镁合金力学性能强化的几种途径
变形镁合金的分类、强化机制以及塑性加工

从 而 降耗 节 能 ,减 少 污 染 ,增 加舒 适 度 ;采用 镁 合 金 制造 移 动 电话 、笔 记 本 电脑 、数码 相 机 等“ 3 C ”( 即 C o mmu n i c a t i o n s通 信 、 C o m p u t e r 计 算机 和 C o n s u me r E l e c t r o n i c s消 费类 电子 ) 产 品 ,能够 显 著 增 强产 品的抗 震 能 力 ,并 能有 效 地 减 轻对 人 体 和周 围环境 的 电磁辐 射 。镁 被 誉
MB 3 、MB5等 。Mg — A1 一 Z n系合 金是 发展 最早 , 应 用 也 很 广泛 的一 类镁 合 金 。它 的主 要 特点 是 具 有 较好 的室 温 力学 性 能 ,能 够进 行 热 处理 强 化 ,并有 良好 的焊 接 性 能和 铸造 性 能 ,能够 制 成 复 杂 形状 的锻 件 和 模锻 件 。但 其 屈 服 强度 和 耐 热性 不 够 高 。铝 是 该合 金 系 中 的主 要合 金 化 元 素 ,其 主 要作 用 是 提 高合 金 的 室温 强 度 ,赋 予 热处 理 强化效 果 。从 Mg — A1 二元 合金相 图上 可 以看 出¨ J ,铝 在镁 中的 溶解 度很 大 ,在 共 晶
变形镁 合金 的分类 \强化机 制 以及塑性加工
郭菲菲
( 北 京有 色金 属与稀 土 应 用研 究所 ,北 京 1 0 0 0 1 2 )
摘 要 :变形 镁合 金 具有 更低 成 本 、更 高强 度 、延 展性 以及 更 高 力学性 能 的特 点 ,变形 镁 合金主要可以分为镁- 锂系合金、镁- 锰系合金、镁一 铝一 锌系合金、镁一 锌一 锆系合金等。 镁合
镁合金固溶强化和时效强化的意义

镁合金固溶强化和时效强化的意义镁合金是一种重要的结构材料,具有低密度、高比强度和良好的加工性能等优点。
然而,纯镁具有较低的强度和较差的耐腐蚀性,限制了其在实际应用中的推广和应用。
为了改善镁合金的性能,人们发展出了固溶强化和时效强化等方法。
固溶强化是通过将合金元素溶解在镁基体中,形成固溶体,从而提高合金的强度和硬度。
固溶强化的主要目的是通过增加固溶体中的合金元素的含量,形成固溶体溶解度限度内的固溶体,使合金中的固溶体相变得更加均匀。
固溶强化可以通过合金化元素的选择和添加方式来实现。
固溶强化的意义在于,通过增加固溶体中的合金元素含量,可以提高合金的强度和硬度,从而改善合金的力学性能。
此外,固溶强化还可以提高合金的耐腐蚀性和耐磨性,延长合金的使用寿命。
固溶强化可以广泛应用于航空航天、汽车制造、电子设备等领域。
时效强化是在固溶处理后,通过固溶体的再结晶和析出过程,使合金中形成弥散的析出相,从而提高合金的强度和硬度。
时效强化的主要目的是通过合金中的析出相的形成和分布来改善合金的力学性能。
时效强化可以通过合金的热处理和冷却过程来实现。
时效强化的意义在于,通过合金中的析出相的形成和分布,可以提高合金的强度和硬度,从而改善合金的力学性能。
此外,时效强化还可以提高合金的耐腐蚀性和耐磨性,延长合金的使用寿命。
时效强化可以广泛应用于航空航天、汽车制造、电子设备等领域。
固溶强化和时效强化是镁合金强化的两种常用方法,它们可以单独使用,也可以组合使用。
固溶强化和时效强化的组合使用可以进一步提高合金的强度和硬度,改善合金的力学性能。
固溶强化和时效强化还可以通过调整合金的成分和处理工艺来实现,进一步提高合金的性能。
固溶强化和时效强化是改善镁合金性能的重要方法。
通过固溶强化和时效强化,可以提高镁合金的强度、硬度、耐腐蚀性和耐磨性,延长合金的使用寿命。
固溶强化和时效强化可以单独应用,也可以组合使用,通过调整合金的成分和处理工艺,进一步提高合金的性能。
