27.1.2 第1课时 圆的对称性
华师大版圆的对称性第一课时课件

弦的定义和性质
解释弦的定义、性质以及与弦相关的弧长和圆角,帮助您理解弦和圆的几 何关系。
圆心角和圆周角探究
通过具体案例和图形演示,揭示圆心角和圆周角的概念、计算方法以及它们 与弦和弧长的关系。
对称轴和对称中心
探索圆的对称性质,深入研究对称轴、对称中心等概念,并展示对称性在圆上的应用。
圆的对称性质及应用
华师大版圆的对称性第一 课时ppt课件
这个PPT课件将带您探索圆的定义、性质和对称性质,并结合实例和练习帮助 您更好地理解圆的概念与特点。
圆的定义和性质
通过详细介绍圆的定义、半径、直径、弧、弦等基本概念,让您全面理解圆 的性质和基本要素。
弧的定义和测量
深入讨论弧的定义、测量方法和相关的圆心角和圆周角,让您准确理解弧的 概念和测量技巧。
介绍圆的各种对称性质,如旋转对称、轴对称、中心对称等,以及在几何问题中应用对称性的方法和技巧。
习题讲解与课堂练习
通过针对性的习题讲解和课堂练习,帮助您巩固所学的知识,并提升解题能力与应用能力。
圆的认识-28.1.2圆的对称性课件(华师)

基础习题
01
等边三角形
02
等腰三角形
03
直角三角形
Hale Waihona Puke 04等腰直角三角形
提高习题
01
题目4:已知圆O的半径为5cm,点A、B、C在圆上,若 △ABC是等边三角形,则它的边长是多少?
02
题目5:若直线l经过圆心O,且与圆O相交于A、B两点,则 △OAB一定是( )。
03
等边三角形
04
等腰三角形
05
直角三角形
通过学习圆的对称性,可以帮助学生更好地理解圆的性质和特点,提高他们的几何 思维能力和空间想象力。
学习目标
掌握圆的基本概念和 性质,理解圆心、半 径、直径等基本元素。
能够运用圆的对称性 解决一些实际问题, 提高解决实际问题的 能力。
理解圆的对称性,掌 握旋转对称、中心对 称、轴对称等概念。
02 圆的基本概念
使用直径作图
通过一个已知点和该点在 圆上的一个已知点,可以 画出该圆的直径。
03 圆的对称性
轴对称性
定义
如果一个图形沿着一条直线折叠, 直线两旁的部分能够互相重合, 那么这个图形叫做轴对称图形, 这条直线叫做对称轴。
圆的轴对称性
圆关于任何经过其中心的直线都是 轴对称的。这意味着你可以沿任何 这样的直线折叠圆,两侧的部分会 完全重合。
圆上三点确定一个圆
不在同一直线上的三个点可以确定一 个唯一的圆,这三个点是圆心和两个 圆上的点。
圆的作图
01
02
03
使用圆规作图
圆规的两只脚张开到一定 距离,然后固定一只脚在 纸上,另一只脚旋转画出 一个圆。
通过三点作圆
不在同一直线上的三个点 可以确定一个圆的位置和 大小,通过连接这三个点 可以画出该圆。
(完整版)《圆的对称性》教案

《圆的对称性》教案教学目标1.知识与技能(1)理解圆的轴对称性和中心对称性,会画出圆的对称轴,会找圆的对称中心;(2)掌握圆心角、弧和弦之间的关系,并会用它们之间的关系解题.2.过程与方法(1)通过对圆的对称性的理解,培养学生的观察、分析、发现问题和概括问题的能力,促进学生创造性思维水平的发展和提高;(2)通过对圆心角、弧和弦之间的关系的探究,掌握解题的方法和技巧.3.情感、态度与价值观经过观察、总结和应用等数学活动,感受数学活动充满了探索性与创造性,体验发现的乐趣.教学重难点重点:对圆心角、弧和弦之间的关系的理解.难点:能灵活运用圆的对称性解决有关实际问题,会用圆心角、弧和弦之间的关系解题.教学过程一、创设情境,导入新课问:前面我们已探讨过轴对称图形,哪位同学能叙述一下轴对称图形的定义?(如果一个图形沿着某一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴).问:我们是用什么方法来研究轴对称图形?生:折叠.今天我们继续来探究圆的对称性.问题1:前面我们已经认识了圆,你还记得确定圆的两个元素吗?生:圆心和半径.