电路分析第01章电路元件和电路定律
合集下载
电路分析基础第一章 电路模型和电路定律

+
–
+
–
+
实际方向
实际方向
+
U >0
U<0
上页
下页
电压参考方向的两种表示方式
(1) 用正负极性表示
+
(2) 用双下标表示
U
A
UAB
B
UAB =UA- UB= -UBA
上页 下页
3. 关联参考方向 元件或支路的u,i 采用相同的参考方向称之为关联 采用相同的参考方向称之为 参考方向,即电流从电压的“+”极流入,从“-” 极流出该元件。反之,称为非关联参考方向。 极流出该元件
P6吸 = U 6 I 3 = (−3) × (−1) = 3W
上页 下页
注
对一完整的电路,发出的功率=吸收的功率
3. 电能(W ,w)
在电压、电流一致参考方向下,在t0到t的时间内 该部分电路吸收的能量为
w(t0 , t ) = ∫ p (τ ) dτ = ∫ u (τ )i (τ ) dτ
t0 t0
电源 Sourse
灯 Lamp
RS US 电路模型
R
Circuit Models 干电池 Battery
上 页 下 页
电路理论中研究的是 理想电路元件构成的电路(模型)。
电路模型,不仅能够反映实际电路及 其器件的基本物理规律,而且能够对 其进行数学描述。这就是电路理论把 电路模型作为分析研究对象的实质所 在。
干电池 Battery 电路理论中,“电路”与“网络”这两个术语可通用。“网络” 的含义较为广泛,可引申至非电情况。
例:手电筒电路
开关 灯泡
10BASE-T wall plate
1 第1章 电路模型和电路定律

电感元件 只具有储 只具有储 存磁能的 存磁能的 电特性
电容元件 只具有储 只具有储 存电能的 存电能的 电特性
理想电压源 输出电压恒 定,输出电 流由它和负 载共同决定
理想电流源 输出电流恒 定,两端电 压由它和负 载共同决定
实际电路与电路模型
S 电 源 负 载 R0 I
+
RL U
电源
+ _US
电路模型(circuit model)
电路模型:由理想电路元件和理想导线互相连接而成。 电路模型:由理想电路元件和理想导线互相连接而成。
实际电路器件品种多,电磁特性多元而复杂, 实际电路器件品种多,电磁特性多元而复杂, 直接画在电路图中困难而繁琐,且不易定量描述。 直接画在电路图中困难而繁琐,且不易定量描述。
p发 = ui
例
U = 5V, I = - 1A 5V,
u
–
P发= UI = 5×(-1) = -5 W 5× p发<0,说明元件实际吸收功率5W <0,说明元件实际吸收功率5W
能量的计算
dw t) ( 两边从根据功率的定义 p(t) = ,两边从-∞到t dt
积分,并考虑w(-∞) = 0,得 积分, 0,
电 电
负 载
–
电
电
电路模型:由理想元件及其组合代表实际电路器件, 电路模型:由理想元件及其组合代表实际电路器件,与 实际电路具有基本相同的电磁性质,称其为电路模型。 实际电路具有基本相同的电磁性质,称其为电路模型。 通常用电路图来表示电路模型
利用电路模型研究问题的特点 1.主要针对由理想电路元件构成的集总参数电路, 1.主要针对由理想电路元件构成的集总参数电路, 主要针对由理想电路元件构成的集总参数电路 其中电磁现象可以用数学方式来精确地分析和计算; 其中电磁现象可以用数学方式来精确地分析和计算; 2.研究与实际电路相对应的电路模型, 2.研究与实际电路相对应的电路模型,实质上就是 研究与实际电路相对应的电路模型 探讨各种实际电路共同遵循的基本规律。 探讨各种实际电路共同遵循的基本规律。 集总参数电路元件的特征 元件中所发生的电磁过程都集中在元件内部进行 其次要因素可以忽略的理想电路元件; 其次要因素可以忽略的理想电路元件;任何时刻从元 件两端流入和流出的电流恒等且由元件端电压值确定。 件两端流入和流出的电流恒等且由元件端电压值确定。
电路分析基础第一章

恒定电压:大小和极性不随时间改变; 交变电压:大小和极性随时间作周期性改变。
