16.1.2分式的基本性质通分导学案3
16.1.2(2)分式基本性质2节

复习引课
探究新课
计算
(1)1/2+1/3=
(2)3/4+5/6=
那我们学的分式是否也可以像分数一样通过通分进而计算呢?
一、尝试解决
二、请同学们自主学习课本第7页,寻找最简公分母
三、探究分式通分的步骤:
思考的问题:
(1)分式通分的意义是什么?分式通分的根据是什么?分式通分时应特别注意什么?
教材9页7题通分
今天我的收获是————————————————————
16.1.2(2)通分
什么事通分?最简公分母?
例题讲解
(1)
(2)
(2)
自主完成
△巩固新知
□分式分子分母是单项式的通分公分母好确定,而分子分母是多项式的公分母需先分解因式后再通分学生掌握的不好
总体要求:1.“统一”设计“分段”教学;2.围绕“三维”落实“三问”;3.充实“心案”活化“形案”。
(2)分式通分的关键是什么?如何确定几个分式的最简公分母?
(3)通分与约分有何区别
例1通分
(1)
(2)
(2)
学生解答
阅读教材,小组合作交流
学生交流后师生共同归纳
学生自己做完以上各题后,以小组为单位进行交流,沟通,及时发现问题,解决问题
△以小学学过的旧知引课,从而过渡到今天的新知
通过小组讨论交流得出出最简公分母的概念
教教师活动
学生活动
△设计意图
◇资源准备
□评价○反思
小结
1.通分:
(1) 和 (2) 和
2.通分:
(1) 和 (2) 和
(3) 和 (4) 和
学生小结心得
学生板前做,师评
16.1.2分式的基本性质

分数的基本性质:分数的分子分母都乘以(或除以) 同一个不等于零的数,分数的值不变.
下列各组分式,能否由左边变形为右边? 2 a(a b) (2) x 与 x( x 1) a (1) 与 2 ab a b 3y 3 y( x 1) x xa xy y (3) 与 (4) 2 与 y ya x x
1 , (3) x² - y²
1 x² +xy
(x+y)(x-y) ∵ x² - y² =____________, x² +xy=__________, x (x + y )先把 Nhomakorabea母 分解因式
1 1 ∴ 与 的最简公分母为____________, x(x+y)(x-y) x² - y² x² +xy xx 1 x ³ - xy x (x + y)( x² - y) 因此 =________________, x² - y² x-y x 1 x³ - xy ² y) x (x + y)( x- = ________________, x² +xy
约分:
3 6
1 1 通分: 和 2 3
4、分数的基本性质是什么?
分数的基本性质:分数的分子分母都乘以(或除 以)同一个不等于零的数,分数的值不变。
a 分式 2 a
分式 n
2
1 (a≠0)与 2 相等吗?
(n≠0)与
说说你的理由。
mn
n 相等吗? m
分式的基本性质:
分式的分子与分母都乘以(或除以) 同一个不等于零的整式,分式的值不变.
2x(x+2) (x-2)
就是这两个分式的最简公分母.
a b c , 2 , (3)分式 2 a 4a 4 4a 8a 4 3a 6
16.1.2分式的基本性质学案

课题
16.1.2分式的基本性质
课时
第1课时
课型
新授
主备人
王金涛
学习目标
1.理解分式的基本性质.
2.会用分式的基本性质将分式变形.
学习重点
理解分式的基本性质.
学习难点
灵活应用分式的基本性质将分式变形。
学习过程
一情境导入
1.[思考]:下列两式成立吗?为什么?
2.一般地,对于任意一个分数 有:
四.课堂小结
这节课你有什么收获,请你 (2) =
(3) = (4) =
2.判断下列约分是否正确:
(1) = (2) = (3) =0
3.约分:(1) (2) (3)
4.通分:
(1) 和 (2) 和 (3)
5.应用提高:不改变分式的值,使下列分式的分子、分母不含“-”号:
(1) (2) (3)
6.在化简分式时,小颖和小明的做法出现了分歧:
小颖:
小明:
你对他们俩的解法有何看法?说说看!
学生感悟
(教师修订)
3.
为什么?
二、探究新知
活动1分式的基本性质
1.类比分数的基本性质,你能想到分式的基本性质吗?(试着用自己的语言叙述)
2.分式的基本性质
分式的分子与分母同乘(或除以),分式的值.
可用式子表示为: = =(C≠0)
其中A,B,C是整式。
3.应用填空
(1) =
分析:依据分式的基本性质(1)看分母如何变化,想分子如何变化。
(2)看分子如何变化,想分母如何变化。
活动2通分和约分
1.联想分数的通分和约分,有例1你能想出如何对分式进行通分和约分吗?
分式的基本性质---通分导学案3