问题2:你还记得学习圆中的哪些概念吗?忆一忆:1.圆:平面上到____________等于______的所有点组成的图形叫做圆,其中______为圆心,定长为________.2.弧:圆上_____叫做圆弧,简称弧,圆的任意一条____的两个端点分圆成两条弧,每一条弧都叫做圆的半径.__________称为优弧,_____________称为劣弧.3.___________叫做等圆,_________叫做等弧.4.圆心角:顶点在_____的角叫做圆心角.二、探究交流,获取新知知识点一:圆的对称性1.圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?2.大家交流一下:你是用什么方法来解决这个问题的呢?动手操作:请同学们用自己准备好的圆形纸张折叠:看折痕经不经过圆心?学生讨论得出结论:我们通过折叠的方法得到圆是轴对称图形,经过圆心的一条直线是圆的对称轴,圆的对称轴有无数条.知识点二:圆的中心对称性.问:一个圆绕着它的圆心旋转任意一个角度,还能与原来的图形重合吗?让学生得出结论:一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合,我们把圆的这个特性称之为圆的旋转不变性.圆是中心对称图形,对称中心为圆心.做一做:在等圆⊙O 和⊙O ' 中,分别作相等的圆心角∠AOB 和A O B '''∠(如图3-8),将两圆重叠,并固定圆心,然后把其中的一个圆旋转一个角度,得OA 与OA '重合.你能发现哪些等量关系吗?说一说你的理由.小红认为»¼''=AB A B ,''=AB A B ,她是这样想的: ∵半径OA 重合,'''∠∠=AOB A O B ,∴半径OB 与OB '重合,∵点A 与点A '重合,点B 与点B '重合,∴»AB 与¼A B ''重合,弦AB 与弦A B ''重合, ∴»AB =¼A B '',AB =A B ''. 生:小红的想法正确吗?同学们交流自己想法,然后得出结论,教师点拨.结论:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.知识点三:圆心角、弧、弦之间的关系.问:在同圆或等圆中,如果两个圆心角所对的弧相等,那么它们所对的弦相等吗?这两个圆心角相等吗?你是怎么想的?学生之间交流,谈谈各自想法,教师点拨.结论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.三、例题讲解例:如图3-9,AB ,DE 是⊙O 的直径,C 是⊙O 上的一点,且»»=AD CE ,BE 与CE 的大小有什么关系?为什么?解:BE =CE ,理由是:∵∠AOD =∠BOE ,∴»»=AD BE , 又∵»»22=+AD CEa b∴»»=BE CE,∴BE=CE.议一议在得出本结论的过程中,你用到了哪些方法?与同伴进行交流.四、随堂练习1.日常生活中的许多图案或现象都与圆的对称性有关,试举几例.2.利用一个圆及其若干条弦分别设计出符合下列条件的图案:(1)是轴对称图形但不是中心对称图形;(2)是中心对称图形但不是轴对称图形;(3)既是轴对称图形又是中心对称图形.3.已知,A,B是⊙O上的两点,∠AOB=120°,C是»AB的中点,试确定四边形OACB 的形状,并说明理由.五、知识拓展如图,在△ABC中,∠C=90°,∠B=25°,以点C为圆心,AC为半径的圆交AB于点D,求»AD所对的圆心角的度数.六、自我小结,获取感悟1.对自己说,你在本节课中学习了哪些知识点?有何收获?2.对同学说,你有哪些学习感悟和温馨提示?3.对老师说,你还有哪些困惑?七、布置作业7273-P习题1-3题.。
公开课课件 圆的对称性(1) 共19页PPT资料

∵⊙O关于直径CD对称,
D
∴当圆沿着直径CD对折时,点A 与点B重合, AC和BC重合, AD 和BD重合. ∴AC =BC, AD
=BD.
