrating feeder 振动式给料机vibrating screen 振动筛vibration 振动vibration pickling 振动酸洗vibration sifter 振动筛vibrator 振动器vibratory compaction 振动成型vibratory mill 振动球磨机vickers hardness 维氏硬度vickers hardness number 维氏硬度值vickers hardness test 维氏硬度试验virgin aluminum 原铝virgin iron 天然铁virgin sulfur 自然硫viscoelasticity 滞弹性viscometer 粘度计viscometry 粘度测定法viscosity 粘性viscous flow 粘滞怜viscous fluid 粘性铃viscous glide 粘性滑移viscous resistance 粘滞阻力visual examination 表观检查visual inspection 目视检查vitallium 维塔留姆耐蚀耐热合金vitreous coating 玻璃涂覆vitreous silica 玻璃状石英vitrification 玻璃化vitriol 硫酸盐vivianite 蓝铁矿vod converter vod转炉vod process 真空氧气脱碳法voglite 铜菱铀矿void 孔穴voids 结点间volatile matter 挥发物volatile solvent 挥发性溶剂volatility 挥发性volatilization 挥发volatilization loss 挥发损失volatilization roasting 挥发焙烧volume assaying 容量试金法volume density 体积密度volume diffusion 体积扩散volume elasticity 体积弹性volume filling 体积装料法volume ratio 体积比volume shrinkage 体积收缩volumetric analysis 容量分析volumetric expansion 体积膨胀volumetric modulus of elasticity 体积弹性系数volumetric properties 容量性能vortex motion 涡了动vrbaite 硫砷锑铊矿wabbler 梅花头wad 锰土waelz kiln 威尔兹回转窑waelz oxide 威尔滋氧化物waelz process 威尔兹法walking beam 步进梁walking beam cooler 步进式冷床walking beam furnace 步进式加热炉walking beam hearth 步进式炉底wall thickness 壁厚度wall thickness deviation 壁厚度偏差wandering welding 跳焊warm pressing 温压warm rolling 温轧warpage 弯曲warping 弯曲wash metal 精炼生铁wash water 冲洗水washed coal 洗煤washer 洗涤器;垫圈washing column 洗涤塔washing drum 洗涤圆筒washing equipment 洗涤设备washing tower 洗涤塔washmarking 波纹面waste casting 废铸件waste electrolyte 废电解液waste gas 废气waste heat 废热waste heat boiler 废热锅炉waste heat flue 废热烟道waste heat recovery 废热回收waste iron 废铸铁waste liquor 废液waste metal 废金属waste water 废水waste water recovery plant 废水再生装置waster plate 上部防护板wastes 废料water bath 水浴water column 水柱water concentration 湿选water coolant 冷却水water cooled electrode 水冷电极water cooling 水冷却water core 水冷芯子water descaler 水力除鳞装置water descaling 水力除鳞water equivalent 水当量water gas 水煤气water glass 水玻璃water hardening 水淬water hardening steel 水淬硬钢water jacket 水套water jet pump 水羚射泵water leaching 水浸出water permeability 透水性water power 水力water pump 水泵water purification 水净化water quenching 水淬water resisting property 耐水性water softening 硬水软化water supply 给水water toughening 水冷韧化处理water treatment 水的处理water vapor 水蒸汽waveguide tube 波导管wavy edge 波浪边wax 蜡wax pattern 蜡模weak acid 弱酸weak electrolyte 弱电解质wear 磨损wear properties 耐磨性wear resistance 耐磨性wear resistant cast iron 耐磨铸铁wear resistant steel 耐磨钢wear surface 磨损面wear test 磨损试验weather resisting steel 耐大气腐蚀钢weaving 焊条的横向摆动wedge 楔wedge furnace 维吉式焙烧炉wedge section 楔型断面wedge test piece 楔型试样weighing hopper 称重漏斗weight 重量;砝码weight filling 重量装粉法weight of compact 压咆量weight percentage 重量百分比weight ratio 重量比weld 焊缝weld assembly 焊接结构weld crack 焊缝裂纹weld crater 焊口weld cycle 焊接周期weld decay 焊接接头腐蚀weld dressing 清理焊烽weld joint 焊接接头weld metal 焊接金属weld nugget 点焊熔核weld penetration 焊透weld pool 熔池weld rate 焊接速度weld reinforcement 焊缝补强weld slope 焊缝倾角weld spacing 焊缝间距weld structure 焊缝金属组织weld throat 焊缝厚度weld zone 焊接区weldability 焊接性weldability test 焊接性试验weldable steel 焊钢weldableness 焊接性welded beam 焊接梁welded construction 焊接结构welded girder 焊接梁welded pipe 焊接管welded tube 焊接管welder 焊接机welder's goggles 焊工护目镜welding 焊接welding apparatus 焊接设备welding arc voltage 焊弧电压welding bench 焊接工专welding blowpipe 焊接喷灯welding booth 焊接室welding burner 焊接喷灯welding cable 电焊电缆welding current 焊接电流welding defect 焊接缺陷welding electrode 电焊条welding electrode holder 电焊钳welding equipment 焊接设备welding flame 焊接火焰welding flux 焊接熔剂welding force 电极压力welding goggles 焊工护目镜welding ground 焊接地线welding gun 焊枪welding heat 焊接热welding heat input 焊接输入热量welding jig 焊接夹具welding machine 焊接机welding metallurgy 焊接冶金学welding of lead 铅焊welding operation 焊接操作welding position 焊接位置welding pressure 焊接压力welding rectifier 焊接整流welding residual stress 焊接残余应力welding robot 焊接机扑welding rod 焊条芯welding roll 辊式电极welding seam 焊缝welding set 焊接设备welding speed 焊接速度welding steel 焊钢welding stress 焊接应力welding symbol 焊接符号welding temperature 焊接温度welding torch 焊接喷灯welding transformer 电焊变压器welding wire 焊丝welding without preheating 冷焊weldless pipe 无缝钢管weldment 焊件weldor 施焊工wet analysis 湿分析wet assay 湿试金wet blast 加湿鼓风wet classification 湿法分级wet cleaner 湿法净化器wet cleaning 湿法净化wet concentration 湿选wet corrosion 潮湿腐蚀wet crushing 湿法破碎wet drawing 湿法拉拔wet extraction 湿法提取wet gas cleaning 湿法洗气wet grinding 湿法粉碎wet method 湿法wet milling 湿法磨矿wet nitriding 液体氮化wet polishing 湿法抛光wet process 湿法wet purification 湿法净化wet quenching 湿法熄焦wet screening 湿法筛分wet separation 水选wet sieving 湿法筛分wet strength 湿强度wet treatment 湿处理wettability 可湿性wetting 润湿wetting agent 润湿剂wetting angle 浸湿角wetting power 润湿力wetting properties 可湿性wheel gate 离心集渣浇口wheel ore 车轮矿wheel rolling mill 车轮轧机whirl gate 离心集渣浇口whisker 晶须white arsenic 辉砷矿white brass 白铜white bronze 白青铜white copper 锌白铜white fracture 白断口white gold 白金white heart malleable cast iron 白心可锻铸铁white heat 白热white iron 白铸铁white iron pyrite 白铁矿white lead 铅白white matte 白冰铜white metal 白色合金white mud 白泥white phosphorus 白磷white pig iron 白口生铁white rust 白锈white slag 白渣white tin 白锡white vitriol 皓矾wide flange i beam 宽缘工字钢wide flat steel 宽带钢wide strip 宽带钢wide strip mill 宽带轧机wide strip steel 宽带钢widia 维迪阿硬质合金wigner effect 韦格讷效应wild phase 增强相wild steel 冒涨钢winch 绞车wind 鼓风wind box 风箱winding machine 绕线机wing mixer 叶片式混合机wing pump 轮叶泵wire 钢丝wire bar 拉丝锭wire brush 钢丝刷wire brushing 用钢丝刷清理wire cloth 金属丝网wire cord 钢丝绳wire drawing 拉丝wire drawing bench 拉丝机wire drawing machine 拉丝机wire drawing soap 拉丝润滑皂wire flattening 线材压扁wire flattening mill 轧扁机wire gage 线径规wire mill 线材轧机wire mill strand 线材轧机股wire netting 金属网wire pointer 钢丝压尖机wire reel 卷线机wire rod 线材wire rope 钢丝绳wire rope closing machine 制绳机wire screen 金属丝网筛wire sieve 金属丝网筛wire tying machine 线盘捆扎机wire wrap 线圈withdrawal 拔模witherite 毒重石wittichenite 硫铋铜矿wobbler 梅花头wobbler spindle 梅花联接轴wohlwill process 沃尔威尔法wolfram 钨wolframite 黑钨矿wollaston wire 沃拉斯顿极细铂丝wollastonite 硅灰石wood charcoal 木炭wood metal 伍德合金wood pattern 木模wood's alloy 伍德合金work 功work hardened steel 加工硬化钢work hardening 机械硬化work hardening capacity 加工硬化程度work hardening coefficient 加工硬化系数work hardening curve 加工硬化曲线work hardening exponent 加工硬化指数work lead 焊接线work load 工缀载work rollwork softening 加工软化workability 可加工性working 加工working life 寿命working lining 工足working platform 工捉台working pressure 工坠力working properties 工棕性working standworking stress 工爪力working temperature 工茁度working volume 有效容积worm 蜗杆worm gear 蜗轮传动装置worm wheel 蜗轮wrapping test 缠绕试验wrinkles 折叠wrought iron 熟铁wrought iron bloom 熟铁方坯wrought metal 可锻金属wrought steel 锻钢wulfenite 彩钼铅矿wurtzilite 韧沥青wurtzite 纤维锌矿wustite 维氏体x radiation x辐射x ray analysis x射线分析x ray diffraction x 射线衍射x ray diffraction analysis x 射线衍射分析x ray film x 射线胶片x ray flaw detection x 射线探伤x ray fluorescence spectroscopy x 射线荧光光谱分析x ray metallography x 射线金相学x ray microscope x 射线显微镜x ray pattern x 线衍射图x ray phase analysis x 射线相分析x ray small angle scattering x 射线小角度散射法x ray spectrograph x 射线摄谱仪x ray spectrometer x 射线分光计x ray spectroscopy x 射线光谱学x ray spectrum x 射线谱x ray spectrum analysis x 线光谱分析法x ray structure analysis x 射线衍射分析x ray tube x 射线管x rays x 射线xanthate 黄原酸盐xanthic acid 黄原酸xanthogenate 黄原酸盐xanthogenic acid 黄原酸xenotime 磷钇矿y alloy y 铸造铝合金yellow brass 黄铜yellow copper ore 黄铜矿yellow metal 黄铜yield 屈服yield criterion 屈服判据yield curve 屈服曲线yield point 屈服点yield strength 屈服强度yield stress 屈服强度;屈服应力yield zone 屈服区yielding 屈服young's modulus 杨氏弹性模数ytterbium 镱yttrium 钇yttrium carbide 碳化钇yttrium oxide 氧化钇yttrocrasite 钛钇钍矿yttrofluorite 钇萤石yttrotantalite 钇铌钽铁矿z iron z 形钢z steel z 形钢zaratite 翠镍矿zeunerite 翠砷铜铀矿zinc 锌zinc alloy 锌合金zinc amalgam 锌汞齐zinc base alloy 锌基合金zinc bath 镀锌槽zinc blende 闪锌矿zinc bronze 锌青铜zinc chloride 氯化锌zinc coat 镀锌zinc coated sheet 镀锌薄板zinc concentrate 锌精矿zinc desilverization 加锌提银法zinc distillation 锌蒸馏zinc distillation furnace 锌蒸馏炉zinc dust 锌粉zinc electrolyte 锌电解液zinc ferrite 铁酸锌zinc flower 锌华zinc green 锌绿zinc nitrate 硝酸锌zinc ore 锌矿zinc oxide 氧化锌zinc phosphating 磷酸锌处理zinc plate 锌板zinc plating 镀锌zinc powder 锌蓝粉zinc removal 脱锌zinc retort residue 锌蒸馏渣zinc sheet 锌板zinc sulfate 硫酸锌zinc sulfide 硫化锌zinc vitriol 皓矾zinc white 锌白zinc yellow 锌黄zincate 锌酸盐zincate treatment 锌酸盐处理zinced iron 镀锌铁zincification 镀锌zincing 镀锌zincite 红锌矿zinckenite 辉锑铅矿zinnwaldite 铁锂云母zintl phases 津特耳相zippeite 硫酸铀矿zircalloy 锆锡合金zircon 锆英石zirconic acid 锆酸zirconic anhydride 锆酸酐zirconium 锆zirconium alloy 锆合金zirconium base alloy 锆基合金zirconium bronze 锆青铜zirconium ferrosilicon 锆硅铁zirconium ore 锆矿zirconium oxide 氧化锆zirconium sulfate 硫酸锆zoisite 帘石zone axis 晶带轴zone melting 区域熔融zone melting process 区域熔融法zone of deformation 变形区zone of equiaxial crystals 等轴区zone of slippage 滑移区zone refining 区域精炼zone segregation 区域偏析冶金专业英语词汇(U-Z) 相关内容:。