金属镁的用途分析

金属镁的用途分析镁于1774年首次被发现,并以希腊古城Magnesia命名,元素符号为Mg,属周期表中ⅡA族碱土金属元素,相对原子质量为24.305。
纯镁的密度为1.738g/cm-3,是轻金属的一种。
镁具有密度低,比强度、比刚度高,阻尼减振降噪能力强、电磁屏蔽性能优异,抗辐射,磨擦时不起火花,热中子捕获截面小,液态成形性能优越,易于回收,符合“21世纪绿色结构材料”。
由于镁具有以上的一系列特性,因此应用十分广泛,几乎遍及各个领域。
一、镁的用用途:1、生产难熔金属的还原剂镁既可作为生产稀有金属Ti、Zr、Hf等的还原剂,也可以做为生产Be、B的还原剂。
2、合金的添加元素镁的最大用途之一是作为铝合金的合金元素,它可以改善材料的强度和抗腐蚀性能。
此外,镁还被添加到压铸锌合金中以改善其力学性能和尺寸稳定性。
镁还被用作其它锌产品的组分,包括屋面板、光刻板、生产干电池用的锌板和镀锌浴液等。
添加镁,还可使镍、镍铜合金和铜镍锌合金的性能行到很大的改善。
3、球墨铸铁的球化剂用镁脱除一部分硫和使石墨球化,从而使铸铁的韧性和强度大大提高。
4、镁还被广泛地用于钢脱硫。
此外,在生产黄铜和青铜之类的铜合金以及生产镍合金时,镁是十分有用的脱氧剂或“除气剂”。
在Betterton-Kroll制铅法中,必须将钙与镁结合使用,以便除去铅中的铋。
5、镁还用于生产的链烃基化合物和芳基化合物;在润滑油中用作中和剂;用于氩气和氢气的提纯;在生产真空管的过程中用作“吸收剂”;用于生产氢化硼、氢化锂和氢化钙;对锅炉用水进行去氧和去氯。
6、高贮能材料镁在常压下,大约523K和H2作用生成Mg H2,在低压或稍高温下又能释放出氢,镁具有贮氢的作用。
Mg H2较一般金属氢化物贮能高,所以镁可以作为高贮能材料。
7、烟火由于铝含量超过30%的镁铝合金细粉在燃烧时能发出极明亮的折光,故镁的第一个工业用途就是用在照明器制造方面,如用于制造照相机用的闪光灯等。
合金元素对镁及镁合金力学性能强化的研究

GUO i i g.XI L n t g Hu - n r A a . n i
ቤተ መጻሕፍቲ ባይዱ
( eatetfm t ilc neadegne n 。T i a n e i Si e n eh o g , a u nSa x 0 02 。hn ) Dp r n ae a i c n ier g a unU i rt o c n d Tcnl y T i a h ni 30 4 C i m o r se n i y v syf e a c o y a
合 金 元 素 对 镁及 镁 合 金 力学 性 能 强化 的研 究
郭会 廷 。 夏兰 廷 ( 太原 科技 大 学 , 山西 太原
摘
002 ) 304
要: 总结 了近年 来镁合金 中加入合金元素 来改善镁合金 力学性 能的研 究现状 。论述 了镁的合金化原
理 。介绍 了在一些常 用镁合金 中分别加入 S 、b B、 b Y、 d L 、rS 、 、 a S、rA 、d等合金元 素对镁 n S 、 iP 、 N 、aS 、cB C 、iZ 、 gC 合金 力学性能的 强化效果 以及 强化机理 。认为 固溶强化和 第二 相强化是加入 合金元 素强化镁 合金 的主要 方
Ab ta t T e p e e t td fi rvn e me h n c l r p riso g e i m ly b d ig oh r l yn lme t i g n r sr c : h r s n u yo s mp o i g t c a ia o et fma n su a o y a d n t e l i ge e ns s e e - h p e l ao
维普资讯
20 07年第 2期