垂径定理
定理 垂直于弦的直径平分弦,并且平分弦所的两条弧.
C
A M└ ●O
D
如图∵ CD是直径,
B
CD⊥AB,
∴AM=BM,
A⌒C =B⌒C,
A⌒D
⌒
=BD.
D
平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧.
注意
垂径定理的逆定理
如图,根据垂径定理与推论可知对于一个圆和一
条直线来说。如果在下列五个条件中:
⑤①A⌒DC=BD⌒D是. 只直要径具, ②备其CD中⊥两A个B,条③件A,就M可=B推M出, 其④A余⌒C三=B⌒个C,结论.
C
A M└
B
.
称图形呢?
圆的对称性
圆是轴对称图形.
圆的对称轴是任意一条经过圆心的直线, 它有无数条对称轴.
圆也是中心对称图形.
●O
它的对称中心就是圆心.
圆的相关概念
圆上任意两点间的部分叫做圆弧,简称弧. 以A,B两点为端点的弧.记作A⌒B ,读作“弧 A连B”接. 圆上任意两点间的线段叫做弦(如弦AB).
经过圆心的弦叫做直径(如直径AC).
作弦的垂线,或作垂直于弦的直径,连 结半径等辅助线,为应用垂径定理创造 条件。
P101页习题3.2 第2,3题
不学自知,不问自晓, 古今行事,未之有也.
课堂小结
1、圆是轴对称图形,其对称轴是每一条直径所在的直线或 经过圆心的每一条直线。
2、垂直于弦的直径平分这条弦,并且平分弦弦所对的两条弧。 C
圆的对称性(第1课时)精选教学PPT课件

湖南教育出版社
第 章
3
圆
观察自行车的车轮和转盘以及链条,你能说出车轮、 转盘的特征吗?它们与链条之间有怎样的关系呢? 这就是圆的一种原型. 本章要研究的是圆的性质、直线与圆、圆与圆的位 置关系.
3.1.1 圆的对称性
如图是国际奥林匹克运动 会旗的标志图案.
O· E B
从而AE=BE. 现在你能说出道理吗
D
?
?
为什么圆的任意一条直径所在的直线是它的对称轴
如图,EF是⊙O的任意一条直径,
P是⊙O上任意一点, E
P
F
过点P作EF的垂线,与⊙O交点Q,
直线EF与线段PQ的关系如何?
M
· O
Q
根据定理1,EF平分 弦PQ,从而直线EF是线 段PQ的垂直平分线. 于是点P与点Q关于直线EF对称,因此,圆O关于直线EF对称. 这样我们证明了圆还有下述性质:
圆是到一定点的距离 等于定长的所有点组成 的图形. 这个定点叫作圆心. 定长叫作半径.
· O
A
圆也可以看成是一个动点绕一个定点旋转 一周所形成的图形,定点叫作圆心. 定点与动点的连线段叫作半径. 如图,点O是圆心.
线段OA的长度是一条半径.
线段OA的长度也叫作半径.
以点O为圆心的圆叫 作圆O,记作⊙O
圆是轴对称图形,任意一条直径所在的直线都是ห้องสมุดไป่ตู้的对称轴
练
习
1、自行车的车轱辘是圆形,为什么?
把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等 于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持 不变,因此,当车辆在平坦的路上行驶时,坐车的人会感觉到非常平 稳,这也是车轮都做成圆形的数学道理.
圆的对称性PPT演示课件

7
结论
二、点与圆的位置关系有三种:
A C O 到圆心的距离小于半径 的点叫作圆内的点; 到圆心的距离大于半径 B 的点叫作圆外的点.
8
要点归纳
二、点和圆的位置关系
设点到圆心的距离为d,圆的半径为r,在点和圆三种不同位 置关系时,d与r有怎样的数量关系?