Magnetite nanoparticles for removal of heavy metals

Magnetite nanoparticles for removal of heavy metals

Magnetite nanoparticles for removal of heavy metals from aqueous solutions:synthesis and characterizationLiliana Giraldo •Alessandro Erto•Juan Carlos Moreno-Piraja´n Received:29September 2012/Accepted:29December 2012/Published online:12January 2013ÓSpringer Science+Business Media New York 2013Abstract Fe 3O 4magnetic nanoparticles were synthesized by co-precipitation method.The structural characterization showed an average nanoparticle size of 8nm.The syn-thesized Fe 3O 4nanoparticles were tested for the treatment of synthetic aqueous solutions contaminated by metal ions,i.e.Pb(II),Cu(II),Zn(II)and Mn(II).Experimental results show that the adsorption capacity of Fe 3O 4nanoparticles is maximum for Pb(II)and minimum for Mn(II),likely due to a different electrostatic attraction between heavy metal cations and negatively charged adsorption sites,mainly related to the hydrated ionic radii of the investigated heavy metals.Various factors influencing the adsorption of metal ions, e.g.,pH,temperature,and contacting time were investigated to optimize the operating condition for the use of Fe 3O 4nanoparticles as adsorbent.The experimental results indicated that the adsorption is strongly influenced by pH and temperature,the effect depending on the dif-ferent metal ion considered.Keywords Magnetite ÁNanoparticles ÁIsotherms ÁMetal ions1IntroductionAdsorption processes are worldwide adopted in the field of environmental protection,thanks to the ability of certain solids to preferentially concentrate onto their surface spe-cific substances,such as heavy metals and organics.A wide range of adsorbents have been developed and tested,including several activated carbons for the removal of pollutants from wastewaters (Faur-Brasquet et al.2002;Mohan and Singh,2002;Puziy et al.2004;Di Natale et al.,2009;Moreno-Piraja´n and Giraldo 2012).During the last 10years,extensive researches have been carried out to find low-cost and high capacity adsorbents for water remedia-tion.A large number of low-cost agricultural wastes,mud (Keith and McKay 2008;Purevsuren et al.2004),tire rubber and fly ash (Jiang 2001;Wilson et al.2003;Wu et al.2005;Nasiruddin Khan and Farooq Wahab 2007;Balsamo et al.2011)have been used for the removal of metal ions from polluted water.Several natural resources have been also studied including tree fern (Pattanayak et al.2000;Moreno et al.2010),peat,chitosan,coal and bone char (Pattanayak et al.2000)or minerals such as sodium and calcium bentonite (Liu et al.2007).The efforts to find alternative low-cost materials and the recent progress of nano-techniques have led to the devel-opment of new classes of nanoparticles for the treatment of contaminated water.Nanoparticles,often characterized by large specific surface area,have attracted great interest because of their unique properties and potential applications.Metal oxide nano-adsorbents have been extensively studied as they show very attractive properties compared to their bulk form,such as high adsorption capacity,enhanced catalytic activity,high dispersion degree and superparamagnetism behavior (Banfield and Zhang 2001;L.GiraldoDepartamento de Quı´mica,Universidad Nacional de Colombia,Bogota ´,ColombiaA.ErtoDipartimento di Ingegneria Chimica,Universita`degli Studi di Napoli Federico II,Naples,ItalyJ.C.Moreno-Piraja´n (&)Departamento de Quı´mica,Universidad de los Andes,Bogota ´,Colombiae-mail:jumoreno@.coAdsorption (2013)19:465–474DOI 10.1007/s10450-012-9468-1Niemeyer2001;Roco2003;Savage and Diallo2005; Waychunas et al.2005;Perez,2007;Nassar et al.2011a, b).These properties offer novel applications for nano-adsorbents in manyfields such as electronics,biotech-nology,medicine,heavy oil upgrading,air pollution control and,in particular,for water treatment(Goya et al. 2003;Hua et al.2009;Kang et al.2005;Pankhurst et al. 2003;Portet et al.2001;Reimer and Weissleder1996; Ha¨feli et al.1997).For an instance,magnetic iron oxide (Fe3O4)nanoparticles have been investigated not only in thefield of magnetic recording but also in the areas of medical care and magnetic sensing in the recent decades (Shen et al.2009;Sun et al.2000;Xie et al.2007; Pankhurst et al.2003).It is believed that these magnetic nanoparticles exhibit amphoteric surface activity,easy dispersion ability and,thanks to their very small dimen-sions,a high surface-to-volume ratio,resulting in a high metal adsorption capacity(Shen et al.2009;Nassar,2011; Tratnyek and Johnson2006;Sun and Zeng2002;Si et al. 2004;Wan et al.2006).The use of magnetic nanoparticles for separation and preconcentration in analytical chemistry provides a new methodology that is faster,simpler and more precise than those used traditionally.The greatest advantage of this method is that desired materials are separated from solution by a simple and compact process while fewer secondary wastes are produced.Other advantages are represented by a large active surface area for given mass of particles and the ability to process solution that contains suspended solids (Khajeh and Khajeh2009).In addition,an easy separation of the metals loaded on the magnetic adsorbent from solution can be achieved using an external magneticfield. Thus,an efficient,economic,scalable and non-toxic syn-thesis of Fe3O4nanoparticles is highly desired for practical applications and fundamental research.A possible appli-cation of this sorbent should start from a thorough analysis of the main parameters influencing the adsorption of heavy metals on magnetite nanoparticles.Moreover,the individ-uation of the main adsorption mechanisms should take into account a quite large number of metal ions,so to allow a comparative analysis too.At the moment,there is still a lack of this information in the pertinent literature.In this work,the feasibility of Fe3O4nano-adsorbents for the removal of different metal ions,i.e.lead,zinc, copper,and manganese from aqueous solutions has been investigated.An accurate preparation procedure and a thorough characterization of the Fe3O4nanoparticles has been provided.Adsorption tests have been carried out by varying solution pH,contact time and temperature.A critical interpretation of the experimental results allowed the identification of thefield of potential application of iron oxide nano-adsorbents for metal adsorption from industrial wastewater.2Experimental2.1Sample preparationFe3O4magnetite nanoparticles were synthesized by co-precipitation method(Shen et al.2009).The procedure followed for the preparation is here specified,indicating the actual quantity of reagents used in the present work.A volume of100mL of ferric chloride(0.5M)was added to 200mL of ferrous chloride solution(0.5M)and150mL of ammonium hydroxide(1M).300mL of deionized water was deoxygenated by bubbling N2gas for30min in a1000mLflask and then added to the solution.Subse-quently,50mL of ammonium chloride was added and the mixture was stirred magnetically for10min under a nitrogen atmosphere.Afterwards,50mL of ferrous chlo-ride0.5M and50mL of ferric chloride0.5M were added and then the resultants were aged for10min before being separated.Below it is reported the reaction for the forma-tion of Fe3O4particles(Palacin et al.1996):Fe2þþ2Fe3þþ8NH3ÁH2O¼Fe3O4#þ8NHþ4þ4H2Oð1ÞFinally,the Fe3O4product was separated by a centrifugal pump and washed twice with deionized water and ethanol.The obtainedfine Fe3O4nanoparticles were dried at60°C for8h(Shen et al.2009).2.2Sample characterizationFourier transform infrared spectroscopy(FTIR)spectra was performed on previously dried magnetite sample using a FTIR spectrophotometer(Model NICOLET5700,USA) in wave range of3,500–400cm-1with a resolution of 4cm-1.The dried sample was placed on a silicon substrate transparent to infrared,and the spectra were measured according to the transmittance method.In addition,a GL-16A high-speed centrifuge(Shanghai)was used for separating the solid from the liquid during the sample preparation.The micrographs of prepared nanoparticles were obtained using a JSM-7001F scanning electron microscopy(SEM)and a Tecnai G220transmission electron microscopy(TEM)was used for the character-ization of nanoparticle size.Specific(BET)and external nanoparticle surface areas were measured by nitrogen adsorption and desorption at77K,using a Autosorb3B (Quantachrome,MI,FL,USA)analyzer.The samples were degassed at423K under N2flow overnight before analysis. Surface area was calculated using the BET equation.The total pore volume,V pore,was evaluated from nitrogen uptake at a relative pressure of ca.0.97,using the adsorption branch.N2adsorption measurements were per-formed in duplicate to check the proper functioning of theequipment and the entire technique,and the average values have been presented.The crystallographic phase was also determined by analyzing the X-ray powder diffraction taken with a PW1830diffractometer(Rigaku PDLX, Japan),using a monochromatized X-ray beam with nickel-filtered CuK a radiation(k=0.154021nm).2.3AdsorbatesThe following chemicals were used as precursor salts for the metal cations used in the experimental tests, namely Cu(NO3)2Á5H2O(99.9985%,Merck,Germany), Pb(NO3)2(99,9%,Fisher Scientific,Toronto,ON,Canada) Zn(NO3)2Á5H2O(99%,Fisher Scientific)and Mn(NO3)2Á4H2O(Merck,Germany).Individual stock solutions were prepared by dissolving a specified amount of the corre-sponding metal salt in250mL of deionized water,subse-quently diluted to the required concentration.All metal salts were used without further purification(Shen et al. 2009).2.4Adsorption procedureThermodynamic and kinetic adsorption tests were per-formed in batch-mode;for all the experimental runs the procedure described by Nassar(2011)was followed.In a typical experiment,200mg of Fe3O4nanoadsorbent were weighed into a100mL vial containing50mL of metal ion solution.Metals concentration ranged from10to 600mg L-1,in order to investigate a broad spectrum of concentrations.Tests aimed at the analysis of pH effect were conducted at298K and the initial pH of the solution was adjusted without a significantly change in the initial concentration of metal ions in solution.Standard0.1M HCl and0.1M NaOH solutions were used for pH adjustment.The effect of temperature was investigated as well,and adsorption tests were carried out at288,293,313and 323K.When adsorption equilibrium was reached,the nanoad-sorbent was conveniently separated via external magnetical field and the solution wasfiltered to allow metal concen-tration measurements.For the adsorption kinetic studies,metal ion initial concentration was set to150mg L-1for each metal,and the experiments were carried out in a temperature incubator at298K,200rpm and solution pH5.5.In order to deter-mine the time required to reach the adsorption equilibrium, samples were analyzed for metal ion concentration at predetermined time intervals.To assure the accuracy, reliability,and reproducibility of the collected data,all batch tests were performed in triplicate and average values only were reported.Blank tests were run in parallel on metal solutions without addition of sorbent,showing that the experimental procedure does not lead to any reduction of metal concentration and pH variation unrelated to sor-bent effects.For all the tests,the concentration of metal ions in the supernatant was measured by a plasma-atomic emission spectrometer(ICP-AMS,Optima3000XL,PerkinElmer)in accordance with the Standard Methods for water(Ameri-can Public Health Association1995).The adsorbed amount of metal ions(mg of metal ion g-1of Fe3O4nanoadsorbent)was determined by the mass balance reported in Equation(2):Q e¼C oÀC emVð2Þwhere C o is the initial metal ion concentration in the supernatant(mg L-1),V is the sample volume(L),and m is the mass of Fe3O4nanoadsorbent(g).For time-dependent data,C replaces C e and Q replaces Q e in Equation(2).3Results and discussion3.1Fe3O4magnetite nanoparticles characterizationFTIR spectrum in Fig.1shows that the H–O–H bending vibration at about1,000–1,600cm-1,typical of the H2O molecule,has very low intensity.Additionally,the sec-ond absorption band,between900and1,000cm-1,cor-responds to bending vibration associated to the O–H bond.The O–H in plane and out of plane bonds appear at 1,583.45–1,481.23and935.41–838.98cm-1,respec-tively(Nassar et al.2011b).For strong hydrogen bridges, its maximum lies at about900–1000cm-1.Thesefirst two bands correspond to the hydroxyl groups attached to the hydrogen bonds in the iron oxide surface,as well as the water molecules chemically adsorbed to the magnetic particle surface.In the spectrum showed(Fig.1),the sample exhibits two intense peaks,respectively at582 and640cm-1bands,that are due to the stretching vibration mode associated to the metal–oxygen absorp-tion band(Fe–O bonds in the crystalline lattice of Fe3O4) (Ahn et al.2003).They are characteristically pronounced for all spinel structures and for ferrites in particular.This occurs because of the contributions,in these regions, deriving from the stretching vibration bands related to the metal in the octahedral and tetrahedral sites of the oxide structure.Moreover,the FTIR spectrum shows an absorption band at1,706cm-1,which corresponds to the stretching vibration of the carboxyl group(C=O),asso-ciated to the oleic acid molecule,adsorbed onto the surface of the crystallites.Summarizing,magnetite nanoparticles have crystalline structure of inverse spineltype,and FTIR absorption spectroscopy allowed identi-fying characteristic features of the spinel structure,as well as a presence of certain types of chemical substances adsorbed on the surface of nanoparticles(Ahn et al.2003; Farmer1974,1982).The magnetite sample was characterized by X-ray powder diffraction(XRD)with the corresponding results displayed in Fig.2.The diffraction pattern and the rela-tive intensities of all the diffraction peaks are typical of the magnetite and match those synthesized in this research.Furthermore,the sample shows some of the character-istics of the bulk magnetite crystallite phase,with the broad peaks suggesting the nano-crystallite nature of the mag-netite particles(Gonza´lez et al.2010).The resulting mean particle diameter of magnetite nanoparticles,as calculated from the Scherrer equation, was ca.10nm.This was in agreement with the result obtained from the TEM image(Fig.3).From this image and from the corresponding electron diffraction pattern,it was determined that the magnetite particles are spherical with an average diameter of8nm.The corresponding BET specific surface area of the particles was95.5m2g-1,as determined by conventional method.The SEM analysis shown in Fig.4almost