三、关联参考方向
关联参考方向:电流参考方向与电压参考极性一致。 关联参考方向: 规定:电流由高电位流向低电位。
关联参考方向
非关联参考方向
四、功率
设在 dt 时间内由a点转移到b点的正电荷为 dq,且由a到b 为电压降u,则 dq 失去能量,也就是这段电路吸收能量。
这段电路吸收的能量: dw = udq
dw dq =u 功率为吸收能量的速率: p(t ) = dt dt
关联参考方向:
dq i (t ) = dt
p (t ) = u (t )i (t )
非关联参考方向: p (t ) = −u (t )i (t ) p(t) > 0 吸收(消耗)功率;p(t) < 0 提供(产生)功率
k =1 K
式中,ik (t ) 为流出(或流进)节点的第k条支路的电流, K 为节点处支路数。 KCL是电荷守恒法则运用于集总电路的结果。
KCL也可以表述为: 对于任一集总电路中的任一节点,在任一时刻, 流出节点的电流的总和等于流入这个节点的电流 流出 等于流入 的总和。
KCL也适用于电路中任一 假设的闭合面。流出(或 流入)封闭面电流的代数 和为零。 i1 + i2 + i3 = 0
例 :图中电流均为2A,均由a流向b,已知u1=1V, u2=-1V,求两元件功率p(t)。若b图中元件提供功 率为4W,求电流。
(1) u=1V, i=2A p(t)=ui=1×2=2W>0 吸收功率
(2) u=-1V, i=2A p(t)=-ui=-(-1)×2=2W>0 吸收功率
(3) p(t)=-ui =-(-1)i=-4W i=-4A
电路基本分析 第一章 电路分析的基本概念及定律

Chapter 1
Chapter 1
Chapter 1
举例
开关 干电池
电灯
R0 + US (b)
S R1
(a)
(c)
实际电路与电路模型
Chapter 1
四、电路的分类 1.集总参数电路:其电路的几何尺寸l<<电路的工作频率 对应的波长λ。 集总参数电路又分为线性能 定义:一段时间内电路消耗的功率。可表为:
W=P t
若功率随时间变化,则: w
u、i 方向与w的关系:
t
pdt uidt
0
0
i
t
单位:焦耳J
u、i 方向如图示:
w>0,吸收;w<0, 发出。
a
+
u
_
b
Chapter 1
小结: 1.实际电路或实际电路元件可以用理想电路元件或理想 电路元件组合的电路模型进行模拟。
目 录
第一章 电路的基本概念和定律 第二章 电阻电路的等效变换 第三章 电路分析的网络方程法 第四章 正弦交流电路 第五章 谐振与互感电路 第六章三相电路 第七章 非正弦周期电流电路 第八章 动态电路的时域分析
第九章 动态电路的复频域分析
第十章 二端口网络
Chapter 1
第一章
电路分析的基本概念及定律
Chapter 1
教学目的 1.了解实际电路、理想电路元件和电路模型的概念。 2.熟练掌握电流、电压和电功率的概念。 3.理解电位、电动势和能量的概念。
教学内容概述 主要介绍理想电路元件和电路模型的概念以及电路中常 用的物理量:电流、电压和电功率的概念。 教学重点和难点 重点:电流、电压的参考方向及关联参考方向和电功率 的计算。 难点:电功率的计算及对电路发出和吸收功率的判断。
(大学物理电路分析基础)第1章电路分析的基本概念和定律

当电容并联时,总电容 等于各电容之和,总电 流等于各电容电流之和。
电感的并联
当电感并联时,总电感 为各电感倒数之和,总 电压等于各电感电压之
和。
05
非线性电阻电路的分析简介
非线性电阻元件的特点
伏安特性曲线
非线性电阻元件的伏安特性曲线不是一条直线,而是随着电压的 变化而变化。
电流与电压不成正比
非线性电阻元件的电流与电压不成正比,即不满足欧姆定律。
大学物理电路分析基础 第1 章 电路分析的基本概念和定
律
目录
• 电路分析的基本概念 • 电路分析的几个重要定律 • 线性电阻电路的分析方法 • 含电容和电感的电路分析 • 非线性电阻电路的分析简介