P d P d P r
d
r
r d<r
点P在⊙O内 点P在⊙O外
练一练 如图. (1)请写出以点A为端点的优弧及劣弧; AF, AD, AC, AE. 劣弧: AFE, AFC,AED, ACD. 优弧: (
D F A O C B E
(
(2)请写出以点A为端点的弦及直径.
弦AF,AB,AC.其中弦AB又是直径.
(
(
(
(
(
(
14
探究
1.如图,在一块硬纸板和一张薄的白纸分别画一个圆,使 它们的半径相等,把白纸放在硬纸板上面,使两个圆的圆 心重合,观察这两个圆是否重合.
C
·
1.圆是中心对称图形,圆心是它的对称中心 . 2.圆是轴对称图形,任意一条直径所在的直 线都是圆的对称轴
18
O
D
议一议
如图,为什么通常要把车轮设计成圆形? 请说说理由.
19
议一议 为什么通常把车轮设计成圆形?说说理由.
把车轮做成圆形,车轮上各点到车轮中心(圆心)的
距离都等于车轮的半径,当车轮在平面上滚动时,车轮中
D E B
四 条.
A
O
F
C
32
2.正方形ABCD的边长为2cm,以A为圆心2cm为半径作 ⊙A,则点B在⊙A 上 ;点C在⊙A 外 ;点D在⊙A 上 . 3.⊙O的半径r为5㎝,O为原点,点P的坐标为(3,4), 则点P与⊙O的位置关系为 ( B ) A.在⊙O内 C.在⊙O外 B.在⊙O上 D.在⊙O上或⊙O外
华师大版圆的对称性第一课时课件
圆。
PART 06
总结与展望
REPORTING
本课重点回顾
01
02
03
圆的对称性定义
理解什么是圆的对称性, 以及如何判断一个图形是 否具有对称性。
圆的对称轴
掌握如何找到圆的对称轴 ,并理解对称轴在圆中的 作用。
圆的对称性质
掌握圆的对称性质,如对 称点的连线经过对称轴, 对称轴垂直平分对称点的 连线等。
PART 05
课堂互动与练习
REPORTING
问题解答
01
02
03
04
题目1
什么是圆的对称性?
答案1
圆的对称性是指圆在旋转或平 移过程中,其形状和大小保持
不变的性质。
题目2
如何判断一个图形是否具有圆 的对称性?
答案2
可以通过观察图形的旋转或平 移后的形状是否与原图形重合
来判断。
学生互动讨论
讨论主题
在日常生活和生产实 践中,圆的对称性应 用广泛。
对称性的定义与重要性
对称性是指图形在某种变换下 保持不变的性质。
对称性是数学中一个重要的概 念,广泛应用于几何、代数、 分析等领域。
掌握对称性的知识有助于理解 其他几何图形的性质和特点。
圆的对称性简介
圆具有旋转对称性,即绕圆心旋 转任意角度后仍与原图重合。
圆还具有轴对称性,即沿直径折 叠后与另一半重合。
圆的对称性在几何、代数、分析 等领域有着广泛的应用。
PART 02
圆的对称性概念
REPORTING
圆的基本性质
圆上任一点到圆心的距离相等
01
这是圆的基本定义,也是圆的根本性质。
初中数学课件-圆的对称性课件北师大版2
(1)此图是轴对称图形,对称轴是 直径CD所在的直线
(2)AP=BP, A⌒C=B⌒C,A⌒D=B⌒D
初中数学课件-圆的对称性课件北师大 版2( 精品课 件)
D
O
P
A
B
C
初中数学课件-圆的对称性课件北师大 版2( 精品课 件)
已知:在☉O中,CD是直径,AB是弦,AB⊥CD,
垂足为P. 求证:AP=BP, A⌒C =B⌒C,A⌒D =B⌒D.
初中数学课件-圆的对称性课件北师大 版2( 精品课 件)
初中数学课件-圆的对称性课件北师大 版2( 精品课 件)
在等圆中探究
如图,在等圆中,如果∠AOB=∠CO ′ D,你发现
的等量关系是否依然成立?为什么?