confirmed the results of the TEM analysis,as particle sizes in the range 10–70nm were measured.3.2Adsorption tests:effect of contact timeThe adsorption efficiency(g)can be defined as:g¼C iÀC fC iÂ100ð3Þwhere C i and C f represent initial andfinal metal ion con-centration,respectively.In order to determine the effect of contact time on Pb(II),Mn(II),Cu(II)and Zn(II)ions adsorption efficiency and to determine the time required to reach equilibrium, experimental tests were carried out using200mg Fe3O4 nanoparticles and1:4liquid to solid ratio(L/S)at298K and pH5.5,with a contact time varied in the range of 2–48h.Figure 5shows the effect of contact time on the adsorption efficiency of Pb(II),Cu(II),Zn(II)and Mn(II).It is clear that the adsorption efficiency of Zn(II)and Mn(II)were highly time dependent,i.e.,a longer contact time resulted in higher adsorption efficiency.It can also be observed that a contact time of 24h is sufficient to reach the equilibrium for all the investi-gated ions.Very interestingly,the adsorption efficiency of Pb(II)and Cu(II)were extremely high for very low time (\10h)and remained constant in the whole range of the time investigated.3.3Adsorption kineticsIn order to better analyze the rates of Mn(II),Zn(II),Cu(II)and Pb(II)adsorption on Fe 3O 4magnetite nanoparticles,two simple kinetic models were tested.The pseudo-first order rate expression,popularly known as the Lagergren equation,is generally described by the following equation (Lagergren,1898):dqdt¼k ad q e Àq ðÞð4Þwhere,q e is the amount of the metal ions adsorbed at equilibrium per unit weight of sorbent (mg g -1);q is the amount of metal ions adsorbed at any time (mg g -1).Besides,k ad is the rate constant (min -1).Integrating with appropriate boundary conditions (q =0for t =0and q =q t for t =t ),Eq.4takes the form:ln q e Àq ðÞ¼ln q e Àk ad tð5ÞHowever,if the intercept does not equal the natural logarithm of equilibrium uptake of metal ions,the reaction is not likely to follow a first-order path even if experimental data have high coefficient of determination (Lagergren,1898).The coefficients of determination for all metal ions adsorption kinetic tests were found to be between 0.9434and 0.9765and were reported in Table 1together with the Lagergren rate constants calculated from the slope of Eq.5(Ho and McKay,1998).The adsorption data was also analyzed in terms of a pseudo-second order mechanism given by (Hou et al.2003;Marmier et al.2000).dqdt¼k 2q e Àq ðÞ2ð6Þwhere,k 2is the rate constant (mg g -1min -1).Integrating the above equation and applying boundary conditions (i.e.q =0for t =0and q =q t for t =t),gives:t q t ¼1h o þ1q et ð7Þhere,h o is the initial adsorption rate.If the second-order kinetics is applicable,the plot of t/q against t in Eq.7should give a linear relationship from which theconstantsFig.3Transmission electron microscope (TEM)imagen for mag-netic Fe 3O 4nanoparticlessynthesizedFig.4SEM of image magnetic Fe 3O 4nanoparticlessynthesizedFig.5Effect of contact time on the adsorption of Pb(II),Mn(II),Cu(II)and Zn(II)ions using magnetic Fe 3O 4nanoparticles.T =298K,pH 5.5,adsorbent dosage =200mg,V solution =50mL,Initial metal ions concentration =150mg L -1q e and h o can be determined.Linear model gave a good fit to the experimental data.This means that the adsorption can be described by a pseudo-second order rate equation,hence q e and h o were evaluated and presented in Table 1.R 2values are approximately the same for all the 4metal ions,with values of about 0.999.In the limit at initial adsorption time,h o is defined as (Ho and McKay 1998;Horsfall and Spiff 2004):h o ¼k 2q 2eð8Þh o was calculated for the 4metal ions and the values are reported in Table 1.The results obtained are similar to previous studies (Lagergren 1898;Ho and McKay 1998;Horsfall and Spiff 2004).For all the regressions,the residual sum of squares (SSE),as the difference between the predicted values and the experimental data,can be calculated by the following equation:Xnq e exp Àq e calc ðÞ2ð9Þwhere the subscripts exp and calc refer to the experimental and the calculated q values,respectively.A lower SSE value indicates a lower discrepancy between the experi-mental and the estimated parameters,allowing to deter-mine the best fitting model.Hence,the higher correlation coefficients (R 2)and lower SSE values for pseudo-second-order kinetic model indicated that the sorption followed a pseudo-second order mechanism,likely controlled by chemisorption (Araneda et al.2008).3.4Effect of pHThe pH of the aqueous solution is an important controlling parameter in heavy metal ion adsorption processes,as reported by several authors in the literature.Fig.6showsthe effect of solution pH in the range 2–7on the removal ofPb(II),Cu(II),Zn(II)and Mn(II)ions from aqueous solu-tions by magnetite nanoparticles.As a matter of fact,at higher pH the determination of reliable adsorption capacity is not possible,due to the possible precipitation of cations as hydroxides.Experiments were carried out at 298K with a contacting time of 24h.The adsorption efficiency increases by increasing the pH,for all the investigated cations.As an example,Pb(II)adsorption efficiency gradually increases from 75.7%to 92.3%when the pH increases from 2to 7.The results demonstrate that the cations removal was mainly dependent on the proton concentration in the solution.This has been previously attributed to the for-mation of surface complexes between the functional groups (:FeOH)of the sorbent and,for example,the Pb(II)ions,Table 1Lagergren rate equation constants and pseudo second-order rate equation constants for Mn(II),Zn(II),Cu(II)and Pb(II)adsorption on Fe 3O 4magnetite nanoparticles Metal ions Pseudo first-order rate equation constants q e (exp.)SSE R 2k ad (9min)(g mg -1)Mn(II)0.02411.50.5410.9654Zn(II)0.02612.40.5230.9434Cu(II)0.03114.50.5560.9687Pb(II)0.03316.40.5830.9765Metal ions Pseudo second-order rate equation constants q e (exp)SSE R 2h o (9min g mg -1)(g mg -1)Mn(II)1234.522.50.0170.9996Zn(II)1298.524.60.0140.9994Cu(II)1345.625.60.0080.9999Pb(II)1445.627.80.0070.9999Fig.6The effect of pH on the adsorption of Pb(II),Cu(II),Zn(II)and Mn(II)ions onto magnetic Fe 3O 4nanoparticles.T =298K,t =24h,adsorbent dosage =200mg,V solution =50mL,Initial metal ion concentration =150mg L -1with the possible reaction being expressed as follows(Hou et al.2003):sH2Oþq FeOHþrPb2þ) FeOðÞq Pb r OHðÞ2ÀqÀsðÞsþs+qðÞHþð10Þwhere(:FeO)q Pb r(OH)s(2–q–s)corresponds to the surface complexes and s,q and r are the stoichiometric coefficients. When pH increases,this equilibrium shifts in such a manner that a greater number of sites are present in the more reactive deprotonated form,thereby leading to a higher uptake of Pb(II).The results show very similar trends for Zn(II),Cu(II) and the Mn(II)adsorption efficiency;this pH dependency has been attributed to the formation of surface complexes similar to those reported in the equation(10)for Pb(II) cations.Furthermore,from measured zeta potential of magnetite solution at different pH values,it appears that the magne-tite surface has a positive charge at pH below6.0and a negative charge when pH is higher than6.0(Hou et al. 2003).This result is consistent with experimental data reported in Fig.6.Furthermore it should be noted that magnetite is an amphoteric solid,which can develop charges in the pro-tonation(Fe–OH?H?$Fe–OH2?)and deprotonation (Fe–OH$Fe–O-?H?)reactions of Fe–OH sites on surface(Wang et al.2011).The reactions can be written as: FeOH) FeOÀþHþK s a1ð11Þ FeOHþ2) FeOHþHþK s a2ð12Þand the corresponding acidity constants,asK s a1¼Hþ½ FeOÀf gFeOf gð13ÞK s a2¼Hþ½ FeOHf gFeOHþ2ÈÉð14Þwhere[]is the solution species concentration in mol L-1 and{}is the solid surface concentration in mol/g. According to the pH of the solution,the surface is charged differently and could behave as an anion or cation exchanger.It is important to realize that negative,positive, and neutral functional groups can coexist on magnetite surface.At pH\pH zpc,the FeOH2?groups predominate over the FeO-groups,i.e.,although the surface has a net positive charge,some FeO-groups are still present.At the pH zpc,the number of FeOH2?groups equals the number of FeO-groups and as the pH increases,the number of FeO-groups increases(pH zpc have been calculated but not reported here).It follows that magnetite particles may adsorb either negatively or positively charged species by electrostatic attraction depending on pH,even if,as pre-viously reported,a complete analysis of all the pH interval is not possible dealing with cations.Figure6shows that a magnitude of adsorption can be defined according to the following order:Mn\Zn\Cu \Pb.The uptake of Mn(II),Zn(II),Cu(II)and Pb(II)ions onto magnetite nanoparticles occurs by physico-chemical interactions,likely represented by electrostatic attractions. In particular,the size of hydrated ionic radii seems to influence the interactions with the negative charged adsorption site,as the greater the ion’s hydration,the far-ther it is from the adsorbing surface and the weaker its adsorption(hydrated ionic radii:Pb2?:4.01A˚\Cu2?: 4.19A˚\Zn2?:4.30A˚\Mn2?:4.43A˚)(Ko et al.,2004). Hence,Pb(II)has the lowest hydrated ionic radius and the highest capability to compete with proton and,hence,the highest comparative adsorption capacity.The results obtained in this work in terms of metal adsorption capacity are of the same order of magnitude of those reported by other authors in the literature on the same sorbent(Wang et al.2011;Yuan et al.2009;Boddu et al. 2008;Yean et al.2005).Although many different sorbents can be used for the same purpose,magnetic nanosorbents possess a number of unique physical and chemical properties and they are easily dispersed in aqueous solutions.A large number of their atoms are superficial atoms which are unsaturated and,hence,can determine high adsorption capacity towards several metal ions(Kalfa et al.2009;Zhang et al.2008;Liu et al.2005).Magnetic particles can be removed very quickly from a matrix using a magneticfield, but they do not retain their magnetic properties when the field is removed(Wang et al.2011).This system has also several advantages compared with conventional or other nano-adsorbents such as the absence of secondary wastes and the possible recycling of the materials involved on an industrial scale.Furthermore,the magnetic particles can be tailored to separate specific metal species in water,wastes or slurries(Yantasee et al.2007;Ngomsik et al.2006;Liu et al. 2008).However,from a practical point of view,there is a major drawback in the application of such nanomaterials for treating wastewater.Because the treatment of wastewater is usually conducted in a suspension of these nanoparticles,an additional separation step is required to remove them from a large volume of solution,resulting in increased operating costs.3.5Adsorption isothermsAdsorption isotherms of Mn(II),Zn(II),Cu(II)and Pb(II) onto magnetite nanoparticles are reported in Fig.7.Under the above-mentioned conditions,the maximum adsorption capacity resulted to be0.180mmol g-1for Pb(II),0.170mmol g-1for Cu(II),0.160mmol g-1for Zn(II),and0.140mmol g-1for Mn(II),respectively.Theuptake of Mn(II),Zn(II),Cu(II)and Pb(II)ions onto magnetite nanoparticles occurs by physico-chemical interactions,likely represented by electrostatic attractions and the comparative adsorption magnitude is confirmed on the entire equilibrium concentration range.A basic modelling analysis was carried out in order to determine the isotherm model that better describes the experimental data.In Table 2,Langmuir and Freundlich model parameters were reported,as derived from the regression analysis.The Freundlich equation frequently gives an adequate description of adsorption data over a restricted range of concentration;it is usually suitable for a highly heteroge-neous surface and an adsorption isotherm lacking of a plateau,indicating a multi-layer adsorption (Lagergren 1898).Values of 1/n less than unity indicate that a sig-nificant adsorption takes place at low concentration but the increase in the amount adsorbed with concentration becomes less significant at higher concentration and vice versa (Ho and McKay 1998).The essential characteristic of the Langmuir isotherms can be expressed in terms of a dimensionless constant separation factor or equilibrium parameter,R L ,which is defined as (Farmer 1974):R L ¼11þb C o ðÞð15Þwhere b is the Langmuir constant and C o is the initial metal ion concentration.The value of R L indicates the type of the isotherm to be either favorable (0\R L \1),unfavorable (R L [1),linear (R L =1)or irreversible (R L =0).From our study,an initial metal ion concentration of 600mg L -1,R L values for Pb(II),Cu(II),Mn(II)and Zn(II)ions adsorption ranged from 2.09to 1.67,therefore,adsorption process is unfavorable.As can be observed from data reported in Table 2,Langmuir model shows the highest comparative value of the coefficient of determination (R 2)and the lowest value for SSE,indicating a better approximation of model parameters to the experimental counterparts.In Fig.7the fitting of experimental data by Langmuir model was reported.3.6Effect of the temperatureFor all the investigated ions,adsorption experiments were conducted varying the temperature between 15°C and 40°C under the following conditions:L/S =1:4and pH 5.5.Figures 8a and b show the curves obtained for the adsorption tests at different time and temperature for Pb(II)and Zn (II)taken as example,respectively.As can be observed,for both ions,the adsorption capacity is greater for lower temperatures,as expected being adsorption an exothermic process.Moreover,the increase in adsorption capacity is higher for lowest values of temperature.The temperature has an effect also on the time necessary to reach the equilibrium;a higher temperature,in fact,determines a lower equilibriumtime.Fig.7Mn(II),Zn(II),Cu(II)and Pb(II)adsorption isotherms onto Fe 3O 4magnetite nanoparticles.T =25°C,pH =5.5Comparison between experimental data and Langmuir model.V solution =50mL,Initial metal ion concentration =150mg L -1Table 2Estimated parameters for the Langmuir and Freundlich models for isotherm of Mn(II),Zn(II),Cu(II)and Pb(II)adsorption on Fe 3O 4magnetite nanoparticles.T =25°C IonsFreundlich model q ¼K F c 1n eq Langmuir model q ¼q maxb ceqð1þb c eq ÞK F (mmol g -1)(L mmol -1)1/n1/nR 2q max (mg g -1)b (L g -1)R L (L mmol -1)R 2Mn(II)0.144±0.0060.175±0.0020.95870.149±0.007 1.37±0.04 1.670.9987Zn(II)0.160±0.0090.178±0.0040.96430.177±0.008 1.47±0.05 1.770.9988Cu(II)0.173±0.0110.123±0.0030.97450.184±0.005 1.68±0.03 1.990.9988Pb(II)0.185±0.0130.112±0.0060.98760.189±0.0031.89±0.042.090.9999。