镁合金热处理的研究现状及发展趋势

镁合金热处理的研究现状及发展趋势镁合金热处理是一种常用的工艺方法,用于改善镁合金的力学性能和耐腐蚀性能。
在过去几十年里,镁合金热处理的研究取得了显著的进展,但仍存在一些挑战和问题。
本文将介绍镁合金热处理的研究现状及发展趋势。
镁合金由于其低密度、高比强度和优良的机械性能,被广泛应用于航空航天、汽车制造、电子设备等领域。
然而,镁合金的应用受到其低强度、低塑性和易腐蚀等问题的限制。
热处理是一种改善镁合金性能的有效方法,通过控制合金的组织和相变,可以提高其强度、塑性和耐腐蚀性能。
镁合金热处理的研究主要集中在两个方面:固溶处理和时效处理。
固溶处理是将镁合金加热到高温,使固溶体中的合金元素溶解,然后通过快速冷却来保持溶解态。
这可以提高合金的强度和硬度,但会降低其塑性。
时效处理是在固溶处理后,将镁合金在中温下保持一段时间,使合金元素重新组合形成稳定的析出相。
这可以提高合金的强度和塑性,但会降低其硬度。
然而,镁合金热处理仍面临一些挑战。
首先,镁合金的高反应活性使得热处理过程中易发生氧化和燃烧,需要采取措施保护合金表面。
其次,镁合金的晶粒细化和相变行为对热处理的影响仍不完全清楚,需要进一步研究。
此外,镁合金的组织均匀性和稳定性也是研究的重点。
未来的发展趋势主要包括以下几个方面。
首先,研究人员将继续改进热处理工艺,以提高镁合金的性能。
例如,通过优化固溶处理和时效处理的工艺参数,可以获得更好的力学性能和耐腐蚀性能。
其次,研究人员将探索新的热处理方法,如等离子体处理、激光处理等,以进一步改善镁合金的性能。
此外,研究人员还将研究镁合金热处理对微观组织和相变行为的影响机制,以揭示热处理过程中的微观机制。
镁合金热处理是一种重要的工艺方法,可以改善镁合金的性能。
目前的研究主要集中在固溶处理和时效处理方面,但仍存在一些挑战和问题。
未来的发展趋势包括改进热处理工艺、探索新的热处理方法以及揭示热处理过程中的微观机制。
通过这些努力,镁合金热处理的研究将取得更大的进展,为镁合金的应用提供更好的支持。
镁合金固溶强化和时效强化的意义

镁合金固溶强化和时效强化的意义镁合金作为一种轻质高强度材料,广泛应用于航空、汽车、电子等领域。
然而,纯镁合金的力学性能并不理想,容易发生塑性变形和断裂。
为了提高镁合金的力学性能,常常采用固溶强化和时效强化的方法。
固溶强化是指通过将合金中的其他元素溶解在固溶体中,形成固溶体溶解度限制固溶体中间固溶体的形成,从而提高合金的硬度和强度。
合金中的元素可以是增加固溶体的基体元素,也可以是形成间隙固溶体的元素。
通过固溶强化,可以增加合金的固溶体溶解度,使合金的晶格形变增加,从而提高合金的力学性能。
时效强化是指在固溶处理后,通过在一定温度下保持一段时间,使合金中的溶质元素析出,形成细小的析出相,从而提高合金的强度。
时效强化可以分为自然时效和人工时效两种。
自然时效是指将固溶处理后的合金放置在室温下,通过自然时间来完成析出相的形成。
人工时效是指将固溶处理后的合金在一定温度下保持一段时间,加速析出相的形成。
固溶强化和时效强化的意义在于提高镁合金的力学性能和耐腐蚀性能。
固溶强化可以通过增加合金的固溶体溶解度,使合金的硬度和强度得到提高。
同时,固溶强化还可以改善合金的耐热性和抗疲劳性能。
时效强化则可以通过析出相的形成,进一步提高合金的强度和硬度。
时效强化还可以提高合金的抗应力腐蚀性能和耐磨性能。
在航空领域中,镁合金常用于制造飞机的机身、发动机壳体等部件。
固溶强化和时效强化可以提高镁合金的强度和刚度,使其能够承受高速飞行时的巨大载荷和振动。
此外,镁合金的轻质特性可以减轻飞机的重量,提高燃油效率。
在汽车领域中,镁合金常用于制造汽车的车身、底盘等部件。