FB
C
ED
O· A
·O'
初中数学课件-圆的对称性课件北师大 版2( 精品课 件)
通过平移和旋转将两个等圆变成同圆
初中数学课件-圆的对称性课件北师大 版2( 精品课 件)
初中数学课件-圆的对称性课件北师大 版2COD,那么,A⌒B与C⌒D,
弦AB与弦CD有怎样的数量关系?
由圆的旋转不变性,我们发现: D
在⊙O中,如果∠AOB= ∠COD,
C B
· OA
那么,A⌒B=C⌒D,弦AB=弦CD
课堂小结
圆心角
概念:顶点在圆心的角
弦、弧、圆心 角的关系定理
应用提醒
在同圆或等圆中 圆心角 相等
初中数学课件-圆的对称性课件北师大 版2( 精品课 件)
①要注意前提条件; ②要灵活转化.
弧 相等
弦 相等
初中数学课件-圆的对称性课件北师大 版2( 精品课 件)
27.1.2 圆的对称性 第2课时 垂径定理
圆的对称性教学设计及知识结构图
28.1.2圆的对称性新航中学郝红伟教学目标1.使学生知道圆是中心对称图形和轴对称图形,并能运用其特有的性质推出在同一个圆中,圆心角、弧、弦之间的关系,2.能运用这些关系解决问题,培养学生善于从实验中获取知识的科学的方法。
教材分析:重点:由实验得到同一个圆中,圆心角、弧、弦三者之间的关系。
难点: 运用同一个圆中,圆心角、弧、弦三者之间的关系解决问题。
教学方法:自主学习,合作探究教学设备及辅助工具多媒体 CAI课件教学过程:一、创设情境,导入新课上一节课我们学习了圆的基本元素,本节我们学习圆的对称性的第一课时(板书课题)二、揭示目标(投影展示学习目标)能运用同一个圆中,圆心角、弧、弦三者之间的关系解决实际问题三、进行新课(一)自学指导阅读教材九年级下册P35-361、圆是对称图形吗?它有哪些对称性?能否用手中的圆演示出它的各种对称性呢?圆的对称轴在哪里,对称中心和旋转中心在哪里? (学生动手操作总结出圆既是轴对称图形,又是中心对称图形,也是旋转对称图形。
旋转角度可以是任意度数。
对称轴是过圆心任意一条直线,圆心是圆的对称中心和旋转中心)2、探究在同一个圆中圆心角、弧、弦之间有什么关系?(学生动手操作总结出在同一个圆 中,如果圆心角相等,那么它所对的弧相等、所对的弦相等。
在同一个圆中,如果弧相等,那么所对的圆心角相等、所对的弦相等。
在同一个圆中,如果弦相等,那么所对的圆心角相等、圆心角所对的弧相等。
学生回答后教师进行总结 (二)考(自学检测性考试)试一试你的能力1、相等的圆心角所对的弧相等。
( )2、相等的弧所对的弦相等。
( )3、相等的弦所对的弧相等。
( )4、如图,⊙O 中,AB=CD ,则5、你会做吗?如图,在⊙O 中, AC=BD , 求∠2的度数,解:∵AC=BD∴AC-BC=BD-BC (等式的性质) ∴AB=CD∴∠1=∠2=45°(在同圆中,相等的弧所对的圆心角相等) (过程由学生版演后进行纠正)四、课后练习1.如图,在⊙O 中,AB =AC ,∠B =70°. 求∠C 度数. 解:∵AB =AC ∴AB =AC (在同一个圆 中,如果弧相等,那么它所对的弦相等。
圆的对称性—知识讲解(基础)
圆的对称性—知识讲解(基础)【学习目标】1.理解圆的对称性;并能运用其特有的性质推出在同一个圆中,圆心角、弧、弦之间的关系,能运用这些关系解决问题,培养学生善于从实验中获取知识的科学的方法;理解弦、弧、半圆、优弧、劣弧、等弧等与圆有关的概念,理解概念之间的区别和联系;2.通过探索、观察、归纳、类比,总结出垂径定理等概念,在类比中理解深刻认识圆中的圆心角、弧、弦三者之间的关系;3. 掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、圆的对称性圆是轴对称图形,过圆心的直线是它的对称轴,有无数条对称轴.圆是中心对称图形,对称中心为圆心.要点诠释:圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.证明:连结OC、OD∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)∴直径AB是⊙O中最长的弦.2.弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.要点三、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.要点四、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)要点五、弧、弦、圆心角的关系1.圆心角与弧的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.2. 圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意关系中不能忽视“同圆或等圆”这一前提.3. 圆心角的度数与它所对的弧的度数相等.【典型例题】类型一、应用垂径定理进行计算与证明1.(2015•巴中模拟)如图,AB为半圆直径,O为圆心,C为半圆上一点,E是弧AC的中点,OE交弦AC于点D,若AC=8cm,DE=2cm,求OD的长.【答案与解析】解:∵E为弧AC的中点,∴OE⊥AC,∴AD=AC=4cm,∵OD=OE﹣DE=(OE﹣2)cm,OA=OE,∴在Rt△OAD中,OA2=OD2+AD2即OA2=(OE﹣2)2+42,又知0A=OE,解得:OE=5,∴OD=OE﹣DE=3cm.【总结升华】主要是解由半径、弦的一半和弦心距(圆心到弦的垂线段的长度)构成的直角三角形.举一反三:【变式】如图,⊙O中,弦AB⊥弦CD于E,且AE=3cm,BE=5cm,求圆心O到弦CD 距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
讲授新课
一 圆的对称性
说一说
(1)圆是轴对称图形吗?如果是,它的对称轴是什 么?你能找到多少条对称轴? (2)你是怎么得出结论的? 用折叠的方法
●O
圆的对称性: 圆是轴对称图形,其对称轴 是任意一条过圆心的直线.
观察:1.将圆绕圆心旋转180°后,得到的图形与原图
形重合吗?由此你得到什么结论呢?
在⊙O中,如果∠AOB= ∠COD, 那么,» AB
»D C
A
,弦AB=弦CD
在等圆中探究 如图,在等圆中,如果∠AOB=∠CO ′ D,你发现
的等量关系是否依然成立?为什么?
A B
C D
O
·
· O′
归纳 通过平移和旋转将两个等圆变成同一个圆,我们发现:如
⌒ ⌒ 果∠AOB=∠COD,那么,AB =CD ,弦AB=弦CD.
要点归纳 弧、弦与圆心角的关系定理
在同一个圆中,如果圆心角相等,那么它们所对
的弧相等,所对的弦相等.
①∠AOB=∠COD
C D O B A
⌒ ⌒ ②AB=CD ③AB=CD
想一想:定理“在同圆或等圆中,相等的圆心角所 对的弧相等,所对的弦也相等.”中,可否把条件 “在同圆或等圆中”去掉?为什么? 不可以,如图.
圆心角相等,所对的弦相等. 在同一个圆中,如果弦相等,那么它们所对的
圆心角相等,所对的弧相等.
关系结构图
抢答题
1.等弦所对的弧相等.
2.等弧所对的弦相等.
(
) ×
( √ )
3.圆心角相等,所对的弦相等.
(
×)
C
4. 如图,AB 是⊙O 的直径, BC = CD = DE , ∠COD=35°,∠AOE = 75° . E D
D
AB =C D.
能力提升: ⌒ ⌒ 如图,在⊙O中,2∠AOB=∠COD,那么CD=2AB成立吗? CD=2AB也成立吗?请说明理由;如不是,那它们之间的 关系又是什么? ⌒ ⌒ 答:CD=2AB成立,CD=2AB不成立.
» D 的中点E,连接OE.那么 不D
∠AOB=∠COE=∠DOE,所以 =
D O B A
C
题设 那么
结论 圆心角所对的弧相等 圆心角所对的弦相等 弧所对的圆心角相等 弧所对的弦相等
如果圆心角相等
在 同 圆 或 等 圆 中
如果弧相等
那么
弦所对应的圆心角相等
如果弦相等
那么
弦所对应的优弧相等 弦所对应的劣弧相等
要点归纳
弧、弦与圆心角关系定理的推论
在同一个圆中,如果弧相等,那么它们所对的
(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相等吗?
