最优控制特点

合集下载

控制方法

控制方法

回路传函恢复控制
• 线性二次高斯(Linear Quadratic Gaussian—LQG)方法是 以最优线性二次型调节器(LQR)和Kalman滤波器为中心的 反馈控制系统优化设计方法。由于其理论比较成熟,所以 在工程上被广泛应用。但是由于LQG设计的被控对象没有 考虑模型不确定性,带有Kalman滤波器的LQG方法设计 的控制系统鲁棒性差,模型若存在微小偏差或扰动,闭环 系统就可能出现不稳定的现象。因此,为弥补LQG设计方 法的缺陷,1979年Doyle和Stein提出了回路传函恢复方法。 • LQG/LTR回路传函恢复方法是把虚拟的过程噪声作为设 计参数加到设计模型输入端的鲁棒性恢复方法,能使LQG 设计具有最优线性二次调节器LQR所具有的稳定储备。其 设计思想就是设计滤波器增益,使得全状态LQR调节器自 然拥有的鲁棒特性在系统的输入端通过动态调节器得到基 本恢复。根据LQG/LTR理论,回路传递恢复后的系统具 有接近最优反馈控制系统的鲁棒性。
1. 极点配置法:
yp
y1
y2
y3
A1 P1 Q1 i A Ps B P0
A2 P2 Q2
k1 m m1
k2
k3 m2
m3
Fd
1. 极点配置法:
液压源 加速度 信号输入 加速度 三状态 输入回路 速度 位移 伺服控 制电路 控制 信号 负载 伺服阀 与液压缸 加速度计 速度调理 位移计 振动台 位置 输出
鲁棒控制方法概述
鲁棒控制方法弥补现代控制理论对数学模型的过分依赖,在设计过程 中考虑了对象模型的不确定性,使得在一定误差范围内的所有被控对象均 能满足理想的性能要求。 在设计鲁棒控制器时,仍存在以下的问题需要解决 : 结构数学模型的不确定性估计较为困难,因此准确的分析和刻画不确定 性的大小是进行鲁棒控制器设计的基础。 在鲁棒控制器设计过程中,通常需要依靠权函数的选择来实现控制器对 不确定性的鲁棒性,一般情况下,这种权函数的选择是没有通用的公 式,因此要经过反复多次的试凑才能确定。 设计鲁棒控制器时,往往需要同时满足包括时域、频域在内的多个性能 指标要求。