固溶强化和时效强化可以提高镁合金的强度和硬度,使其能够承受汽车行驶过程中的冲击和振动。
镁合金的轻质特性可以减轻汽车的重量,提高燃油效率,降低碳排放。
在电子领域中,镁合金常用于制造电子产品的外壳和散热器等部件。
固溶强化和时效强化可以提高镁合金的耐腐蚀性能,防止电子产品在潮湿环境中发生氧化和腐蚀。
镁合金的热处理工艺与力学性能改善

镁合金的热处理工艺与力学性能改善镁合金作为一种轻量化材料,在航空航天、汽车制造等领域有着广泛的应用。
然而,镁合金在实际应用中存在一些问题,如低强度、低韧性和不良的耐腐蚀性能。
因此,研究镁合金的热处理工艺,以提高其力学性能,具有重要意义。
本文将介绍镁合金的热处理工艺以及力学性能改善的方法。
热处理是一种通过控制材料的加热和冷却过程,改变其晶体结构和性能的方法。
对于镁合金的热处理,主要包括固溶处理、时效处理和变形加工。
首先,固溶处理是指将镁合金加热到高温区,使合金中的固态溶质元素溶解在镁基体中,然后快速冷却。
这一步骤能够消除合金中的析出相和晶界相,提高合金的强度和塑性。
同时,通过调节固溶温度和时间,还可以控制合金的晶粒尺寸,从而进一步提高其力学性能。
其次,时效处理是在固溶处理后将镁合金再次加热到较低的温度,保持一定的时间,使合金中的溶质元素重新析出形成弥散的析出相。
时效处理可以提高镁合金的强度和硬度,同时还能增加合金的韧性和耐腐蚀性能。
不同类型的镁合金需要在不同的时效温度和时间下进行处理,以获得最佳的力学性能。
最后,变形加工是通过机械或热加工使镁合金发生塑性变形,从而改变其晶体结构和力学性能。
常用的变形加工方式包括挤压、拉伸、压缩等。
通过变形加工,可以使晶粒细化,提高材料的塑性,并改善其力学性能。
除了热处理工艺,还有其他一些方法可以改善镁合金的力学性能。
例如,合金化是通过添加适量的合金元素,如锆、铝、锡等,来改善镁合金的强度和韧性。
同时,采用纳米颗粒强化技术和表面改性技术,也可有效增强镁合金的力学性能和耐腐蚀性能。
总结起来,镁合金的热处理工艺和力学性能改善涉及到固溶处理、时效处理、变形加工以及其他一些方法的综合应用。
通过合理选择和控制这些工艺参数,可以显著提高镁合金的强度、塑性和耐腐蚀性能,满足实际工程应用的需求。
进一步的研究和探索,将有助于推动镁合金材料的发展与应用。
镁合金的强韧化研究新进展

I 行业发展 ndustry development
李士杰
(华北理工大学以升创新教育基地,河北 唐山 063210)
摘 要 :镁合金是商业金属工程材料中最轻的,也可作为现代理想的结构材料使用,在电子技术通信和航空航天等领域有着非
常广泛的应用前景。因此,为了更好地扩展镁合金的应用领域,有必要提高镁合金的综合性质。本文主要介绍了变形镁合金的
镁合金的晶体结构是密排六方,这也是影响镁合金性能的 重要因素。目前,镁合金根据合金化元素主要形成了添加 Zn 的 AZ 系列、添加 Mn 的 AM 系列、添加 RE 的 AE 系列、添加 Zn 和 Zr 的 ZK 系列等。以传统的三种强化方式(细晶强化、固溶强化 以及析出强化等)为基础,逐步形成添加合金元素、优化热处理 工艺、细化晶粒等手段来提高镁合金的综合力学性能。以下主要 对镁合金的强韧化方式进行阐述。
1 镁合金的细晶强化
镁合金和大部分结构金属材料类似,可以通过细化晶粒尺
寸来提高镁合金的力学性能。镁合金的屈服强度与晶粒尺寸的
关系可用著名的霍尔 - 公式表示 :σ=s
σ0
+
−1
Kd 2
,式中
:
代表单
晶屈服强度,d 代表平均晶粒尺寸,K 代表霍尔 - 佩奇系数,只
与材料种类有关。对于镁合金,K 的取值一般在 280 至 320 之间, 比铝合金的 K 值(68MPa·m 左右)大得多 [2]。由此可见细晶强