学生自主学习学案 审核人: 科目初二数学 课题 分式的基本性质--通分 授课时间 月 日 设计人班级 八 姓名 序号 3 学习目标 1. 理解并掌握分式的基本性质及最简公分母的含义; 2.灵活运用分式基本性质将分式通分变形。
重难点 会求分式的最简公分母,灵活运用分式基本性质将分式通分。
【学习过程】一、独立看书4页:(10分钟)二、独立完成下列预习作业:1、利用分式的基本性质,将分式的分子和分母同乘适当的整式,不改变分式的值,使几个分式化为分母相同的分式,这样的分式变形叫做分式的 .2、根据你的预习和理解找出:①x 1与y3的最简公分母是 ; ②a x 与ab y 的最简公分母是 ; ③ab b a +与22a b a -最简公分母是 ;④231yz x 与22xy 的最简公分母是 . 如何确定最简公分母?三、合作交流,解决问题:1、通分:⑴b a 223与cab b a 2- ⑵26x ab ,29y a bc2、通分:⑴52-x x 与53+x x ; ★⑵2121a a a -++,261a -.解: =b a 223 =-cab b a 2 =-52x x =+53x x 解:四、巩固提高:1、分式223ab c 和28bc a -的最简公分母是 . 分式11-y 和11+y 的最简公分母是 . ★2、化简:._______44422=++-a a a 3、化简分式2b ab b +的结果为( ) A 、b a +1 B 、b a 11+ C 、21b a + D 、b ab +1 ★4、若分式 的分子、分母中的x 与y 同时扩大2倍,则分式的值( ) A 、扩大2倍 B 、缩小2倍 C 、不变 D 、是原来的2倍 ★5、不改变分式的值,使分式 的各项系数化为整数,分子、分母应乘以( ) A 、10 B 、9 C 、45 D 、90 ★6、不改变分式3253232-+-+-x x x x 的值,使分子、分母最高次项的系数为整数,正确的是( ) A 、3252322-+++x x x x B 、3252322-++-x x x x C 、3252322+--+x x x x D 、3252322+---x x x x 7、通分:⑴bd c 2与243b ac ★⑵2)(2y x xy +与22yx x -⑶bca y ab x 229,6 ★⑷16,12122-++-a a a ay x y x 913110151+- )0,0(≠≠+y x yx xy。
人教版数学八年级上册15.1.2分式的基本性质(3)-通分(教案)

-运用通分解决实际问题:将通分应用于解决具体的数学问题,如分数比较大小、分式加减运算等,强调通分在实际计算中的重要性。
举例:比较两个分式$\frac{2}{3}$和$\frac{5}{4}$的大小,需要先通分,将它们转化为同分母的分式,如$\frac{8}{12}$和$\frac{15}{12}$,从而直观地判断大小。
本节课,我们将学习分式的通分,掌握通分的步骤,并通过实例练习,使同学们能够熟练运用通分解决分式加减的问题。
二、核心素养目标
1.培养学生的逻辑推理能力,通过分式通分的探究,理解数学知识之间的内在联系,提高解决问题的逻辑思维。
2.培养学生的数学运算能力,掌握通分的具体方法,灵活运用到分式的加减运算中,提升运算速度和准确度。
3.培养学生的数学建模能力,将现实生活中的问题转化为分式计算问题,通过通分解决实际问题,增强数学应用意识。
4.培养学生的数学抽象能力,从具体的分式实例中提炼出通分的概念和性质,体会数学抽象的过程,提高数学素养。
三、教学难点与重母不同的分式化为分母相同的分式,以便进行加减运算。这是本节课的核心内容,教师需通过直观的图示和实际例题,让学生深刻理解通分的意义和作用。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《分式的基本性质(3)-通分》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要将不同分母的分数进行比较或运算的情况?”(如购物时比较不同规格商品的价格)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索通分的奥秘。
16.1.2分式的基本性质(3)-通分

a
b
a 1 , a 1 1 a
2、
a 1 6 , 2 a 2a 1 a 1
2
3、 5 x 20 , x 2 9 x 20 , 5 x
x5
5
x
活动五: 1、分式 x 2 , 2 x 3 ,
( x 1) 2
(1 x )3
5 的最简公分母( x 1
要为成功找方法
雅尔塞中学师生共用学导稿 3、
数 4、 a 3 , a 3
学 四、学习体会
人教版八年级下册
3 5 1 , 2 , 2 4a b 6b c 2ac 2
5
7
5、 x , x 1 , 3x
1
x
2
五、课后拓展
活动四: 通分: 1、
b a 已知 1 1 1 ,求 的值。
(6) x 2 x , x 2 x
2
1
3、已知 x y z ,求 xy yz xz 的值。 2 3页 )
要为成功找方法
不为失败找借口
第6页 ( 共4页 )
要为成功找方法
2、计算: 1 1 ,说说运算中应用了什么方法?依据是什么?
2 3
分式的通分: 二、探究活动 活动一: 最简公分母:__________________________________________________________ 1、指出下面各组分式的最简公分母: ①
③ 4 x2 , x 2
2
x
④ ( x y) 2 , x 2 y 2
2 xy
x
3 ab , 2a 2 b ab 2 c
1 x 2 , , x x 1 3x
八年级数学《分式的约分和通分》教案