最优控制理论

最优控制理论
智能优化方法
对于越来越多的复杂控制对象,一方面,人们所要求的控制性能不再单纯的局限于一两个指标;另一方面,上述各种优化方法,都是基于优化问题具有精确的数学模型基础之上的。但是许多实际工程问题是很难或不可能得到其精确的数学模型的。这就限制了上述经典优化方法的实际应用。随着模糊理论、神经网络等智能技术和计算机技术的发展。 近年来,智能式的优化方法得到了重视和发展。 (1)神经网络优化方法 人工神经网络的研究起源于1943年和Mc Culloch和Pitts的工作。在优化方面,1982年Hopfield首先引入Lyapuov能量函数用于判断网络的稳定性,提出了Hopfield单层离散模型;Hopfield和Tank又发展了Hopfield单层连续模型。1986年,Hopfield和Tank将电子电路与Hopfield模型直接对应,实现了硬件模拟;Kennedy和Chua基于非线性电路理论提出了模拟电路模型,并使用系统微分方程的Lyapuov函数研究了电子电路的稳定性。这些工作都有力地促进了对神经网络优化方法的研究。 根据神经网络理论,神经网络能量函数的极小点对应于系统的稳定平衡点,这样能量函数极小点的求解就转换为求解系统的稳定平衡点。随着时间的演化,网络的运动轨道在空间中总是朝着能量函数减小的方向运动,最终到达系统的平衡点——即能量函数的极小点。因此如果把神经网络动力系统的稳定吸引子考虑为适当的能量函数(或增广能量函数)的极小点,优化计算就从一初始点随着系统流到达某一极小点。如果将全局优化的概念用于控制系统,则控制系统的目标函数最终将达到希望的最小点。这就是神经优化计算的基本原理。 与一般的数学规划一样,神经网络方法也存在着重分析次数较多的弱点,如何与结构的近似重分析等结构优化技术结合,减少迭代次数是今后进一步研究的方向之一。 由于Hopfield模型能同时适用于离散问题和连续问题,因此可望有效地解决控制工程中普遍存在的混合离散变量非线性优化问题。 (2)遗传算法 遗传算法和遗传规划是一种新兴的搜索寻优技术。它仿效生物的进化和遗传,根据“优胜劣汰”原则,使所要求解决的问题从初始解逐步地逼近最优解。在许多情况下,遗传算法明显优于传统的优化方法。该算法允许所求解的问题是非线性的和不连续的,并能从整个可行解空间寻找全局最优解和次优解,避免只得到局部最优解。这样可以为我们提供更多有用的参考信息,以便更好地进行系统控制。同时其搜索最优解的过程是有指导性的,避免了一般优化算法的维数灾难问题。遗传算法的这些优点随着计算机技术的发展,在控制领域中将发挥越来越大的作用。 目前的研究表明,遗传算法是一种具有很大潜力的结构优化方法。它用于解决非线性结构优化、动力结构优化、形状优化、拓扑优化等复杂优化问题,具有较大的优势。 (3)模糊优化方法 最优化问题一直是模糊理论应用最为广泛的领域之一。 自从Bellman和Zadeh在 70年代初期对这一研究作出开创性工作以来,其主要研究集中在一般意义下的理论研究、模糊线性规划、多目标模糊规划、以及模糊规划理论在随机规划及许多实际问题中的应用。主要的研究方法是利用模糊集的a截集或确定模糊集的隶属函数将模糊规划问题转化为经典的规划问题来解决。 模糊优化方法与普通优化方法的要求相同,仍然是寻求一个控制方案(即一组设计变量),满足给定的约束条件,并使目标函数为最优值,区别仅在于其中包含有模糊因素。普通优化可以归结为求解一个普通数学规划问题,模糊规划则可归结为求解一个模糊数学规划(fuzzymathematicalprogramming)问题。包含控制变量、目标函数和约束条件,但其中控制变量、目标函数和约束条件可能都是模糊的,也可能某一方面是模糊的而其它方面是清晰的。例如模糊约束的优化设计问题中模糊因素是包含在约束条件(如几何约束、性能约束和人文约束等)中的。求解模糊数学规划问题的基本思想是把模糊优化转化为非模糊优化即普通优化问题。方法可分为两类:一类是给出模糊解(fuzzysolution);另一类是给出一个特定的清晰解(crispsolution)。必须指出,上述解法都是对于模糊线性规划(fuzzylinearprogramming)提出的。然而大多数实际工程问题是由非线形模糊规划(fuzzynonlinearprogramming)加以描述的。于是有人提出了水平截集法、限界搜索法和最大水平法等,并取得了一些可喜的成果。 在控制领域中,模糊控制与自学习算法、模糊控制与遗传算法相融合,通过改进学习算法、遗传算法,按给定优化性能指标,对被控对象进行逐步寻优学习,从而能够有效地确定模糊控制器的结构和参数

最优控制的计算方法

最优控制的计算方法
5
1、梯度法
3、用UK(t)、XK(t)和横截条件求得的终端值(tf),从tf 到t0反向积分协态方程,求出协态向量K(tf)。 4、计算哈密顿函数H对U的梯度向量 H K g ( )K U H K ( ) K 表示在 U K 、X K 、 处取值。当这些量非最优值 U 时, g K 0 。
U
(iii)边界条件(包括横截条件) 最优控制的计算方法一般是先求出满足上面三个条件中 某两个的解,然后用合适的迭代计算形式逐次改变这个解, 以达到满足剩下的另一个条件的解(即最优解)。
4
一、直接法
1、梯度法 这是一种直接方法,应用比较广泛。它的特点是:先猜 测任意一个控制函数U(t),它可能并不满足H 取极小的必要 条件,然后用迭代算法根据H 梯度减小的方向来改善U(t), 使它最后满足必要条件。 计算步骤如下: 1、先猜测[t0, tf]中的一个控制向量UK(t)=U0(t),K是迭代 步数,初始时K=0。U0 的决定要凭工程经验,猜得合理,计 算收敛得就快 2、在第K步,以估计值UK和给定的初始条件X(t0),从t0 到tf 顺向积分状态方程,求出状态向量XK(t)。
(2) 以 X (t 0 ) 为初值,从 t 0 到 t f 积分状态方程,得出状态 轨迹 X K (t )。 (3) 以 (t f )为终值,从 t f 到 t 0 反向积分协态方程,求得 协态轨迹 K (t ) 。 H (4) 计算梯度向量 g K ( ) u u k u
(5) 计算共轭系数
8
1、梯度法
0 1、选初始估计 u (t ) 0 。
2、将 u 0 (t ) 0 代入状态方程可得 dx dt 2 x 1 t c 积分上式可得 x 代入初始条件: x(0) 10 ,确定积分常数 1 c 10 10 0 可得 x(t ) x (t ) 10t 1