为什么? 解:OE=OF. 理由如下:
OE AB,OF CD , AE 又 又 1 2 AB,CF 1 2 CD.
A B = C D , A E = C F . O A= O C , R t A O E ≌ R t C O F .
A
· O
B
三 关系定理及推论的运用
典例精析
»C = C »D = D » E, 例1 如图,AB是⊙O 的直径, B
∠COD=35°,求∠AOE 的度数.
E D C A · O 解: ∵
»C = C »D = D » E, B
BO C C O D D O E =35 ,
B
75 .
⌒ ⌒ 例2 如图,在⊙O中, AB=AC ,∠ACB=60°, 求证:∠AOB=∠BOC=∠AOC. ⌒ ⌒ 证明:∵AB=CD , ∴ AB=AC.△ABC是等腰三角形. 又∠ACB=60°, · O C A
B
∴ △ABC是等边三角形 , AB=BC=CA. ∴ ∠AOB=∠BOC=∠AOC. 温馨提示:本题告诉我们,弧、圆心角、弦灵活转化 是解题的关键.
A
180 °
圆是中心对称图形
2.把圆绕圆心旋转任意一个角度呢?仍与原来的
圆重合吗?
·
α O
圆是旋转对称图形,具有旋转不变性.
二 圆心角、弧、弦之间的关系
在同圆中探究 ⌒, ⌒ 与CD 在⊙O中,如果∠AOB= ∠COD,那么,AB 弦AB与弦CD有怎样的数量关系?
D · O
C B
归纳 由圆的旋转不变性,我们发现:
»E D
» AB
=
»E C
.
»D C
=2
» A B ,弦AB=CE=DE,在
△CDE中,CE+DE>CD,即CD<2AB.
课堂小结
圆心角
概念:顶点在圆心的角 在同圆或等圆中
弦、弧、圆心角 的 关 系 定 理
圆心角 相等
应用提醒 ①要注意前提条件; ②要灵活转化.
弧 相等
弦 相等
课后作业
见《学练优》本课时练习
填一填: 如图,AB、CD是⊙O的两条弦. ( AB=CD , ∠ AOB= ∠COD (1)如果AB=CD,那么___________ ____________ . (
(
AB=CD AOB= ∠COD (2)如果 AB=CD ,那么____________ ,∠ _____________ .
( AB=CD . AB=CD (3)如果∠AOB=∠COD,那么_____________ ,_________ (
27.1 圆的认识
2.圆的对称性
第1课时 圆的对称性
导入新课 讲授新课 当堂练习 课堂小结
学习目标 1.理解掌握圆的对称性.(重点) 2.运用圆的对称性研究圆心角、弧、弦之间的关系. (难点) 3.掌握圆心角、弧、弦之间的关系,并能加以应用. (难点)
导入新课
情境引入
熊宝宝要过生日了!要把蛋糕平均分成四块, 你会分吗?
的关系是( A ) ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ A. AB=2CD B. AB>CD C. AB<CD D. 不能确定
»C 4.如图,已知AB、CD为⊙O的两条弦,» AD B
求证:AB=CD.
证 明 : 连 接 AO ,BO ,C O ,D O .
»C , Q » AD B
C O
.
A
B
AOD BOC. AO D + BO D = BO C + BO D . 即 A O B C O D,
OE OF.
(
A
E O· F C
B D
当堂练习
1.如果两个圆心角相等,那么
A.这两个圆心角所对的弦相等
(D )
B.这两个圆心角所对的弧相等
C.这两个圆心角所对的弦的弦心距相等 D.以上说法都不对
2.弦长等于半径的弦所对的圆心角等于 60 ° . ⌒与 ⌒ 3.在同圆中,圆心角∠AOB=2∠COD,则AB CD