快速凝固镁合金产品通常是合金粉末,必须通过后续工艺 的加工才能得到大块的结构材料。想要更好的保留原有的组织 特征,需要进一步优化后续加工工艺。快速凝固技术还需要进一
Copyright©博看网 . All Rights Reserved.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
镁合金力学性能强化的几种途径摘要对近几年镁合金力学性能强化的研究进行了总结,主要途径归纳为三个方面,一是热处理,二是合金化,三是加工工艺。
关键词:镁合金力学性能热处理合金化加工工艺镁及镁合金是目前最轻的金属结构材料,具有密度低、比强度和比刚度高的特点,而且还具有优良的阻尼性能、较好的尺寸稳定性和机械加工性能及较低的铸造成本。
广泛应用于航空航天、汽车和电子等行业。
但是,镁合金密排六方的晶体结构及较少的滑移系决定了其塑性变形能力较差,所以应该用一些方法来提高其力学性能,本文就近几年镁合金力学性能方面的研究进行总结,并提出建议。
1 镁及其合金的力学性能镁是一种二价的碱金属元素,属于密排六方晶系,这种密排六方结构使之在力学和物理性能方面表现出强烈的各向异性。
纯镁象其他纯金属一样,表现出相对低的强度。
其弹性模量E=45GPa,切变模量K=17GPa,比弹性模量E/ρ=25GPa。
因此必须用其他元素进行合金化以获得所需要的性能。
目前主合金元素是Al、Zn 和Re等,这些合金元素使镁合金得到不同程度的强化。
变形镁合金主要通过热变形和冷变形来提高强度。
热处理是提高镁合金力学性能的重要途径。
另外其他一些工艺或处理也能有效提高镁合金的力学性能,如颗粒增强复合材料、半固态铸造和熔体热速处理、表面处理等。
2强化途径2.1 热处理2.1.1铸造镁合金的热处理铸造镁合金的室温和高温力学性能强化途径有固溶处理和失效处理[1]。
对某高锌镁合金Mg-Zn-Al-RE进行热处理[2],固溶处理温度340℃,保护剂为硫铁矿石,保温时间20 h,热水淬火,淬火介质采用70~75℃热水;时效处理温度180℃,保温时间10 h,出炉空冷。
经固溶及时效处理后,合金的相成分主要为α-Mg,还有含微量稀土的其它固溶强化三元相。
其中比较典型的固溶强化相有Ф相Al2Mg5Zn2和τ相Mg32(Al,Zn)49。
这些强化相的弥散存在可以提高基体的力学性能[3]。
热处理工艺对镁合金力学性能影响很大。
文献[4]研究了热处理温度对快速凝固Mg-9Al-1Zn-0.2Mn带材的组织和性能的影响规律,认为低于200℃时,随温度的升高,Mg17Al12粒的长大,从而提高了性能。
另外热处理工艺对镁合金的疲劳裂纹扩展行为也有很大影响[5]。
2.1.2变形镁合金的热处理热处理可使变形镁合金得到一定程度的强化。
对AZ91进行研究[6]。
可以发现,AZ91压态时硬度为77HB.在413℃x16h或24 h固容后硬度下降到62HB.固加热过程使得挤压后的晶粒发生长大和析出相的溶解而降低固溶强化效果.固溶后硬度值有所下降。
AZ91镁合金同溶态与挤压态相比抗拉强度变化不大,基本上维持存320 MPa,但伸率则南1O%大幅度地增加到l5%;时效硬度峰值时的抗拉强度提高到375 MPa,与固溶态相比有一定的提高,但伸长率较大幅度地降低为6%。
均匀化退火可使变形镁合金AZ31和AZ61伸长率明显提高,且合金热扎态呈准解理断裂,退火后变为韧性断裂[7]。
2.2合金化镁通过合金化可以使其性能得到强化,如常温力学性能、高温力学性能、耐蚀性能、耐磨损性能等。
固溶强化是由合金元素(溶质)在金属基体(熔剂)中溶解度的大小决定的,并决定固溶体的类型。
析出强化、弥散强化则是由溶质与熔剂形成的化合物的结构所决定的。
而影响固溶体和金属化合物结构的主要因素通常由原子尺寸因素、负电性因素、电子浓度因素及晶体结构因素等所左右。