最优控制

最优控制

四、最优控制在控制领域中的应用
模拟退火算法 1983年,Kirkpatrick与其合作者提出了模拟退火(SA)的方法,它是求解单目标 多变量最优化问题的一项Monte-Caula技术。该法是一种物理过程的人工模 拟,它基于液体结晶或金属的退火过程。液体和金属物体在加热至一定温度 后,它们所有的分子、原子在状态空间D中自由运动。随着温度的下降,这些 分子、原子逐渐停留在不同的状态。当温度降到相当低时,这些分子、原子 则重新以一定的结构排列,形成了一个全部由有序排列的原子构成的晶体结 构。模拟退火法已广泛应用于生产调度、神经网络训练、图像处理等方面。
三、最优控制的研究方法
古典变分法:古典变分法是研究泛函求极值的一种数字方法。古典变分法只能用在控制变量的取值范围不受限制的情况。在许多实际控制问题中,控制函数的取值常常 三、最优控制的研究方法
古典变分法:
古典变分法是研究泛函求极值的一种数字方法。古典变分法只能用在控制 变量的取值范围不受限制的情况。在许多实际控制问题中,控制函数的取 值常常受到封闭性的边界限制,如方向舵只能在2个极限值范围内转动,电动 机的力矩只能在正负的最大值范围内产生等。因此,古典变分法的应用范 围十分有限。
二、最优控制问题的一般性描述
实际上,终端约束规定了状态空间的一个时变或非时变的集合,此满足终 端约束的状态集合称为目标集M,并可表示为:
M {x(t f ) | x(t f ) Rn , N1[ x(t f ), t f ] 0, N2[ x(t f ), t f ] 0}
为简单起见,有时将上式称为目标集。
三、最优控制的研究方法
极小值原理:
极小值原理是对分析力学中古典变分法的推广,能用于处理由于外力源的 限制而使系统的输入(即控制)作用有约束的问题。极小值原理的突出 优点是可用于控制变量受限制的情况,能给出问题中最优控制所必须满足 的条件。如高夯、汪更生、楼红卫等人论述了多种类型的抛物型方程和 退化拟线性、半线性椭圆方程的极小值原理。

最优控制

最优控制

J =
能观,
1 1 x ( t f ) T C T Q 0 Cx ( t f ) + 2 2
tf
[ x T C T Q 1 Cx + u T Q 2 u ] dt ∫
t0
二次型指标最优控制问题
线性系统
二次型性能指标
x = Ax + Bu y = Cx
tf
J =
1 T x (t f )Q 0 x (t f ) + 2
1 二次型性能泛函
1 1 T J = x (t f ) Q 0 x (t f ) + 2 2
半正定
tf
[ x T Q 1 x + u T Q 2 u ] dt ∫
t0
半正定
正定
误差大小的代价函数, qij大表示对应误差要求小 对控制的约束或要求. 表示在区间内消耗的能量, qij大表示对应付出的能量小. 最优控制目标是使性能指标J取得极小值, 其实质是用不大的控制来 保持比较小的误差,从而达到所用能量和误差综合最优的目的.
0 x = 1
1 x a + 2
1
y=x1
1 w( s ) = C ( sI A) B = 2 s + s a + 2 +1
281
6.4 线性二次型最优控制问题
6.4 线性二次型最优控制问题
输出调节问题
x (t ) = A (t ) x (t ) + B (t )u (t ) y ( t ) = C ( t ) x ( t ), x ( t 0 ) = x 0
q1 , q 2 > 0 , q 0 ≥ 0
u * ( t ) = Q 2 1 ( t ) B T ( t ) P ( t ) x ( t ) = q 2 1 p ( t ) x ( t )