10个产地牛大力的总黄酮、多糖和微量元素含量分析

10个产地牛大力的总黄酮、多糖和微量元素含量分析
tilization of M specisoa Champ METHODS Determinate the total flavonoids and polysaccharides by ultrasonic ex ̄
traction and UV spectrophotometryꎻand the contents of the mineral elements were measured by ICP ̄MES RESULTS
牛大力为豆科崖豆藤属植物美丽崖豆藤( Millettia speci ̄
强筋活络、提高免疫功能ꎬ对腰肌劳损、风湿性关节炎、肺结
藕” 、“ 倒吊金钟” 、“ 九龙串珠” 、“ 大力薯” 、“ 甜牛大力” 、“ 牛
病有一定疗效 〔2〕 ꎬ除药用外ꎬ在两广地区 还 常 用 作 药 膳 〔3〕 ꎮ
soa Champ ) 的根ꎬ有“ 猪脚笠” 、“ 扮山虎” 、“ 扒山虎” 、“ 山莲
海峡药学 2020 年 第 32 卷 第 6 期
中药Байду номын сангаас天然药物
10 个产地牛大力的总黄酮、多糖和微量元素含量分析
曾庆钱1 ꎬ崔 露1∗ ꎬ钟小花2 ꎬ聂 阳1 ꎬ刘翠红1 ꎬ吴铎锋1 (1 广东省中药研究所ꎬ广东广州 510640ꎻ2 惠州市
中心人民医院ꎬ广东惠州 516001)
摘要:目的 分析 10 个不同产地牛大力的总黄酮、多糖及其微量元素的含量差异ꎬ为更好开发利用牛大力提供依据ꎮ 方法 采用超声提取法
vonoid was also high K and Ca might have a great influence on the growth of M specisoa Champ All samples were

《机械工程专业英语》测试题(18-22)含答案

《机械工程专业英语》测试题(18-22)含答案

《机械工程专业英语》测验题(18-22)一、将下列词组译成汉语1.the base circle(基圆)2.the pitch curve(啮合曲线)3.the contact force(接触力)4.the intermittent motion(间歇运动)5.the common normal(公法线)6.the conjugate profiles(共轭齿廓)7.the cycloidal profiles (摆线齿形)8.the involute profiles(渐开线齿形)9.the spur gear(直齿轮)10.the herringbone gears(双螺旋齿轮)11.the face gear(端面齿轮)12.the radial distance(径向距离)13.the addendum circle(齿顶圆)14.The tooth thickness(齿厚)15.the tooth space(齿间隙)16.the cap screws(螺钉)17.the setscrews(固定螺丝钉)18.the engineering graphics(工程力学)19.mechanical design(机械设计)20.the installation techniques(安装技术)21.the bolted joint(螺栓连接)22.the hardened washers(强化垫圈)23.the fatigue resistance(抗疲劳强度)24.the modulus of elasticity(弹性模量)25.the antifriction bearing(减摩轴承)26.the rolling bearing(滚动轴承)27.the rolling contact (滚动接触)28.the sliding contact(滑动触电)29.the corrosion resistance(抗腐蚀性)30.the machining tolerances(加工公差)31.the fatigue loading(疲劳载荷)32.the radial loads(径向负荷)33.the thrust loads逆负荷34.the ball bearing球轴承35.the roller bearing滚子轴承36.the single-row bearings单沟轴承37.the double-row bearing双沟轴承38.the needle bearing滚针轴承39.the bearing life轴承寿命40.The rating life额定寿命41.the axis of rotation旋转轴42.The helix angle螺旋角43.a right-hand helix 右旋44.a left-hand helix左旋45.an involute helicoids螺旋面46.an involute curve渐开线47.the shaft centerlines轴中心线48.worm gear蜗轮49.the hypoid gear准双曲面齿轮50.right angle直角51.worm gearing蜗杆传动52.the lead angle导角53.shaft angle轴线角度54.bending load弯曲载荷55.tension load张力负荷pression load压缩负载57.torsional load扭转负荷58.the bending moment弯矩59.the bending stress弯曲应力60.the shot peening喷丸法61.the actuating force工作力62.the coefficient of friction摩擦系数63.An electromagnetic coil电磁线圈64.the magnetic circuit磁路二、将下列短语译成汉语1.disk or plate translating (two-dimensional or planar)盘形传动凸轮(两维的,即平面的)2.cylindrical (three-dimensional or spatial) cams圆柱形凸轮(三维的,即空间的)机构3. a radial (in-line) translating roller follower一个对心直动滚子从动件4. a constant angular velocity ratio旋转角速度的比例5. a constant torque ratio一个恒转矩比6.Nonlinear angular velocity ratios非线性角速度比率7.the parallel helical gear平行斜齿轮8.the crossed helical gear交叉斜齿轮9.the straight bevel gear直锥齿轮10.the spiral bevel gear弧齿锥齿轮11.the skew bevel gear大角度斜交锥齿轮12.the hexagon head screws六角头螺钉13.the fillister head screws槽头螺钉14.the flat head screws 平头螺钉15.the hexagon socket head screws内六角沉头螺钉。