(1)Sb:在AZ91镁合金中加入Sb,加入量为0.1% ~1.4%,当Sb含量从0上升到0.35%时,合金的屈服强度室温下由106MPa提高至172MPa,提高了62%,而在150℃温度下由99MPa提高至138MPa,提高了近40%,同时无论在室温下还是150℃温度下,合金的塑性均有所下降,但幅度很小.而当合金中Sb含量超过0. 7%后,屈服强度不再上升,而塑性下降趋势加大.另外,对于不含Sb的合金,它的蠕变寿命只有267 h,而加有0. 35% Sb的合金其蠕变寿命则提高到589 h,比未加Sb的合金寿命提高了121 %。
所以加入适量的Sb可以提高合金的室温和高温强度,尤其是抗高温蠕变性能得到了大幅度的提高.但是合金的含Sb量应限制在0. 5%左右.加入Sb之所以可以提高镁合金的力学性能,是因为在合金中产Mg3Sb2的颗粒相,这种相热稳定性好,弥散分布在合金中主要起到弥散强化的作用,弥补了Mg-Al 合金中强化相Mg17Al12的不足[8]。
(2)Sn:在AZ91镁合金中加入Sn,室温下对合金的强化作用不是非常显著,随Sn含量的增加,合金强度有所提高,但上升幅度不大.而温度为150℃时, Sn的强化作用变得十分突出.且强度峰值出现在含Sn量0.5%时,屈服强度由不含Sn时的70MPa上升至130MPa,上升了86%,抗拉强度则由170MPa上升至230MPa,上升了35%。
在合金强度提高的同时,塑性有所下降,但由于Sn加入量少,对合金塑性影响也较小.加入Sn之所以能够提高合金的强度,是因为,有效地强化了基体,增加了合金的热稳定性在合金中形成了高熔点的Mg2Sn颗粒相,这种相在低于250℃的温度区间内稳定性较高[9]。
(3)Bi:在AZ91镁合金中加入B,i室温下加入量为2%时,合金的强度达到最大值,屈服强度由未加Bi时的150MPa上升至170MPa,上升了13%。
抗拉强度由未加入Bi时的200MPa上升至240MPa,上升了20%。
并且在这个范围内伸长率降低比较缓慢。
而当Bi含量大于2%后,伸长率急剧下降,强度也从最高值转而下降。
Bi对AZ91合金的强化作用并不因温度的升高而消失,在150℃、250℃短时拉伸中,其屈服强度均有明显提高。
此外, Bi的加入提高了合金的持久寿命。
在150℃、70MPa拉力作用下,对于不含Bi的AZ91合金,其持久寿命为95 h,而含2 % Bi的AZ91合金,其持久寿命达到134 h,提高了近50%。
Bi在镁中是一个典型的具有沉淀强化作用的元素,当Bi加入量大于1%时,合金显微组织中就会出现致密的Mg3Bi2颗粒相,此相显微硬度高,熔点也远高于镁基体, Bi的加入,能够提高镁合金的强度,改善镁合金的耐热性能[10]。
(4)Nd:在AZ91镁合金中加入Nd,合金的力学性能会得到强化,其原因为:①向ZM5合金中加入稀土Nd使合金组织得到有效细化,当Nd的质量分数为2%时细化组织的效果显著。
②稀土元素与AZ91中的Mg与Al在铸态阶段和固溶处理后都形成了弥散的强化相。
如Mg12Nd等,这些相无论是强度、抗腐蚀性、硬度等方面都远优于AZ91基体中的Mg17Al12强化相。
而且稀土元素对Mg的消耗也相应减少Mg17Al12相的生成也是细化组织的一个重要方面[11]。
在铸造镁合金Mg-6Al加入6%的Nd,由于减少了Mg-Al基体,增加了A11l Nd3和 Al2Nd相,其屈服强度和伸长率都得到了改善[12]。
2.3加工工艺2.3.1表面机械加工处理法表面机械加工处理法可以在金属表面形成一层纳米晶组织,这就便于在镁合金表面引入硬度高、耐蚀性强的元素,在合金表面得到性能优异的强化层。
这一强化层与基体之间有一个梯度分布,因而结合牢固,不易脱落,相比于其它表面处理得到的强化层有较高的使用寿命。