《最优控制》第3章庞德里雅金极大值原理解析

《最优控制》第3章庞德里雅金极大值原理解析
3
tf
t0
第3章——庞德里雅金极大值原理
(1)最优轨线 x * (t ) 和协态向量 (t ) 满足规范方程组
x
H H x
(2)在最优轨线 x * (t )上与最优控制 u * (t )上对应的哈密顿 函数取最小值
H ( x*, u*, , t )umin H ( x, u, , t )
目标泛函:
J dt , | f (t ) | 1 0
8
tf
第3章——庞德里雅金极大值原理
1 x2 x 问题:设系统的状态方程 其中控制变量u (t ) 满足约束 x u 2
, 条件 | u(t) | 1 设系统的初始状态 x1 (0) x10 , x2 (0) x20 ;
快速控制系统的这个特性称为有限切换原理,相应的 控制方式称为Bang-bang控制。 (6)求最优轨线
①u 1 2 u dx2 dt x2 t c1 x2 (0) x20 x2 (t ) t x20 x 1 2 1 x2 x1 (t ) t x20t x10 x 2
7
第3章——庞德里雅金极大值原理
2、双积分装置时间最优控制系统 考察惯用语性负荷在一无阻尼环境中运动情况:
Y (s) 1 m y 2 (t ) f (t ) 设m 1 G ( s ) F (s) S
1 x2 x 设 x1 y, x2 x 1 y 得 2 u x
4
第3章——庞德里雅金极大值原理
(3)边界条件
x ( t ) x(t0 ) x0 , (t f ) ①当 f 不受限制, x(t f )
②当存在终端约束条件
[ x(t f ), t f ] 0时,x(t0 ) x0

现代控制理论》电子

现代控制理论》电子
由S站出发至终点F站可有多种不同的行车路线, 沿各种行车路线所耗费的时间不同。 为使总的行车时间最短,司机在路程的前3段 要作出3次决策。
➢ 也就是说,一开始司机要在经过x1(1)站还是x2(1)站两种
情况中作出决策。
✓ 到x1(1)站或x2(1)后,又面临下一站是经过x1(2)站 还是x2(2)站的第2次决策。
最优性原理与离散系统的动态规划 7.6.1 最优性原理与法离(1散/系3)统的动态规划法
基于对多阶段决策过程的研究,贝尔曼在20世纪50年代首先提出了求解离散多阶 段决策优化问题的动态规划法。 如今,这种决策优化方法在许多领域得到应用和发展,如在生产计划、资源配 置、信息处理、模式识别等方面都有成功的应用。 下面要介绍的是,贝尔曼本人将动态规划优化方法成功地应用于动态系统的 最优控制问题,即构成最优控制的两种主要求解方法之一的最优控制动态规 划法。
映了该问题的一种规律性,即所谓的贝尔曼的最优性原理。
它是动态规划法的核心。
最优性原理一般问题的问题描述 2. 最优性原理一般(问1题/2的2问)题描述
现在正式阐述动态规划的基本原理。 在引进一些专门的名词之后,先叙述所要求解的多阶段决策问题,接着给出和 证明动态规划法的核心问题最优性原理,并应用这一基本原理求解多阶段决 策过程,并将该求解方法推广至在离散系统最优控制问题。
的是: 从最后一段开始,先分别算出x1(3)站和x2(3)
站到终点F的最短时间,并分别记为J[x1(3)] 和J[x2(3)]。
实际上,最后一段没有选择的余地。 ✓ 因此,由图7-10可求得
J[x1(3)]=4, J[x2(3)]=3
多阶段决策问题(5/12)
为便于今后求解过程的应用,可将 从x1(3)站和x2(3)站到终点的最短 时间J[x1(3)]和J[x2(3)]的数值标 记于代表该站的小圆圈内,如图711所示。