“三部五环”教学模式设计《16.1.2分式的基本性质(2)》教学设计
活动三变式训练,巩固新知 题组一:选择题
1、下列说法错误的是( ) A .
a 21与24a b
通分后分别为242a a 与2
4a
b B .
z xy 231与y
x 2
31
通分后分别为z y x x 223与z
y x yz
2
23 C .
n m +1与m
n -1
的最简公分母为2
2
n m - D .
)(1n m a -与m
n -1
最简公分
母为))((m n n m a -- 2、下列约分正确的是( ) A .
33
=+m
m B.
022=--y x y x C.
b
a
b x a x =++ D.
1-=-+-y x y x 题组二:快速解答 1、约分
2、通分 (1)
2
261
21xy
y x -与 (2)
6
4312---+x x x
x 与 题组三:挑战自我
【师生活动】
教师相机出示题组,其中题组一口答,题组二、三纸笔演练
(题组二的1题分组练习,交叉评价),生思考并独立完成,
教师巡视指导,相机提名板演,重点关注学困生的表现,
及时辅导、补救。
【设计意图】
培养学生自主学习的思想,观察其成效
板书设计
16.1.2分式的约分和通分(2)。
16.1.2 分式的基本性质

0.01x 5 ⑵ 0.6a 5 b ⑴ 3 0.3 x 0.04 2
0 .7 a
5 1 x y 5 , (3) 6 5 1 x y 6 5
5bΒιβλιοθήκη 例5:约分- 25a bc 5abc 5ac 5ac () 1 2 15ab c 5abc 3b 3b
2 3 2 2
x2 9 x 3x 3 x 3 (2) 2 2 x 6x 9 x3 x 3
xy 2.若把分式 中的 x 和 x y
的值(
y
都扩大3倍,那么分式
A
).
A.扩大3倍 C.扩大4倍
B.扩大9倍 D.不变
1 1 2a 3ab 2b 已知, 3 ,求分式 的值。 a b a ab b
3x 3xy x y 2 6x ( 2x )
2
例3:不改变分式的值,使下列分子与分母都 不含“-”号
2x 2x ⑴ 5y 5y
3a 3 a ⑵ 7b 7b 10 m 10 m ⑶ 3n 3n
例4:不改变分式的值,把下列各式的分子与 分母的各项系数都化为整数.
x x x (2) 2 3 y( x 1) 3 y
3
将左边分式的分子与分母都除以 ( x 1)
2
例2
填空
ab (1) 2 ab ab
2
(a ab)
2a b ( 2ab b ) , (b 0) 2 2 a ab
2
x ( 1 ) (2) 2 , x 2x x 2
a b a b 2a 2a 2 2ab 2 2 2 2 ab c ab c 2a 2a b c
2x 3x (2) 与 x5 x5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.1.2分式的基本性质---通分
学习目标:1、经历用类比、观察、联想的方法探索分式通分的方法的过程,理
解通分与最简公分母的意义.
2、能正确熟练地运用分式的基本性质将分式通分.
学习重点:确定最简公分母.
学习难点:分母是多项式的分式的通分.
学习过程:
一、自学探究
1、回顾:将异分母分数854123,,化成同分母分数为._____8
5____,41___,23=== 2、分数的通分是:把 分母的分数化成 分母的分数叫做分数的通分。
其根据是 。
3、启发:分式的通分与分数的通分类似,那么什么是分式的通分呢?其根据又是什么?
4、尝试概括:分式通分的定义: 。
分式的通分的根据是
5、最简公分母:
(1)分式b a x ab c a 22,,b 的最简公分母是 ; 2
2,y x y y x x --的最简公分母是 .
2
2222,2,,b ab a b a b ab a b a b a b b a a +-+++--+的最简公分母是 . (2)请概括最简公分母:最简公分母的系数是各分母的系数的 , 字母取各分母所有因式的 的积。
二、新知运用:
1、指出下列各组分式的最简公分母. (1); (2); (3).
2、举例:
例1、通分: ().5
352)2(,2a 3122+--x x x x c ab b a b 与与 解:(1)最简公分母是 . =b 22a 3 = c
ab b a 2-= = (2)最简公分母是 . =-52x x = =+5
3x x = 3、巩固练习:通分: (1)
,43bd 2c 2b ac 与; (2) ;)(2222y
x x y x xy -+与 (3)
(4) (5)
4.指出下列分式的最简公分母?并尝试将它们通分.
(1);
(2);(3)。
三、知识总结:
1、分式的通分是: . 分式的通分的根据是: .
2、分式的最简公分母是:
四、当堂检测:
1、判断下列通分是否正确:
解:∵最简公分母是
∴ ,
2、填空:
(1)将通分后的结果是__________________;
(2)分式与的最简公分母是__________。
3、通分:(1) (2) (3)
(4) (5)。