喷丸法属于表面机械加工中很有效的一种处理方法,利用喷丸法进行表面强化处理,不仅可以提高表面强度,而且能使表层与基体之间形成一层残余压应力,这可以大大提高材料的抗疲劳性能,增强镁合金作为结构材料的强度,增加其使用寿命。
镁合金经过喷丸处理后,表面形变层存在较大的残余压应力。
X射线衍射峰半高宽测量结果也已证实,喷丸处理可造成样品表层晶粒细化、点阵畸变和位错密度增高,即发生明显的显微组织强化效应。
这可以有效提高材料表层的屈服强度[13]。
2.3.2动态塑性变形近年来对镁合金室温动态力学性能研究主要集中在商用AZ系列合金上,对ZK 系列及变形强化镁合金有少量涉猎。
文献[14]研究了3种锻造镁合金(AZ31B、AZ61A、ZK60A)的动态拉伸性能与断裂行为,初步结果表明在变形过程中,镁合金抗拉强度随着应变率的增加而增加,具有正应变率敏感效应,正应变率效应可使镁合金在变形过程中吸收更多能量。
刘长海[15] 研究了AZ31镁合金的动态力学性能,当应变率在1200~1700s-时,发现应变强化效应比较明显。
廖慧敏[16]对AM60的研究得到与曹凤红的研究相近的结果,在室温高应变速率(300~1400s- )条件下,合金表现出连续屈服的特征,但无明显屈服点。
随应变率增加,材料极限强度相应增大,表现出一定的应变率强化效应。
2.4其他工艺或处理方法颗粒增强镁基复合材料是一个非常有前途的研究领域。
主要的增强颗粒有SiC、Al2O3和氧化钇等[17 18],有的采用某种颗粒或纤维单独增强有的则用不同的颗粒进行混杂增强[19]。
通过研究强化机理,一般认为在一定范围内随着增强颗粒或纤维含量的增多、尺寸的变小,镁基复合材料的力学性能包括高温力学性能都较镁合金有所提高。
另外也尝试了将一些新的工艺应用于制造镁合金,文献[20]分别研究了熔体热速处理、过热处理和电磁场对AZ91合金组织和性能的影响,认为当熔体温度(870℃)足够高时,镁合金结晶晶粒的增加引起了基体组织的细化,同时,组织中的γ强化相比未高温过热时弥散均匀;热速处理后组织部分保留了高温过热时的特性,从而使镁合金的力学性能和铸件质量得到提高。
电磁场搅拌则可以使AZ91D合金枝晶组织发生球化和细化,β-Mg17Al12相数量增加,并使Zn元素在+,β-Mg17Al12相的偏聚倾向降低,挤压成形后的合金极限抗拉强度高达285Mpa,比压铸合金提高30%,伸长率为12%,是压铸合金的两倍多。
3 结论事实上,目前对镁合金的研究还处于初级阶段,如关于镁合金疲劳的研究虽然做了大量的工作但有许多问题仍未完全明白,本文只是对近几年镁合金力学性能方面的研究做了初步的总结,相信随着镁合金应用的扩展和研究的不断深入,必将有更多提高镁合金力学性能的途径和新工艺,大量文献表明主要关于文章介绍的三方面内容,既热处理、合金化和其它新工艺。
但这些方法都还有进一步优化的空间,希望可以借鉴其它合金的研究成果,使对镁合金的力学性能的研究更上一个台阶。
参考文献[1] 崔忠圻,金属学与热处理[M].北京:机械工业社,1995.[2] 张青辉,黄维刚,郑天群,王作辉. 热处理对Mg-Zn-Al合金力学性能的影响[J].材料热处理,2007,38(6).[3] 曾小勤,丁文江,姚正裔,等.Mg-Al-Zn系合金组织和力性能[J].上海交通大学学报,2005,39(1):46-51.[4] Govind Srseelan Nairk mittal mcetal.Debelopment of rapidly Solidi-fied(rs).magnesium Aluminium Zinc Alloy Matterials science and Enginerring.2001(A304-306):520.