01
电路分析的基本概念
电路的定义与组成
总结词
电路是由若干个元件按照一定的方式连接起来,用于实现电能或信号传输的闭 合回路。
动态特性
非线性电阻元件的动态特性是指其阻值随时间、温度等因素的变化 而变化。
非线性电阻电路的分析方法
解析法
通过建立数学模型,利用数学工具求解非线性电 阻电路的电压、电流等物理量。
实验法
通过实验测量非线性电阻电路的电压、电流等物 理量,并进行分析。
仿真法
利用电路仿真软件对非线性电阻电路进行模拟, 得到电路的电压、电流等物理量。
电流源
电流源是一种理想电源,能够保持输出电流恒定,不受输出电压变 化的影响。
等效变换
对于线性电阻电路,电压源和电流源可以通过适当的等效变换进行相 互转换。等效变换是指两种电路在端口处具有相同的电压和电流。
支路电流法与节点电压法
支路电流法
支路电流法是一种通过设定支路电流变量,然后根据基尔霍夫定律建立方程组求解的方法。该方法适 用于支路数较少、节点数较多的电路。
电路分析-第1章 电路的基本概念和基本定律

Uad=φa—φd=10—(—3)=13V
Ubd=Uba+Uad=—2+13=11V
以上用两种思路计算所得结果完全相同,由此可 (1) 两点之间的电压等于这两点之间路径上的
(2) 测Uab和Ubd的电压表应按图(b)所示跨接在 待测电压的两端,其极性已标注在图上。
§1-3 电功率与电能
一 、电功率 1. 定义 图中表示电路中的一部分 a 、 b 段,图中采 用了关联参考方向,设在 dt 时间内,由 a 点转移 到b点的正电荷量为dq,ab间的电压为u,在转移 过程中dq失去的能量为 d udq 因此,ab段电路所消耗的功率为
(a)开路状态;
(b)短路状态
§1-5电压源和电流源
例1.5 某电压源的开路电压 为30V,当外接电阻R后, 其端电压为25V,此时流经 的电流为5A,求R及电压源 内阻RS。 解: 用实际电压源模型表征该 电压源,可得电路如图所示。 即: 设电流及电压的参考方向如图 中所示,根据欧姆定律可得:
+ 30 V - RS R I + U -
U=U -R I S S
(a)
(b)
内阻
电阻Rs表示实际 电源的能量损耗
§1-5电压源和电流源
电路的两种特殊状态 开路状态。如图(a)所示。此时不接负载,电 流为零,端电压等于开路电压。可用开路电压 和内阻两个参数来表征。
+ US - RS - U=UOC + + US - RS ISC = UOC RS
§1-5电压源和电流源
U R I
根据
S S
U R I
25 5 5
U U R I
30 25 1 5
U S U 可得:R S I
§1-5电压源和电流源
电路分析第1章
第1章 电路的基本概念和定律
练习与思考
1.1-1 结合自己所熟悉的一种家用电器, 谈谈对电路功能的 理解,并举出建立该电器设备的电路模型所需要的理想电路元 件种类。 1.1-2 实验室用的一种滑动式可变电阻器,是将铜线绕在圆 形骨架上,要建立它的电路模型只用理想电感元件行吗? 严格 地讲应该用哪几种理想电路元件?
1.1.1 电路及其功能 电路及其功能 电路是由电路元(器)件按一定要求连接而成,为电流的流 通提供闭合路径的集合体,复杂的电路也常称为网络。 实际应用中的电路种类繁多,用途各异,但按其功能可概 括为两个方面:一是对能量的传送、 转换与分配; 电力系统 中的输电电路就是典型实例。其二是完成电信号的产生、传输、 处理及应用; 手机、 电视机电路是这方面的典型实例。
q I= t
(1 - 2)