最优控制理论及应用讲解

最优控制理论及应用讲解
多级决策过程所谓多级决策过程是指将一个过程按时间或空间顺序分为若干级步然后给每一级步作出决策在控制过程中令每走一步所要决定的控制步骤称之为决策以使整个过程取得最优的效果即多次的决策最终要构成一个总的最优控制策略最优控制方案
第4章 动态规划
求解动态最优化问题的两种基本方法:极小值原理和动态规划。
动态规划:是一种分级最优化方法,其连续形式与极小值原理相 辅相成,深化了最优控制的研究。
Optimal Control Theory & its Application
主要内容
1
多级决策过程和最优性原理
2
离散控制系统的动态规划
3
连续控制系统的动态规划
4 动态规划与变分法、极小值原理的关系
5
本章小结
Optimal Control Theory
Dong Jie 2012. All rights reserved.
Dong Jie 2012. All rights reserved.
Date: 09.05.2019 File: OC_CH4.7
Optimal Control Theory & its Application
Optimal Control Theory
Dong Jie 2012. All rights reserved.
特点:1)将一个多阶段决策问题化为多个单阶段决策问题,易于分析 2)每阶段评估只与前一阶段结果有关,计算量减小
Optimal Control Theory
Dong Jie 2012. All rights reserved.
Date: 09.05.2019 File: OC_CH4.5
Optimal Control Theory & its Application
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

切换一次,设切换
2t
时间为ts,则令
0
为了求出ts,必须
首先找出状态在
1
平面上的转移轨线。
0
1
ts
tf
t
t
由 则:
设u=1,则
其中
如图(a)所示,为一组抛物线, 当K=0时经过原点[pos]
X2 s
0
t
p
若u=-1,则
X2 N
o
X1
T u=-1
为一组抛物线,如图(b),当K1=0时过原点[NOT]
j =1,2…r
u 最优控制 *(t)是使
为极小,则:
+1 -1 不定
u*(t) +1
-1
奇异
t
可见:当 当
时, 时,
有确定值,正常情况 不定, 奇异情况
我们仅研究正常情况
u*(t)写成符号函数sgn{ }形式

j =1,2…r
向量形式:u*(t)=-sgn{q*(t)}
=-sgn{
}
⑶根据规范方程:
在证明过程中:
与H得符号与这里所定义的相反。
∴所以有的文献中也称为“极大值原理”。 3、H对u没有可微要求,因此应用拓宽。 4、 极小值原来是求取最优控制的必要条件,非充分条件。 即:满足极小值原理不一定J取极小值,需进一步判断。
一般:对于实际系统
有最优解
有唯一解
最优解
三、几种边界条件得讨论:
上面所讨论的是
控制向量约束条件: 末端状态:
g:p ×1维函数向量
目标函数:
: 自由
问题:寻求最优控制u*(t),使系统由初态到终态, 目标函数J 为最小
❖ 步骤:应用最小值原理进行问题的求解
⑴列写哈密顿函数
⑵由控制方程求u*(t)
∵u有约束, ∴H在u*上取得极小值,即:
令 [注:
q:r ×1维向量函数 ]
则有:如:燃料最优控Fra bibliotek:U0 U1
若采用经典变分:
若采用经典变分法:
不再适用,求不出解来
实际应为
极小值原理
若在容许控制范围内,J或H有极值且唯一,用极小值 原理与经典变分法,所得
结论一致。
一、<定理>极小值原理:[时变系统]
时变受控系统
,其中控制向量
, 为容许控制
域, U(t)是在
内取值的任何分段连续函数,为使状态向量由初始
⑴如何确定最优控制u*(t) 设线性定常系统的状态方程为:
其中,X:n ×1维状态向量 u:控制变量 A,B分别为n ×n,n ×1矩阵
约束条件:
末端条件:

,使系统状态从
所用时间最短,即使
转移到 为最小
⑵问题的求解 ①首先列写哈密顿函数:
②根据极小值原理分析可得:
③有规范方程:
注: 为标量函数,题意要求
解得:
b) |u| 由极小值原理: 当t=1时 在[0,1]区间 所以
五、极小值原理中哈密顿函数H的性质讨论
用途:对于所求解的最优控制的验证,或帮助求解最优控制及
1、线性定常系统:
固定,
包括
则:
常数 。{
自由,
H中不显函t} (与末端状态无关)
沿最优控制轨线: 因为 中不显函t所以 又因为 自由,