[5] Ishikawa K,Kobayashi Y.Characteristics of Fatigue Grack propagation in heat treatable die cast Magnesium Alloy.International Journal of Fatigue,2006.19(10)734.[6] Greager M,pawlica l.Study of selected properties of magnesium alloy AZ91 after heat treatment and forming(J).Journal of materials letters.2003,44-265.[7] 吕新宇,王国军,刚建伟.提高MB15合金挤压型材力学性能的研究. 轻合金加工技术,2006(6):22.[8] 袁广银,孙扬善,王震.Sb低合金化对Mg-9Al基合金显微组织和力学性能的影响[J].中国有色金属学报,1999,12:779-783.[9] 孙场善,翁坤忠,袁广银.Sn对镁合金显微组织和力学性能的影响[J].中国有色金属学报, 1999, 3: 55-60.[10] Yuan Y G,Sun S Y,Ding J W.Effects of Bismuth and Antimony Additions on the microstucture and mechanical properties of AZ91 Magnesium Alloy. Materials Science and engineering.2001(A308):38[11] 薛山,孙扬善,朱天柏,等.二元稀土镁合金Mg-La和Mg-Nd的组织和性能[J].铸造, 2005, 9: 888-891.[12] Wu Yufeng, WANG Zhaohuib, ZUO Tieyong. M icrostructure and strengthening mechanisms of M g--6AI--6Nd alloy. Rare Metals.2010,29:55.[13] 边丽萍,梁伟,赵兴国. Mg-5Al-1.03Ti纳米复合材料的力学性能及微观组织[J].金属热处理,2004,29(11):17~18.[14] Yokoyama T.Impact tensile stress—strain characteristics of wrought magnesium alloys[J].Strain,2003,39(4):167[15] 刘长海.AZ31合金动态力学性能研究[D].沈阳:辽宁工程技术大学出版社,2003[16]廖慧敏,龙思远,蔡军,等.高应变速率对AM60镁合金力学性能的影响[c].第四届十三省区市机械工程学会科技论坛.海口,2008:425[17]Hu X L,Wang D E.Fabricaition and Mechanical properties of Sic w/ZK51A Magnesium Matric composite by two-step squeeze casting. Materials science and engineering.A278(1-2):267-271.[18] Yi M Z,Hancenl.Microstructer and Mechanical properties of Aluminum Borate Whisker-Reinforced Magnesium Matrix composites Materials Letters.2002,57(3):558.[19] 张小农,张荻,吴人洁.混杂增强镁合金复合材料的力学性能和阻尼性能.中国有色金属学报,1998(s1):150.[20] 赵鹏,耿浩然,田宪法7 熔体热速处理对铸造?0 合金组织和力学性能的影响7 中国有色金属学报,2002(s1):241.。