第1章 电路的基本概念和定律 虽然规定了电流的实际方向,但在电路问题中,特别是电 路比较复杂时,电流的实际方向往往难以确定,尤其是交流电 路中, 电流的方向随时间变化, 根本无法确定它的实际方向。 为此引入参考方向这一概念。 参考方向可以任意设定, 在电路 中用箭头表示,并且规定,如果电流的参考方向与实际方向一 致, 电流为正值; 反之, 电流为负值, 如图1.2所示。 这样就 可以把电流看成一个代数量了, 它既可以为正, 也可以为负。 由此看来,设定的参考方向是确定电流为正的标准, 因此参考 方向也称为正方向。除了用箭头表示电流的参考方向外,也可 用双下标表示,如Iab 就表示电流的参考方向是从a点指向b点。 当参考方向改变时有Iab=-Iba 。不设定参考方向而谈电流的正负 是没有意义的。
第1章 电路的基本概念和定律
电电电电
a
电电电电 元元
b a
第一章 电路模型和电路定律
第一章 ª 重点:电路模型和电路定律1. 电压、电流的参考方向 2. 电功率、能量 3. 电路元件特性 4. 基尔霍夫定律KCL、KVL§1.1 电路和电路模型 §1.1 电路和电路模型 §1.2 电流和电压的参考方向 §1.2 电流和电压的参考方向 §1.3 电功率和能量 §1.3 电功率和能量 §1.4 电路元件 §1.4 电路元件 §1.5 电阻元件 §1.5 电阻元件 §1.6 电压源和电流源 §1.6 电压源和电流源 §1.7 受控电源 §1.7 受控电源 §1.8 基尔霍夫定律 §1.8 基尔霍夫定律§1.1 电路和电路模型一、电路:电工设备构成的整体,它为电流的流通提供路径。
电路主要由电源、负载、连接导线及开关(中间环节)等构成。
电源(source):提供能量或信号的发生器。
又称激励或激励源。
负载(load):将电能转化为其它形式能量的用电设备,或对 信号进行处理的设备。
导线(line)、开关(switch):将电源与负载接成通路装置。
响应:由激励而在电路中产生的电压、电流。
电源: 提供 电能的装置升压 变压器 输电线负载: 取用 电能的装置电灯 电动机 电炉 ...发电机降压 变压器中间环节:传递、分 配和控制电能的作用二、电路模型 (circuit model) 1. 理想电路元件:根据实际电路元件所具备的电磁性质来设 想的具有某种单一电磁性质的元件,其u,i关系可用简单 的数学式子严格表示。
几种基本的电路元件: 电阻元件:表示消耗电能的元件。
电感元件:表示各种电感线圈产生磁场,储存磁场能的元件。
电容元件:表示各种电容器产生电场,储存电场能的元件。
电源元件:表示各种将其它形式的能量转变成电能的元件。
电路分析基础(邱关源 罗先觉 著) 第一章
i
u
非关联参考方向
+
返 回
上 页
下 页
例
A
+
i
B
u
-
电压电流参考方向如图中所标, 问:对A、B两部分电路电压电 流参考方向关联否? 答:A电压、电流参考方向非关联; B电压、电流参考方向关联。
注意
① 分析电路前必须选定电压和电流的参考方向 ② 参考方向一经选定,必须在图中相应位置标注 (包括方向和符号),在计算过程中不得任意改变 ③参考方向不同时,其表达式相差一负号,但电压 、电流的实际方向不变。
电路符号
+
u
_
理想电流源的电压、电流关系
①电流源的输出电流由电源本身决定,与外电路无 关;与它两端电压方向、大小无关。
返 回 上 页 下 页
②电流源两端的电压由电源及外电路共 同决定。 直流电流源的 伏安关系
u
例
0
i
+
u R
外电路 电流源不能开路!
返 回
上 页
下 页
实际电流源的产生: 可由稳流电子设备产生,如晶体管的集电极 电流与负载无关;光电池在一定光线照射下光电 子被激发产生一定值的电流等。
干电池
钮扣电池
返 回 上 页 下 页
2. 燃料电池(化学电源)
电池电动势1.23V。以氢、氧作为燃料。约40-45%的化学能 转变为电能。实验阶段加燃料可继续工作。
氢氧燃料电池示意图
返 回 上 页 下 页
3. 太阳能电池(光能电源)
一块太阳能电池电动势0.6V。太阳光照射到P-N结上, 形成一个从N区流向P区的电流。约 11%的光能转变为电 能,故常用太阳能电池板。 一个50cm2太阳能电池的电动势0.6V,电流0.1A
第一章 电路分析基础
u0
u
电流源不能开路!