法兰尼净水器各级滤芯功能参数

法兰尼净水器各级滤芯功能参数

法兰尼净水器各级滤芯功能说明FLN 聚丙烯熔喷滤芯(PP 棉) 过滤精度5微米1微米性能特点过滤精度高,流量大,结构均匀,纳污量大,使用寿命长;有良好的化学相容性,不含有保湿剂、抗静电剂以及粘结剂等任何有害物质,符合FDA 食品饮料的要求适用PH 值 1-13 最大压差 正向0.4Mpa 工作温度0.25Mpa ,<70℃过滤功能可截留孔径1-5微米以上的杂质,有效阻拦水中的铁锈、泥沙、虫卵、水藻等物质更换周期3-6个月FLN Polypropylene meltblown filter (PP cotton )Filtering accuracy 5 micron1 micronFeaturesHigh filtration precision, flow, uniform structure, pollutant carrying capacity, long life; has good chemical compatibility, does not contain moisturizing agents, antistatic agents, and binders and any other harmful substances, comply with FDA requirements for food and beveragePH value applicable 1-13The maximum pressuredifference Forward 0.4MpaOperating Temperature0.25Mpa ,<70℃Filtering 1-5 micron pore size can be trapped impurities, effectively blockingthe water rust, sediment, eggs, algae and other substancesDuration3-6months滤芯名称功能/参数滤芯名称功能/参数FLN 前置椰壳活性炭滤芯(Carbon )性能特点椰壳活性炭以优质椰子壳为原料,经系列生产工艺精加工而成。

生活垃圾焚烧飞灰重金属固化特性

生活垃圾焚烧飞灰重金属固化特性

第 54 卷第 10 期2023 年 10 月中南大学学报(自然科学版)Journal of Central South University (Science and Technology)V ol.54 No.10Oct. 2023生活垃圾焚烧飞灰重金属固化特性刘亮,罗屹东,卿梦霞,刘文斌,赵广民,贺梓航(长沙理工大学 能源与动力工程学院,湖南 长沙,410114)摘要:针对生活垃圾焚烧飞灰中重金属元素(Cr 、Cd 、Cu 、Pb 、Zn)含量过高导致的飞灰资源化利用难及其环境污染风险问题,结合连续萃取实验(BCR)及超声波辅助水洗,探究重金属赋存形态对飞灰重金属元素固化特性的影响。

研究结果表明:超声波辅助水洗对飞灰中重金属元素固化效果较好,其中Cd 固化效果最佳(98.87%),Cu 固化效果最差(80.14%)。

水洗使飞灰中的可溶性氯盐(NaCl 、KCl 、CaClOH)发生重组,生成新的化合物(CuCl 、硫酸钙水合物、CaSO 4)。

水洗后飞灰中重金属元素的赋存形态发生改变,Cr 的可移动态占比可达93%,Cd 赋存形态总体变化不大,Cu 的赋存状态由残渣态向可还原态转变,Pb 酸溶态占比下降,Zn 残渣态和可还原态占比明显上升。

关键词:焚烧飞灰;水洗过程;重金属;固化特性中图分类号:X773 文献标志码:A 文章编号:1672-7207(2023)10-3852-13Solidification characteristics of heavy metals in fly ash fromdomestic waste incinerationLIU Liang, LUO Yidong, QING Mengxia, LIU Wenbin, ZHAO Guangming, HE Zihang(College of Energy and Power Engineering, Changsha University of Science & Technology,Changsha 410114, China)Abstract: The high content of heavy metal elements(Cr, Cd, Cu, Pb and Zn) in fly ash from municipal solid waste incineration leads to difficulty in utilizing fly ash, with a risk of environmental pollution. Combining BCR extraction experiments and ultrasonic-assisted water washing, the effect of the heavy metal fugitive form on the solidification characteristics of fly ash heavy metal elements was investigated. The results show that ultrasound-assisted water washing has a good effect on the curing of heavy metal elements in fly ash, with Cd showing the best curing effect(98.87%), and Cu showing the worst curing effect(80.14%). Water washing makes the soluble chloride(NaCl, KCl and CaClOH) in the fly ash recombine and generate new compound components(CuCl,收稿日期: 2023 −04 −07; 修回日期: 2023 −06 −17基金项目(Foundation item):国家自然科学基金资助项目(52106131,U1910214);湖南省教育厅科学研究重点项目(21A0201)(Projects(52106131, U1910214) supported by the National Natural Science Foundation of China; Project(21A0201) supported by the Scientific Research Key Project of the Education Department of Hunan Province)通信作者:卿梦霞,博士,副教授,从事固体燃料高效清洁燃烧研究;E-mail :****************.cnDOI: 10.11817/j.issn.1672-7207.2023.10.007引用格式: 刘亮, 罗屹东, 卿梦霞, 等. 生活垃圾焚烧飞灰重金属固化特性[J].中南大学学报(自然科学版), 2023, 54(10): 3852−3864.Citation: LIU Liang, LUO Yidong, QING Mengxia, et al. Solidification characteristics of heavy metals in fly ash from domestic waste incineration[J]. Journal of Central South University(Science and Technology), 2023, 54(10): 3852−3864.第 10 期刘亮,等:生活垃圾焚烧飞灰重金属固化特性calcium sulfate hydrate and CaSO4). After washing, the fugitive forms of the heavy metals in the fly ash change, and the movable dynamic proportion of Cr reaches 93%, while the chemical form of Cd remains unchanged. The chemical form of Cu transforms from a residue state to a reducible state. Furthermore, the change in the chemical form of Pb of the proportion of acid soluble state decreases, with an obvious increase in the proportion of Zn residue state and reducible state.Key words: fly ash; water washing treatment; heavy metal; solidification characteristics随着我国城市化进程的加快,城市生活垃圾产量显著增加。

铜铝超声波焊接技术要求

铜铝超声波焊接技术要求铜铝超声波焊接技术要求1. 背景介绍铜铝超声波焊接技术是一种用于连接铜和铝材料的非常有效的焊接方法。

由于铜和铝在化学和物理性质上的差异很大,传统的焊接方法往往难以实现可靠的连接。

超声波焊接技术通过利用高频振动引起的摩擦热和压力,将铜和铝材料加热至熔点,形成牢固的焊接接头。

2. 技术要求铜铝超声波焊接技术要求准确的参数控制和严格的焊接操作,以确保焊接接头的质量和稳定性。

以下是一些关键的技术要求。

2.1 材料准备在进行铜铝超声波焊接之前,首先需要准备好待焊接的铜和铝材料。

这包括确保材料表面的清洁和平整,以提供良好的接触面。

材料的厚度和尺寸也需要根据具体应用来选择,并在焊接过程中保持一致。

2.2 超声波焊接机的选择选择合适的超声波焊接机对于实现良好的焊接效果非常重要。

焊接机的功率和频率应根据材料的厚度和焊接要求进行选择。

较高的功率和频率可以加快焊接速度,但同时需要更好的材料控制和稳定性。

2.3 脊柱设计超声波焊接接头的形状和设计对于焊接质量至关重要。

理想的接头设计应该有足够的接触面积和压力分布,以确保焊接面的均匀加热和压力传递。

脊柱设计可以提供额外的机械强度,并避免焊接时材料的漏出或变形。

2.4 焊接参数控制超声波焊接的关键参数包括振幅、工作压力、焊接时间和焊接温度。

这些参数应根据具体材料和应用进行优化和控制。

过高或过低的振幅、温度或压力都可能导致焊接接头的质量降低。

建立合适的参数范围,并进行实时监测和调整,可以确保焊接接头的可靠性和稳定性。

2.5 检测和评估完成焊接后,需要对焊接接头进行检测和评估。

常用的方法包括视觉检查、超声波检测和拉伸测试等。

这些测试可以帮助判断焊接接头的质量,以及焊接过程中出现的问题。

必要时,可以对焊接参数进行调整,并重新进行焊接以达到所需的质量标准。

3. 观点和理解铜铝超声波焊接技术的出现为铜和铝材料之间的连接提供了一种高效、可靠的解决方案。

与传统的焊接方法相比,超声波焊接具有许多优点,如焊接速度快、焊接接头强度高、焊接过程无需使用焊接材料等。

二类水体水质标准处理工艺流程

二类水体水质标准处理工艺流程1.二类水体水质标准是指水体中各种污染物的浓度和水质指标达到国家规定的标准。

The water quality standard for Class II water bodies refers to the concentration of various pollutants and water quality indicators in the water body meeting the national standards.2.二类水体水质标准通常要求水质优良,适合供给生活用水和农业灌溉。

The water quality standard for Class II water bodies usually requires good water quality, suitable for supplying drinking water and agricultural irrigation.3.对于不符合二类水体水质标准的水体,需要进行水质处理工艺改善水质。

For water bodies that do not meet the water quality standard for Class II water bodies, water quality treatment processes are required to improve the water quality.4.常见的二类水体水质处理工艺包括物理处理、化学处理和生物处理。

Common water quality treatment processes for Class II water bodies include physical treatment, chemical treatment, and biological treatment.5.物理处理是通过过滤、沉淀等方式将悬浮物和浊度物质从水体中去除。