已知。
受约束,
自由的最一般
情况。若
和末端状态不同,只需改变极小值原理的边界条件即可。
1)
已知,
边界条件为:
2)
给定,
自由, 未给定,
边界条件:
确定
3)
已知,
边界条件为:
给定,末端受约束
若 自由:外加:
四、例题分析 :设一阶系统状态方程:
x(0)=5
控制约束:
试求使性能指标: 为极小值的最优控制
及最优性能指标
(与末端状态无关) 常数
2、对于时变系统: 固定:
自由: 若末端自由:
证明:见胡寿松P91页 ,末端
第四节最小值原理在实际中的应用
几个典型例子: ❖ 1.时间最优控制问题 ❖ 2.最小燃料消耗问题 ❖ 3.最小能量控制问题 ❖ 4.线性调节问题 介绍重点: 时间最优控制问题(其他求解思想与此类似)
及初始条件和横截条件:
可求得x*(t)及
⑷求最优控制u*(t)
→砰一砰控制
2、砰一砰控制定理:
要求控制量始终为最大或最小
设u*(t)是上述问题提出的解,x*(t),
是相应的
状态轨线和协状态轨线。若问题正常(非奇异),则
这是一个继电器控制方式,称为砰一砰控制
3、线性定常系统的最小时间控制问题的解法:
一、时间最优控制问题
所谓时间最优控制,就是把系统从初始 状态转移到目标状态的时间作为性能指标, 即使转移时间为最短。
这也是发展得最早的最优控制问题之 一。
1、问题提出(时变系统)
已知受控系统
并设 f 和 B对X(t)和t 连续可微。
X:n×1 状态向量 u: r×1 控制向量 f :n×1 函数向量 B:n×r 函数值矩阵
转移到末端

满足约束:

未定, 并使性能指标达
到极小值。 设
和 是如上J为最小的最优解,
为最优状态轨
线,则必存在不 1、规范方程:
为0的n维向量
,满足:
2、边界条件:
3、与
对应的哈密顿函数H取极小值。
即:设
为满足 状态方程和协状态方程的最优解。

中。把H仅看作U的函数,若J为最小,必要条
件为
使得
仅看作U的函数时也取最小值。
解:定常系统, 固定,末端自由问题
根据极小值原理,使H绝对极小相当于使J为极小
所以
由协状态方程:
由横截条件: 显然:当
时,
产生切换
所以
由x(0)=5代入,得 所以 令t=0.307可得0.307≤t≤1时x(t)的初始条件:
解得
所以

代入J可得:
例2: 0
求 a)对U没有约束 b) |u|
解:a)
极小值原理的证明:应用数学基础较多,有些书中用很大篇幅进行
证明,省略。
二、极小值原理的意义:
1 、容许控制条件放宽 变分法:在整个控制域,对U没有约束
且即使U不受限制,
有时
计算不易。
极小值原理:H在U的约束闭集中取极小值。
变分法仅为极小值原理的一个特例。
2、最优控制 这一原理是苏联学者
使哈密顿函数H取极小值,极小值原理由此得名。 “庞特里亚金”等人首先提出,而后加以证明得。
则u*(t)的切换次数最多不超过(n-1)次,
n为系统的维数。
以下将根据极小值定理,开关次数定理及相平 于状态空间分析,求u*
例题分析1:
时间最优控制问题
求u*(t)
解:对象为二阶线性系统[双积分模型的时间最 优控制](应用最普通最广泛的一种)
由规范方程: 则

C1,C2的取值要求:保证
由开关次数定理知:
代入
得:
可见, 的值完全由 的符号决定 但是, 的确定是不容易的。因为它还和系统的 状态变量有关系。通常采用的方法是:
先设一个 ,求出 ,求出 ,判定 若为0,则 即为所求;否则修正 重复上述 过程
⑶开关次数定理:
设线性系统
是正常的(不存在
非奇异问题),若矩阵A的特征值均为实数,假定
时间最优控制存在,并令其为
相关文档
最新文档