例1.10: 计算各元件的功率。
i
解:
2A
i iS 2 A
u 5V
产生
5V
u
_
满足:P(产)=P(吸)
+
+
_
P2 A iS u 2 5 10W
P5V uS i 5 2 10W
吸收
实际电流源 i
伏安特性:
iS
i
u i iS RS
色码电阻
色别 黑 数字 0 误差 棕 1 红 2 橙 3 黄 4 绿 5 蓝 6 紫 7 灰 8 白 9 金 银 本色 I II III 5 10 20
有效数值 ‘0’的个数 1 2 3 4 误差等级 7 5 0
±5 %
6 8 0 0 = 6.8K
±10 %
二. 电阻元件的特性
参考方向与真实方向的关系
a
I(DC) i
(AC)
b b
I1 I2 b b
计算 结果
>0 一致 <0 相反
例1.1: 如何表示1A的电流从a点流向b点。
a
解:
a
a
I1=1A
I2= -1A 电流表
4.电流的测量 电流表要串联接入
被测量支路
电流表
二.电压
1. 电压的大小和极性
(1) 电压大小: 单位正电荷从 a点移到 b 点所获得的能量 u(t)=dw/dq (2) 电压极性: 高电位指向低电位,即电 压降方向。 (3) 电压的单位: 伏特(V) 1V=1000mV 1mV=1000uV
5i1 +
u+
1
解:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Δ q dq i (t ) lim Δ t 0 Δ t dt
def
单位:A (安)
(Ampere,安培)
当数值过大或过小时,常用十进制的倍数表示。 SI制中,一些常用的十进制倍数的表示法: 符号 T G M k c m n p
中文 太
吉 兆 千
厘
毫
微
纳
皮
数量 1012 109 106 103 10–2 10–3 10–6 10–9 10–12
U
(2) 用正负极性表示:由正极指向负极的方向为电压 (降低)的参考方向
+
A
U
(3) 用双下标表示:如 UAB , 由A指向B的方向为电压 (降)的参考方向
UAB
B
小结:
(1) 电压和电流的参考方向是任意假定的。分析电路前 必须标明。 (2) 参考方向一经假定,必须在图中相应位置标注 (包 括方向和符号),在计算过程中不得任意改变。参 考方向不同时,其表达式符号也不同,但实际方向 不变。 i i R R
1.5 电感元件 (inductor)
i + – u e – + 一、线性定常电感元件:任何时刻,电感元件的磁链
与电流 i 成正比。
1. 元件特性 i 电路符号 + 与电感有关两个变量: L, 对于线性电感,有: u L
–
=Li
ψ L i
def
=N 为电感线圈的磁链
L 称为自感系数
Uab= a–b
b = a –Uab= –1.5 V
b
Ubc= b–c c = b –Ubc= –1.5–1.5= –3 V Uac= a–c = 0 –(–3)=3 V (2) 以b点为参考点,b=0
Uab= a–b
Ubc= b–c
a = a +Uab= 1.5 V
1.8 受控电源 1.9 基尔霍夫定律
1.1 电路和电路模型(model)
一、 电路:电工设备构成的整体,它为电流的流通提供路径。 电路主要由电源、负载、连接导线及开关等构成。 电源(source):提供能量或信号. 负载(load):将电能转化为其它形式的能量,或对 信号进行处理. 导线(line)、开关(switch)等:将电源与负载接成通路.
3. 功率和能量 功率: i +
R
u R i
p吸 ui i2R u2 / R
p吸 –ui –(–Ri)i i2 R
+
–u(–u/ R) u2/ R
u
上述结果说明电阻元件在任何时刻总是消耗功率的。
能量:可用功率表示。从 t 到t0电阻消耗的能量:
W R pdξ uidξ
波长 = 3×105 0.0210–6 = 6 m
此时一般电路尺寸均与 可比,所以电 路不能视为集总参数电路。
1.2 电压和电流的参考方向 (reference direction)
一、电路中的主要物理量 主要有电压、电流、电荷、磁链等。在线性电路分析中 常用电流、电压、电位等。 1. 电流 (current):带电质点的运动形成电流。 电流的大小用电流强度表示:单位时间内通过导体截 面的电量。
(b) 实际电路中有些电流是交变的,无法标出 实际方向。标出参考方向,再加上与之配 合的表达式,才能表示出电流的大小和实 际方向。
2. 电压(降)的参考方向
+
实际方向
实际方向
+
+
参考方向 U
–
+
参考方向 U
–
+
实际方向 U> 0
实际方向
U<0
+
电压参考方向的三种表示方式:
(1) 用箭头表示:箭头指向为电压(降)的参考方向
B
二、电压、电流的参考方向 (reference direction) 1. 电流的参考方向
10V
+
10k
不正确
电流为1mA
元件(导线)中电流流动的实际方向有两种可能:
实际方向
实际方向
参考方向:任意选定一个方向即为电流的参考方向。 i 参考方向