核电英语词汇表

英文absorberA/D converterabilityabnormalabnormal condition abnormal operation abnormal operation transient abnormal temperature rise abovegroundaboveground cableabrading particlesabrasiveabrasive blastingabrasive flap wheelabrasive particlesabrasive wearabrasive wheelabsence of hang-upabsolute densityabsolute encoderabsolute errorabsolute filterabsolute filter bankabsolute filter package absolute fluxabsolute pressureabsolute specific gravity absolute temperature absorbed doseabsorbed dose equivalent rate absorbed dose rate absorbent capacityabsorber rodabsorptionA-weighted sound power level absorption analysisabsorption build-up factor absorption coefficient absorption controlabsorption cross section absorption efficiency absorption factorabsorption lengthabsorption lineabsorption peakabsorption ratioabsorption spectrum abundanceabundance ratio (isotopes)AC generatorAC motoraccelerationacceleration period(motor) accelerometeracceptable quality level acceptable results acceptanceacceptance criteria acceptance report acceptance testacceptance tested(filler metals) access areaaccess authorization for…access hatchaccess panelaccess plugaccess portaccess rampaccessibilityaccessibleaccessible-neutral accessories(filters,scoops,etc.) accident conditionaccident operating conditions accidental exposureaccidental releaseaccoustic emission detector accreditationaccreditedaccumulated doseaccumulated pressure accumulationaccumulatoraccumulator injectionaccumulator tankaccuracyachievement of qualityacid coveringacid etchingacid-proofacid-proof coating acknowledgement(signal,alarm,etc.) acoustic pressureacoustic strain gauge(containment instrumentation)acoustic velocityacoustic waveacoustical adj.acquisition rateactionaction planactivated carbonactivated charcoalactivated charcoal filteractivated charcoal filter bank activated charcoal filter package activated nucleusactivated wateractivationactivation analysisactivation energyactivation productsactiveactive carbon filteractive componentactive core heightactie energyactive failureactive fuel lengthactive height(fuel)active loopactive poweractive power meteractive surface agentactive volumeactivityactivity affecting qualityactivity concentrationactivity curveactivity levelactivity meteractivity supervisoractual capacity(compressor)actuate v.actuating variableactuationactuatoractuator armactuator manufactureracute exposureadaptoradaptor lugadaptor plate(fuel assembly to nozzle) adderaddition or deletion of variables(welding procedure qualification)additional HP governing valve additional lightingadditional loadadditional power source additional workadditiveaddressadhesionadhesive adj.adhesiveadhesive tapeadjoint fluxadjoint of the neutron flux density adjust v.adjustableadjustable blade propeller adjustable pliersadjustable wrenchadjustingadjusting bolt bearingadjusting ring set screw adjusting screwadjustment deviceadjustment moduleadjustment pellet administration building administrative lockout administrative manager admission pressureadvanced fuel assembly advantage factoraerialaerial cableaerial viewaerosolaerosol monitorAFI test (filters)after-heatafter-powerafterglowafterset insertAG 5aluminum-zinc alloyage v.age hardeningage peaking factoraged uranium agglomerated agglomerated flux agglomerated (powder) aggregateaggregate recoilaggressiveaggressive atmosphere aggressive medium aggressive wateragingagitatorair adj.air bindingair blast breakerair bleed valveair breakerair carbon arc gougingair change rateair conditioningair conduitair contaminationair contamination meterair contamination monitorair coolerair cooler duct (electric motor) air coolingair curtainair cylinderair dryerair ductair eductorair entrainmentair equivalentair equivalent materialair exhaustair filterair gapair gaugeair heaterair hoseair inletair intakeair lockair magnetic breakerair operated disk cutterair operated jawsair outletair pocketair pressure amplifierair radiation monitor(gas or air-particulate monitors)air recirculation fanair regulatorair removalair renewalair renewal rateair samplerair sampling deviceair setair set pressure test(for relief valves)air specific gravityair speedair supplyair supply fanair supply supportair supply terminalair to push downair to push upair transportair valveair velocityair ventair washerair-break circuit breakerair-bubbler type level measurement air-bubbler type specific gravity measurementair-cooled condenserair-cooled transformerair-entraining agent(concrete)air-entraining vortexair-line assemblyair-operated adj.air-operated valveair-to-air coolerair-to-close valveair-to-open on-off valveair-to-open valveair-to-water coolerair/bead mixtureairborne particulate control airborne particulatesaircraft crashaircraft warning lightsairing circuitairtightairtight doorairtightnessalarmalarm annunciatoralarm boxalarm lampalarm processingalarm signalalarm windowalarmedalignmentalignment holealignment pinalkaline batteryalkaline cleaningall volatile treatmentall-weld-metal tension(or tensile)test all-welded frameAllen screwalligatoringallowableallowable loadallowable stressallowanceallowance for fabrication tolerances alloy steelalloyed steelalmen intensityalmen stripalpha decayalpha emissionalpha emitteralpha radioactivityalpha ratioalpha raysalpha-phase producing(metallurgy) alphanumeric codealterationalternate energy sourcesalternate systemalternating currentalternating current motoralternating slidingalternating stressalternative energy sources alternatoraluminous cementambient conditionsambient does rateambient lightingambient temperatureAmerican standard pipe thread plug ammeterammonium diuranateampacityamphoteric metalamplification channelamplifieramplfier relayanaloganalog channelanalog controlleranalog diagramanalog digital converteranalog feedback controlanalog inputanalog instrumentationanalog measurementanalog relayanalog signalanalog variableanalyseranalysis(of data)analysis lineanalyzeranchoranchor baranchor boltanchor channelanchor coneanchor drillinganchor plateanchor pointanchor ring(reactor vessel)anchor rodanchoringanchoring pointangleangleangle beam examinationangle beam probeangle beam ultrasonic examination angle check valveangle control valveangle gear driveangle ironangle jointangle of frictionangle of the electron gun(electron beam welding)angle patternangle poleangle styleangle towerangle valveangular adjustmentangular displacement transducer angular momentumanion bedanion bed demineralizeranion bed ion exchangeranion exchange resinanion exchangeranion resinanion vacanciesanisotropy factorannealedannealingannealing passannealing temperatureannular lightingannulus(containment)annunciatedannunciatorannunciator boardannunciator lightannunciator panelanomalyanti-backlash(gears)anti-condensation heater(reactor coolant pump)anti-foaming agentanti-frieezing agent(concrete)anti-oil whip(pump)anti-popout tubeanti-reverseanti-reverse deviceanti-reverse systemanti-rotation deviceanti-rust paintanti-seismic plateanti-simmeranti-vibration baranti-vibration spacer baranti-whip deviceantibirdantichatteranticipatedanticlockwiseanticoincidenceantidustantifreezeantifriction bearingantirotation deviceantirotation lugantirotation toolantisimmer(valve)antisimmer pressure relief valve antivibrationantivibration bar attachmentanvilaperture cardapparatusapparent powerappendageappendage sensorapplicabilityapplicationapplication of new lead sealapproach(cooling tower,condenser) approach to criticalityapprovalapproved packingaquiferarc blowarc chutearc energyarc initiationarc strike(welding)arc trajectory(missile)archarch damarchitectural drawingarchitectural line weightsarcing contactareaarea containing removable ceiling or wall panelsarea drainarea monitorarea radiation monitorarea radiation monitoring system area supervisorarea under the notch(impact test) area-weighted averagingargon hosearithmetic meanarmarm rotationarmaturearmorarmored cablearmoring wirearmouraround-the-clockarrangementarrangement drawing arrangement of runsarrayarrisarticulated armarticulated camera mount artificial radioactivityartificail radionuclideas builtas isas-built(drawings)as-built dimensionas-built drawingas-castas-coated roughnessas-deposited claddingas-weldedas-welded surfaceasbestos cementasbestos cement sleeve asbestos paperaseismicaseismic bearing pad aseismic plateaskarel-filled transformer aspect ratioasperity junctionsasphaltasphalt roofingasphalt-based solifification assemblyassemblyassembly drawingassembly fixture(control rods) assessmentassigneeassignmentassignment check assignment drawingassistant shift supervisor assumedassumptionasymmetricasynchronous motor atmospheric pressure atmospheric relief valve atmospheric steam dump atmospheric steam dump valve atomic chargeatomic energyatomic mass unitatomic numberatomic ratioatomic weightatomize v.attachingattachmentattachment modeattachment pointattack(corrosion)attenuationattenuation coefficientattenuation factorattributeaudible alarmaudible signalsaudible warning deviceaudio radiation indicatorauditaudit follow-upaudit planaudit recordaudit reportauditoraustenitic steelaustenitizingauthorityauthotizationauthorization decree(plant)authorization to proceedauthorization to proceed with fabrication authorizationauthorized for testingauto-manual control stationautoclaveautogenous weldingautomatedautomatic chemical monitoring and control deviceautomatic controlautomatic control assemblyautomatic control relayautomatic control systemautomatic controllerautomatic level(surveying)automatic remote-controlled plugging automatic remote-controlled plugging systemautomatic roll-type filterautomatic rotating-type filter automatic sample changer automatic spiral ratchet screwdriver automatic surface examination automatic switchautomatic synchronization unit automatic weldingautomatic welding machine autonomousautotransformerauxiliary actuating deviceauxiliary alternatorauxiliary boilerauxiliary bridge(fuel handling) auxiliary buildingauxiliary building sump pump auxiliary contactorauxiliary exciterauxiliary feedwaterauxiliary feedwater pump(motor and turbine-driven)auxiliary feedwater storage tank auxiliary feedwater supply(steam generators)auxiliary gengeratorauxiliary hoist(fuel handling) auxiliary loading airauxiliary loading forceauxiliary motor-pump assembly auxiliary oil lift pumpauxiliary oil pumpauxiliary operatorauxiliary power systemauxiliary relayauxiliary rod holdout coil(CRDM) auxiliary rod holdout device(control rod drive mechanism)auxiliary spray lineauxiliary spray valveauxiliary steamauxiliary switchboardauxiliary switchyardauxiliary systemauxiliary trailerauxiliary transformerauxiliary valvesavailabilityavailability(NI)availability factor(NRC)availability improvementavailable headaverageaverage adj.average v.average energy expended per ion pair formedaverage lifeaverage logarithmic energy decrement average outgoing quality(AOQ) averaging amplifierAvogadro's numberaxial blanketaxial bucklingaxial clearanceaxial diffusion coefficientaxial expansionaxial flowaxial flow fanaxial flow impelleraxial flow propelleraxial grid spacing coefficientaxial meanaxial motionaxial offset(flux)axial offset factoraxial peaking hot spot factoraxial segementaxial stiffnessaxial stressaxial thrustaxial-scan closed circuit TV camera axially-splitaxially-split casingaxially-split casing pumpaxisaxis of rotationaxis of symmetryaxlebabbit metalback echoback filter(radiography)back gougingback grindingback lighted rotary pushbutton switch back off v.back out v.back seat bushingback shieldingback vanesback viewback wearing ringback welded branch pipeback weldingback-extractionback-to-backback-to-back impellersback-to-back switchboardback-to-wallback-to-wall switchboardbackdraft damperbacked-up power supplybackfacebackface(mates with backseat on valve body)backfillbackfillingbackfittingbackgroundbackground informationbackground irradiationbackground noisebackground radiationbackingbacking barbacking gasbacking layerbacking platebacking ringbacking runbacking stripbacklashbacklightedbacklighted buttonbacklighted pushbuttonbacklighted rotary switchbacklighted switchbacklightingbacklitbacklit sign(eg.<Exit>,<Fire Escape>) backpressurebackpressure fittingbackpressureregular(incorrectly<backpressure control valve>)backpressure turbinebackscatterbackscatter factorbackscatteringbackseatbackstep method(welding)backupbackup manual operatorbackup ring(CRDM)backwallbackward-curved vanebackwashingbad weatherbafflebaffle assembly(reactor vessel)baffle boltingbaffle jettingbaffle plate(reactor vessel)bailbainiticbakelitebaking(electrodes or fluxes before use) balance stabilizer shaftbalanced check valvebalanced sealbalanced-plug control valve balancingbalancing bellowsbalancing chamberbalancing devicebalancing diskbalancing drumbalancing drum headbalancing of rotating machinery balancing pistonballball bearingball burnishingball control valveball flow indicatorball hardness testing ball isolation valveball lift check valveball millball peen hammerball pressure relief valve ball ringball screwball thrust bearingball valveball-float trapballastballracebanana boundary zone banana regionband spectrum bandsawbank(capacitors,etc) bank slopingbarbar chartbar manipulatorbar stockbarbbarebare busbare cablebare rod bundlesbare shaftbare solid cablebare wirebaring(wire)barrelbarrel casingbarrel casing pumpbarrel pumpbarrelingbarrierbarrier terminal blockbarring gearbarstock adj.barstockbarstock bodybarytes concretebasebase insertbase loadbase load operationbase matbase material test couponbase metalbase metal crackingbase packagebase platebase rockbase slabbase-load compressorbase-load plantbaseboardbaseline databasematbasementbaseplatebasic allowable stress intensity(RCC-M) basic coveringbasin designbasic flow diagrambasic function unitbasic gridbasic grid strapbasicity indexbasin(geographical)basis control modulebasketbasket gripbasketweave armorbastard filebatchbatch distillationbatch numberbatch processingbatch treatmentbatchingbatching tankbatter(of wall or embankment) batterybattery bankbattery chargerbattery packbattery pliersbattery roombaybay windowbayonet connector(quick disconnect) bayonet couplingbeadbead blastingbead collecting system(shot peening) bead collectorbead generatorbeadsbeambeam attenuationbeam clampbeam compassbeam index(ultrasonics)beam powerbearingbearing capacity(soils,etc) bearing cartridge bearing coverbearing end cover bearing framebearing framebearing housingbearing pedestalbearing platebearing pointbearing shaft sleeve bearing shellbearing shell half bearing shoebearing sleevebearing spanbearing stressbearing supportbearing surface bearingsbedbed v.beddingbedding mortarbedding tapebedplatebedrockbeginning of cycle(BOC) beginning of life(BOL) behaviorbellbell end (pipe)bell mouth (pipe)bell-mouth defectbell-shaped end (pipe) Belleville spring belleville washerbellows sealbellows seal valvebellows-type manometerbeltbelt conveyorbelt drivebelvederebench grinderbench markbench testbenchmarkbendbend radiusbend testbendingbending brakebending critical speedbending forcebending induced by thermal contraction bending machinebending momentbending pressbending radiusbending schedulebending strengthbending stressbending tablebending tensile strengthbending testbentonitebermbest efficiency pointbest estimate flowbeta decaybeta quenchbeta radioactivitybeta raysbeta valuebevelbevel anglebevel protractorbevel washerbevelingbeveling machinebiasingbibbibbbichromate-treatedbidbifilarbill of materialsbill of quantitiesbilletbimetalbimetal thermometerbinbinary cyclebinary signalbindbinderbindingbinding energybinding fatiguebinding postbinding screwbinding wirebinocularsbiological concentration biological concentration factor biological effect of radiation biological half-lifebiological holebiological protection biological shieldbiological shieldingbiological equivalent single dose bird cage(shipping cask)bird screenbirdproofbistablebitbite(control rods)bitumenbitumen feltbitumen solidification bituminous paintblack anodizedblack bodyblack plateblack sheetblackenedblackoutbladeblankblank panelblank contractblanking plateblanking-offblast cleaningblast furnace cementbled steambleedbleed v.bleed off v.bleed valvebleed-offbleedingbleeding point(turbine)bleedoffblendblend v.blend back additionblend batchblendback additionblending radiusblind flangeblind holeblind nutblind rivetblind scalerblindingblinding concreteblink v.blisterblisteringblockblock v.(circuit electronique)block and tackleblock diagramblock valveblock valveblockingblocking medium(radiography)blocking valveblockoutblood tissueblow down v.blow off v.blow-off circuitblowdownblowdown control ring(may be the upper or lower adjusting ring)blowdown coolerblowdown line(steam generator) blowdown nozzle(SG)blowdown pipeblowdown pressure(difference between set pressure and reseating pressure)blowdown pumpblowdown tankblowdown tap(SG)blowdown valveblowerblowout diaphragmblunt-nosed stampBNC terminalBNI (Balance of Nuclear Island) boardboard cardboard extenderboard swapping(fault clearing) bodybody burdenbody contaminationbody decontaminationbody endbody gasket;body-to-bonnet joint body radiocartographybody wave(earthquakes)body/bonnet nutboiler feedpumpboilermakerboilermakingboiling crisisboiling pointboltbolt and nutbolt cross-sectionbolt cutterbolt-onbolted bonnetbolted glandbolted linkbolted-pressure connector boltingbolting(bolts,screws,nuts,studs,washers,etc .)bondbond strengthbondedbonded areabonded flux;agglomerated fluxbonded warehousebondingbonding jumperbonding wirebone tissuebone-seekingbonnet(valve)bonnet bearingbonnet plugbonnet stop(prevents bonnet from jamming in body)boom(crane)booster fanbooster pumpbooster relaybooster rodboosting(pump)bootbooth(NDE)BOP(Balance of Plant)borate v.borated glassborated waterboreboreholeborescopeborescope built into the syringe borescope inspectionboric acid(12%)boric acid(12% w/o solution)boric acid batching tankboric acid concentrationboric acid evaporatorboric acid makeupboric acid pumpboric acid removalboric acid surge tankboric acid tankboric oxideboringboring barboring benchboring millboron concentrationboron concentration monitoring boron contentboron criticality searchboron dilutionboron equivalentboron injection tankboron makeupboron meterboron precipitationboron recycleboron recyclingboron releaseboron removalboron steelboron-coated proportional counter boron-lined ion chamberboron-lined ionization chamber boron-lined proportional counter borosilicate glassborosilicate glass tube borosilicate tubebossbottombottom end plug(fuel rod or thimble plug) bottom entrybottom fitting(fuel assembly)bottom frictionbottom grid assembly(fuel assembly) bottom guide tube flangebottom guide tube flange holebottom headbottom head instrument penetration bottom nozzle(fuel assembly)bottom suctionbottom surfacebottom viewbottoming tapbottoms(evaporator)boundaryboundary conditionsboundary markerboundary wallbourndon tubebow(assembly)bow springbowed rodbowingbowlbowl and shaft assemblysupport(multistage pumps)boxbox end socket wrenchbox girderbox gutterbox sectionbox socket wrenchbox wrenchbox wrench(12-point)box-outbracebracketbrackish waterbraidbraided packingbraided shieldingbrakebrake horsepowerbrakingbranchbranch connectionbranch pipe jointbranch pipe weldbranch raceway branching(disintegration) branching crackbrassbraze weldingbrazed jointbrazerbrazingbrazing pastebrazing powderbreachbreakbreak a vacuum v.break contactbreak in electrical continuity break vesselbreak-before-make contact break-in periodbreak-make transfer switch breakawaybreakaway force breakaway starting current breakaway torque breakdownbreaker modulebreaker with ultrashort breaking time breaker-fuse combinationbreaking around an obstruction breaking capacitybreaking strengthbreaking stressbreakoutbreastwallbreather pipebreeches pipebreechlockbreechlock bonnetbreechlock sealbremsstrahlungbrickbridgebridge girderBriggs pipe thread plugbright annealingbright-dim lampbrinebrine heaterbrittlebrittle fracturebroachbroachingbrokenbroken tapbronzebrought outbrought out to terminal blockbrown oxidebrushbrush v.(to remove excess slag) brush surface analyzerbrushing machine brushing unitbubble collapsebubble suitbubbler level sensor bubbling(welding defect) bucklebucklingbuckling lengthbuckling loadbuckling strength buckling testbufferbuffer tankbuffetingbug holes(concrete)build-up factorbuilderbuildingbuilding ground conductor building structure building-type switchboard buildupbuildup sequencebuilt-in reactivitybuilt-up backpressure built-up seat(hard facing) built-up weld deposite builtup roofingbuiltup sectionbulbbulgebulge jointbulkbulk boilingbulk densitybulk materialsbulk storage tankbulkhead(of an air lock)bulkhead connectorbulkingbullet-nose welded end plug(thimble tube) bullet-shaped end plug(thimble tube) bullet-shaped welded ene plug(thimble tube)bumperbumpless transfer systembundlebundle wrapper(steam generator) bundledbundlingbunkerburial depthburial in concrete(using encased duct) buriedburied cableburied grid electrodeburied pipeburied piping and cablesburied-cableburn-off rateburn-up life(neutron detector)burnable posionburnable posion assembly storage adapter burnable posion rodburnable posion rod assembly burnishingburnout(fuel)burnout heat fluxburnout pointburnout ratioburnup fractionburnup sharingburnup sharing fractionburr(concrete)burringburring machine(soyage) burstburst pressureburst testbusbus compartmentbus ductbus sectionbus voltage metering section busbarbush hammeringbushingbushing shellbuswaybusworkbutt jointbutt strapbutt weldbutt weldingbutterflybutterfly control valve butterfly valvebutteringbuttering on dissimilar metal buttress(retaining wall) buttress v.buttress dambuttress threadbuttweld endbuttweld end connection buzzerbypass v.(electronic circuit)bypass breakerbypass damperbypass flow ratebypass linebypass valvecab(lifting equipment)cabinetcablecable anchorcable bookcable boxcable bridgecable capcable chasecanle clampcable clipcable cuttercable deckcable depthcable destinationcable endcable end bushing(protects cable at entry to enclosure)cable end capcable entrancecable entrycable exitcable fillcable fittingscable floorcable gallerycable glandcable gland with seismic-resistant cable clampcable in conduitcable jointcable laddercable laid in trays cable layercable layingcable marking tool cable penetration cable pullercanle puller/tensioner cable pullingcable pulling eye cable rackingcable roomcable routing schedule cable runningcable schedulecable sleevecable spreading area cable spreading room cable storage yard cable strapcable support system cable tagcable termination cable tiecable tie applicator tool cable traycable tunnelcable tyingcable unreelercable vaultcabledcablemancablescablewaycableyardcablingcabling diagramcabling roomcadmium cut-offcadmium ratiocadmium-platedcadweld rebar splicecagecage control valvecage nutcage valve trimcage-guided valve trimcage-type plug disk globe valve caged laddercageless plug disk globe valve caisson(foundations)calaminecalcinationcalcinercalciningcalcining furnacecalciothermycalculationcalculation meshcalculation methodcalculation pointcalculation sheetcalculation timecalculational methodcalculatorcalibrate v.(instrumentation channel) calibrationcalibration benchcalibration blockcalibration coefficientcalibration holecalibration slopecalked joint。