A
电流(代数量)
大小 方向
B
电流的参考方向与实际方向的关系:
二、功率的计算和判断
1. u, i 关联参考方向
2. u, i 非关联参考方向 p = ui 表示元件发出的功率 i
+ u – + u –
i
p = ui 表示元件吸收的功率 P>0 吸收正功率 P<0 吸收负功率 (吸收) (发出)
P>0 发出正功率 P<0 发出负功率
(发出) (吸收)
上述功率计算不仅适用于元件,也使用于任 意二端网络。
dA e dq
def
A
e 的单位与电压相同,也是 V (伏) 根据能量守恒:UAB = eBA。电压表示电位降, 电动势表示电位升,即从 A到 B的电压,数 值上等于从B到A的电动势。 * 电场力把单位正电荷从A移到B所做的功(UAB ),与外 力克服电场力把相同的单位正电荷从 B 经电源内部移 向A所做的功(eBA)是相同的,所以UAB = eBA。
c = b –Ubc= –1.5 V
Uac= a–c = 1.5 –(–1.5) = 3 V
结论 :电路中电位参考点可任意选择;当改变电位参考
点时,电路中各点电位均改变,但任意两点间的电 压保持不变。
4. 电动势 (eletromotive force):局外力克服电场力把单位正电荷 从负极经电源内部移到正极所作的功称为电源的电动势。
电感 L 的单位:H(亨) (Henry,亨利)
H=Wb/A=V•s/A=•s
线性电感的 ~i 特性是过原点的直线
O i
L= /i tg
线性电感电压、电流关系: u, i 取关联参考方向:
i + – u e – + L 或
t 1 t udξ 1 t ud ξ i(t ) 1 u d ξ L L L t i(t ) 1 tt udξ L ψ(t ) ψ(t ) tt udξ
一、 电功率:单位时间内电场力所做的功。
dw p , dt
dw u , dq
dq i dt
dw dw dq p ui dt dq dt
功率的单位:W (瓦) (Watt,瓦特)
能量的单位: J (焦)
(Joule,焦耳)
当 u,i 的参考方向一致时,p表示元件吸收的功率; 当 u,i 的参考方向相反时,p表示元件发出的功率。
2. 电压 (voltage):电场中某两点A、B间的电压(降)UAB 等于将点电荷q从A点移至B点电场力所做的功WAB与 该点电荷q的比值,即
def
U AB
W AB q
(Volt,伏特)
单位:V (伏)
当把点电荷q由B移至A时,需外力克服电场力做同样的功 WAB=WBA ,此时可等效视为电场力做了负功 –WAB ,则 B 到A的电压为
2. 电路模型:由理想元件及其组合代表实际电路元件,与 实际电路具有基本相同的电磁性质,称其为电路模型。
* 电路模型是由理想电路元件构成的。
例.
开关 灯泡
10BASE-T wall plate
电 池 导线
三. 集总参数元件与集总参数电路
集总参数元件:每一个具有两个端钮的元件中有确
定的电流,端钮间有确定的电压。
4. 开路与短路 对于一电阻R,
t t0
t t0
i
R
当R=0,视其为短路。 i为有限值时,u=0。
+ u –
当R=,视其为开路。
u为有限值时,i=0。 * 理想导线的电阻值为零。
二. 线性时变电阻元件 时变电阻:电阻Rt是时间t的函数。 i t Rt ut
+
电压电流的约束关系:
ut = Rt it it = gt ut
电阻的单位: (欧)
电导的单位: S (西)
(Ohm,欧姆)
(Siemens,西门子)
线性电阻R是一个与电压和电流无关的常数。 u
伏安特性曲线: R tg
O
i
(2) 电阻的电压和电流的参考方向相反 i R u 则欧姆定律写为 u –Ri 或 i –Gu +
公式必须和参考方向配套使用!
集总参数电路:由集总参数元件构成的电路。
一个实际电路要能用集总参数电路近似, 要满足如下条件:即实际电路的尺寸必须远小 于电路工作频率下的电磁波的波长。
已知电磁波的传播速度与光速相同,即 v=3×105 km/s (千米/秒) (1) 若电路的工作频率为f=50 Hz,则
周期 T = 1/f = 1/50 = 0.02 s 波长 = 3×105 0.02=6000 km 一般电路尺寸远小于 。 (2) 若电路的工作频率为 f=50 MHz,则 电路模型 (circuit model) 1. 理想电路元件:根据实际电路元件所具备的电磁性
质所设想的具有某种单一电磁性质的元件,其u,i
关系可用简单的数学式子严格表示。 几种基本的电路元件: 电阻元件:表示消耗电能的元件 电感元件:表示各种电感线圈产生磁场,储存电能的作用 电容元件:表示各种电容器产生电场,储存电能的作用 电源元件:表示各种将其它形式的能量转变成电能的元件
+
u u = Ri
–
+
u
–
u = –Ri
(3) 元件或支路的u,i通常采用相同的参考方向, 以减少公式中负号,称之为关联参考方向。反 之,称为非关联参考方向。 i + u – +