焊接专业英语词汇

焊接专业英语词汇焊接欠缺 welding imperfection焊接缺陷 weld defect气孔 blowhole/ gas pore针尖状气孔 pinhole密集气孔 porosity条虫状气孔 wormhole裂纹 crack表面裂纹 surface crack咬边 undercut焊瘤 overlap凹坑 pit烧穿 burn through塌陷 excessive penetration未焊透 incomplete penetration/ lack of penetration 未熔合 lack of fusion/ incomplete fusion未焊满 incompletely filled weld根部凹陷 root concavity电弧擦伤 arc scratch夹渣 slag inclusion夹杂物 inclusion夹钨 tungsten inclusion白点 fish eye/ flake错边 misalignment/ dislocation试件 test piece试样 test specimen无损检验 nondestructive test破坏检验 destructive test外观检查 visual examination超声波探伤 ultrasonic inspection直射法超声波探伤straight beam method斜射法超声波探伤angle beam method液浸法超声波探伤immersion method射线探伤radiographic inspection/ radiographyX射线探伤X-ray radiographic inspectionγ射线探伤gamma-ray inspectionX射线工业电视探伤X-ray industrial television inspection 磁粉探伤magnetic particle inspection电磁探伤electromagnetic inspection/ eddy current test探伤灵敏度flaw detection sensitivity渗透探伤penetration inspection荧光探伤flurescent penetrant inspection着色探伤dye penetrant inspection密封性检验leak test气密性检验air tight test枕形气密检验pillow test耐压检验pressure test水压检验hydraulic test气压检验pneumatic test液晶检验liquid crystal test声发射检测acoustic emission testing面弯试验face bend testing背弯试验root bend test侧弯试验side bend test横弯试验horizontal bend test纵弯试验axial bend test压扁试验squeezing test焊接结构welded structure/ welded construction焊件weldment焊接部件weld assembly组装件built-up member接头设计joint design焊接应力welding stress焊接瞬时应力transient welding stress焊接残余应力welding residual stress热应力thermal stress收缩应力contraction stress局部应力local stress拘束应力constraint stress固有应力inherent stress固有应变区inherent strain zone残余应力测定residual stress analysis逐层切割法Sach’s methodX射线衍射法X-ray stress analysis小孔释放法Mathar method固有应变法inherent strain method消除应力stress relieving局部消除应力local stress relieving应力重分布stress redistribution退火消除应力stress relieving by annealing温差拉伸消除应力low temperature stress relieving 机械拉伸消除应力mechanical stress relieving应力松弛stress relaxation焊接变形welding deformation焊接残余变形welding residual deformation局部变形local deformation角变形angular distortion自由变形free deformation收缩变形contraction deformation错边变形mismatching deformation挠曲变形deflection deformation波浪变形wave-like deformation火焰矫正flame straightening反变形backward deformation焊接力学welding mechanics断裂力学fracture mechanics弹塑性断裂变形elasto-plastic fracture mechanics线弹性断裂力学linear elastic fracture mechanics延性断裂ductile fracture脆性断裂brittle fracture应力腐蚀开裂stress corrosion cracking热应变脆化hot straining embrittlement临界裂纹尺寸critical crack size裂纹扩展速率crack propagation rate裂纹张开位移(COD)crack opening displacement拘束度restraint intensity拘束系数restraint coefficient应变速率strain rate断裂韧度fracture toughness应力强度因子stress intensity factor临界应力强度因子critical stress intensity factors罗伯逊止裂试验Robertson crack arrest testESSO试验ESSO test双重拉伸试验doucle tension test韦尔斯宽板拉伸试验Well’s wide plate test帕瑞斯公式Paris formula断裂分析图fracture analysis diagram焊接车间welding shop焊接工作间welding booth焊接工位welding post/ welding station焊工welder电焊工manual arc welder气焊工gas welder焊接检验员weld inspector焊工培训welders training焊工模拟训练器trainer of synthetic weld焊工考试welder qualification test焊工合格证welder qualification/ welder qualified certification 钢板预处理steel plate pretreatment喷沙sand blast喷丸shot blast矫正straighten开坡口bevelling (of the edge)/ chanfering 装配assembly/ fitting安装erect刚性固定rigid fixing装配焊接顺序sequence of fitting and welding 焊接工艺评定welding procedure qualification 焊接工艺规程welding procedure specification 焊接工艺试验welding procedure test焊接工艺卡welding procedure card工序operational sequence焊接材料消耗定额welding consumables quota 焊接工时定额welder-hour quota清渣slag removal清根back gouging/ back chipping锤击peening返修次数number of rewelding焊接工作台welding bench装焊平台welding platen电磁平台electromagnetic platen焊接翻转机welding tilter焊接变位机positioner焊接滚轮架turning rolls焊接操作机manpulator焊工升降台welder’s lifting platform焊接夹具welding jig/ fixture磁力夹紧器magnetic jig螺旋推撑器screw operated tensioning unit焊丝盘绕机welding wire coiler焊条压涂机welding electrode extrusion press 红外线加热器infra-red heater干燥箱dryer焊条保温筒thermostat for electrode流量计flow meterCO2预热器CO2 heaterCO2干燥器CO2 desiccator焊接电缆welding cable电缆夹头welding connector地线earth lead地线夹头earth clamp焊接参数记录仪welding parameter recorder焊缝检测规weld gauge喷嘴通针tip cleaner测温笔tempil stick敲渣锤chipping hammer焊接衬垫backing/ welding backing保留垫板fusible backing/ permanent backing临时垫板temporary backing焊剂垫flux backing惰性气体衬垫inert-gas backing引弧板run-on tab/ end tab/ starting weld tab引出板run-off tab/ end tab定位板strong-back加强勒stiffener嵌条insert套环ferrule面罩helmet滤光镜片filter glass/ welding glass防护镜片cover glass/ plain glass气焊眼镜welding goggles焊接机器人welding robot点焊机器人spot welding robot弧焊机器人arc welding robot切割机器人cutting robot焊接机器人工作站welding robot station机器人运动自由degree of free for robot机器人工作空间robot working space轨迹重复精度path repeatability点位重复精度PTP repeatability焊接专家系统welding expert system焊接机器人示数welding robot play back焊接图象识别pattern recognition for welding焊接图象处理welding image processing计算机辅助焊接工艺设计computer-aided welding process programming (CAWPP) 计算机辅助焊接结构设计computer-aided design for welding structure焊接烟尘weld fume焊接发尘量total amount of fumes焊接烟尘浓度weld fume concentration焊接烟尘容限浓度threshold limit values of weld fume (TLV)焊接发尘速率weld fume emission rate焊接有害气体welding toxic gases/ weld harmful gases标定卫生空气需要量nominal hygienic air requirement焊工尘肺pheumocomsis of welder焊工锰中毒chronic occupational manganese poisoning of welder焊工氟中毒fluorosis of welder焊工金属烟热metal fume fever of welder电光性眼炎eye-flash (arc eye)电光性皮炎electro-photo dermatitis电弧紫外线灼伤ultraviolet ray burn防电击装置voltage reducing device除尘装置dust collection device焊工手套welding gloves护脚welding spats防护鞋shielding shoes熔接fusion welding压接pressure welding焊接过程welding process焊接技术welding technique焊接工艺welding technology/procedure焊接操作welding operation焊接顺序welding sequence焊接方向direction of welding焊接位置welding position熔敷顺序build-up sequence deposition sequence焊缝倾角weld slope/inclination of weld axis焊缝转角weld rotation/angle of rotation平焊位置flat position of welding横焊位置horizontal position of welding立焊位置vertical position of welding仰焊位置overhead position of welding平焊downhand welding/flat position welding横焊horizontal position welding立焊vertical position welding仰焊overhead position welding全位置焊all position welding:熔焊时,焊件接逢所处空间位置包括平焊、横焊、仰焊等位置所进行的焊接。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A. Fontana et al./ Fuel Processing Technology 48 (1996) 107-113
109
iron corresponds a capacity of a waste oil consumption of about 100 ton per day in one blast furnace. The second one consists in coprocessing the treated waste oil in a coal liquefaction or gasification process, or even with coal in a coke oven plant. The third one consists in a copyrolysis of a coal-oil mixture which allows the recuperation of the hydrocarbons with the gas and liquid fractions of the coal, the solid residue of the oil being recovered with the semi coke. This last product is fated to be burned in a power-plant or gasified and has to be free of heavy metals. The high long chain paraffmic content of the waste oil will favor the formation of BTX during the copyrolysis with coal, leading to an important upgrade of the produced tars. The formation of BTX during the thermal cracking of the long chain paraffins is intensively studied in our laboratory on the n-decane, choosen as mode1 compound [ 14-171. This is a true valorization of the waste oils, the absence of contaminants in the residue allows burning it with the semi coke. This project is under assay with the Instituto de Carboquimica, Zaragosa, Spain and supported by the CCE. Preliminary results of lead elimination from waste oil are described hereafter.
University Libre de Bruxelles, Faculte’ des Sciences Appliquies, Service Chimie GMrale SO au. F.D. Roosevelt, cp 165, B 1050, Brussels, Belgium et Carbochimie,
Keywords: Heavy metals; Waste oils; Lead, Oils
1. Introduction
According to the international regulations, waste lubricants are considered as hazardous substances; their transport, disposal and use are regulated. The waste oils amounts generated every year have been evaluated for selected countries, late 1980s or early 1990s (Table 1) [l-4]. The worldwide annual consumption of lubricants is
reaching 40 million tons. One large part of these waste oils are used motor oils which contain mainly paraffinic, naphthenic and aromatic hydrocarbons, additives, degradation products and metals. Among the metal impurities, lead is actually the major one [4,5]. The lead content of the used motor oils is mainly caused by the use of tetraalkyl lead in the fuel, so that a general decrease is observed, from 1% in the late 197Os, down to 0.1% presently. With a content of 1OOOppm of lead, the use of these waste oils causes problems.
Received 15 March 1995; accepted4 March 1996
Abstract
The elimination of lead from used motor oils is performed by ultrasonic lixiviation using nitric acid, the lead being recuperated as lead sulfate during the acid regeneration. Beside the treatment of waste oils by the traditional methods, this new processing way gives alternative routes, not used usually for waste oils, such as introduction through the blowpipes of a blast furnace, addition to the coal in coke oven plants, coprocessing with coal in liquefaction or gasification plants, or even in copyrolysis with coal.
* Corresponding
author. 0 1996
0378-3820/%/$15.00 Copyright PII SO378-3820(96)01032-6
Elsevier Science B.V. All rights reserved.
108
A. Fontana et al. /Fuel
Processing Technology 48 (1996) 107-I 13
Table 1 Amounts of waste oils generated yearly Country Canada USA Austria Fl-aIlCe West Germany Norway embourg Spain Year 1989 1992 1983 1992 1987 1989 1990 1990 T/year 370000 5000000 650000 290000 860000 55000 10000 300000
FUEL PROCESSING TECHNOLOGY
Fuel Processing
Technology 48 ( 19%) 107- 113
Ultrasonic removal of heavy metals from waste oils
A. Fontana, C. Braekman-Danheux *, C.G. Jung
The major part of the collected waste oils is burned or dumped on the ground. Only a small part is treated, generally for recycling in fresh oil production. The sulfuric acid/Fuller’ s earth process gives a reclaimed oil equivalent to the fresh one in respect of the viscosity index, colour, ash and water content and flash point [6]. But the treatment is very expensive and results in high yield of waste products with high disposal costs (acid tar). The Mohawk/Evergreen Process combines, after a pretreatment, an atmospheric flash evaporation, a vacuum distillation, a.thin film evaporation and a catalytic high pressure hydrogenation. This process yields 65% lube oil and 10% fuels, but also 15% asphalts flux and 10% waste waters [2,‘ 7]. The Entra re-refining process [8] consists in applying a controlled high energy level to the waste oil for an extremely short time so that the hydrocarbon chains pass the stimulated zone intact, while additives are depleted and form a bituminous material. The yield of light yellow lubricant basestock reaches about 85%. For all these processes, the yield of waste material is between 10% and 20% and it contains the major part of the metals. Another way of treatment concerns the total gasification of the waste oil in a fluidized bed [9] to produce a synthetic gas containing about 25% H,, 20% CO and 11% CH,. The metal oxides will have to be mixed with the fluidization product, and separated afterwards. As dumping waste oils causes a dramatic pollution of the water reserves, and furthermore burning waste oils containing lead is dangerous, it is then important to decrease their lead content, especially in countries where the automobile park is rather old, like in southern and eastern Europe, Asia, Africa and Latin America. We develop a new process, now under licence [lo], to decrease the metal content of waste oils. Beside the treatment of waste oils by the traditional methods, we enphasize that our new processing gives three possible alternative routes, not usually used for waste oils. The first one consists in injecting the treated waste oil through the blowpipes of blast furnaces [l l-131, or even, coal-waste oils slurries. The injection of 30 to 35 kg oil per ton of pig iron saves 50 to 60 kg coke. A mass balance shows that the other impurities of the oil does not interfere with the pig iron quality. At a daily capacity of 3000 ton of pig
相关文档
最新文档