高中数学 第一章 计数原理阶段复习课 新人教A版选修2-3
第1章计数原理 专解2 求特定条件下方法种数 必备知识点 巩固练习-人教A版高中数学选修2-3

【必备知识点】1.排列的定义一般地,从n 个不同的元素中取出m (m≤n )个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.2.排列数的定义从个不同元素中,任取()个元素的所有排列的个数叫做从个元素中取出元素的排列数,用符号表示.3.排列数公式,其中n ,m ∈N +,且m≤n .4. 阶乘表示式 (1)全排列:个不同元素全部取出的一个排列,叫做个不同元素的一个全排列.全排列.(2)阶乘的概念:把正整数1到的连乘积,叫做的阶乘.表示:,即.规定:.(3)排列数公式的阶乘式:所以.5.组合定义:一般地,从个不同元素中取出()个元素并成一组,叫做从个不同元素中取出个元素的一个组合.m m n ≤n m m n A A (1)(2)(1)mn n n n n m =---+n n (1)(2)321nn A n n n =--⨯⨯⨯n n !n nn A =!n 0!1=(1)(2)(1)()21!A (1)(2)(1)()21()!m n n n n n m n m n n n n n m n m n m ⋅-⋅-⋅⋅-+⋅-⋅⋅⋅=---+==-⋅⋅⋅-!A ()!mn n n m =-n m m n ≤n m6.组合数及其公式 (1)组合数的定义:从个不同元素中取出()个元素的所有组合的个数,叫做从个不同元素中取出个元素的组合数.记作. (2)组合数的公式及推导求从n 个不同元素中取出m 个元素的排列数,可以按以下两步来考虑: 第一步,先求出从这n 个不同元素中取出m 个元素的组合数; 第二步,求每一个组合中m 个元素的全排列数.根据分步计数原理,得到.因此 这里n ,m ∈N +,且m ≤n ,这个公式叫做组合数公式.因为,所以组合数公式还可表示为:.7. 组合数公式:(1)( 、,且)(2) ( 、,且)8.组合数的性质性质1:(、,且) 性质2:(、,且)n m n m ≤n m mn C mn A mn C mm A m m mn n m A C A =⋅2)(n m -+!()!mn n A n m =-!!()!mn n C m n m =-(-1)(-2)(-1)!m mn nm mA n n n n m C m A +==m +∈N n n m ≤!!(-)!mn n C m n m =m +∈N n n m ≤mn n m n C C -=m +∈N n n m ≤11-++=m n m n m n C C C m +∈N n n m ≤【典例展示】例1(重庆高考)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科,脑壳外和内科医生都至少有1人的选派方法种数是________(用数学作答).【解析】按每科选派人数分3,1,1和,2,2,1两类.当选派人数为3,1,1时,有3类,共有种200351413153413151433=++CCCCCCCCC.当选派人数为2,1,1时,有3类,共有种390252413251423152423=++CCCCCCCCC.故共有200+390=590(种)答案:590例2:(浙江高考)若从1,2,3,……,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种答案:D例3:(陕西高考)两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有()A.10种B.15种C.20种D.30种答案;C【思路总结与方法】1.思路:解决这个问题首先要确定所给问题的类别.再根据问题类别采用相应的计数原理进行计算求出方法的个数.2.解题步骤:①确定所给问题是“分类”问题还是“分步”问题②根据分类加法计数原理或分步乘法计数原理列出算式.③求出方法总数.【巩固练习】1.(山东)现有16张不同的卡片,期中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为()A.232 B.252 C.472 D.484解析:含有红色时,C(4,1)*C(12,2)=264种;不含红色时,分为两种小情况:1)含有三色,C(4,1)*C(4,1)*C(4,1)=64种;2)含有两色,必然是1色1种,另一色2种。
高中数学第一章计数原理1.2排列与组合1.2.2组合第1课时组合与组合数公式讲义新人教A版选修2_3

第1课时组合与组合数公式知识点组合的定义从n个不同元素中取出m(m≤n)个元素□01合成一组,叫做从n个不同元素中取出m个元素的一个组合.知识点组合与组合数公式组合的定义包含两个基本内容:一是“取出元素”;二是“合成一组”,表示与元素的顺序无关,排列与组合的相同点是从n 个不同元素中任取m 个元素,不同点是组合是“不管元素的顺序合成一组”,而排列是要求元素按照一定的顺序排成一列.因此区分某一问题是组合还是排列,关键是看取出的元素有无顺序.组合数的两个性质,性质1反映了组合数的对称性,在m >n2时,通常不直接计算C mn 而改为C n -m n ,对于性质2,C m n +1=C m n +C m -1n 要会正用、逆用、变形用.1.判一判(正确的打“√”,错误的打“×”)(1)从a ,b ,c 三个不同的元素中任取两个元素的一个组合是C 23.( ) (2)从1,3,5,7中任取两个数相乘可得C 24个积.( ) (3)1,2,3与3,2,1是同一个组合.( ) (4)C 35=5×4×3=60.( ) 答案 (1)× (2)√ (3)√ (4)×2.做一做(1)从6名学生中选出3名学生参加数学竞赛的不同选法种数是________. (2)C 1820=________. (3)C 399+C 299=________.答案 (1)20 (2)190 (3)161700解析 (1)由组合数公式知C 36=6×5×43×2×1=20.(2)C 1820=C 220=20×192×1=190. (3)C 399+C 299=C 3100=100×99×983×2×1=161700.探究1 组合的有关概念 例1 给出下列问题:(1)从a ,b ,c ,d 四名学生中选2名学生完成一件工作,有多少种不同的选法? (2)从a ,b ,c ,d 四名学生中选2名学生完成两件不同的工作,有多少种不同的选法? (3)a ,b ,c ,d 四支足球队之间进行单循环比赛,共需赛多少场? (4)a ,b ,c ,d 四支足球队争夺冠亚军,有多少种不同的结果?(5)某人射击8枪,命中4枪,且命中的4枪均为2枪连中,不同的结果有多少种? (6)某人射击8枪,命中4枪,且命中的4枪中恰有3枪连中,不同的结果有多少种? 在上述问题中,哪些是组合问题?哪些是排列问题?[解] (1)2名学生完成的是同一件工作,没有顺序,是组合问题. (2)2名学生完成两件不同的工作,有顺序,是排列问题.(3)单循环比赛要求每两支球队之间只打一场比赛,没有顺序,是组合问题. (4)冠亚军是有顺序的,是排列问题.(5)命中的4枪均为2枪连中,为相同的元素,没有顺序,是组合问题. (6)命中的4枪中恰有3枪连中,即连中3枪和单中1枪,有顺序,是排列问题. 拓展提升判断是否为组合问题,关键是判断问题是否与顺序有关,可以结合条件理解,也可以选择一个结果,交换这个结果中两个元素先后顺序,看是否对结果产生影响,若无新变化,则是组合问题.总之,与顺序有关是排列问题,若与顺序无关,则是组合问题.[跟踪训练1] 判断下列问题是排列问题,还是组合问题.(1)从集合A ={-1,1,10,8,6,4}中任取两个数相加,得到的和共有多少个? (2)从集合A ={-1,1,10,8,6,4}中任取两个数相除,得到的商共有多少个?(3)从a ,b ,c ,d 这四名同学中任取两名同学去参加某一活动,共有多少种不同的选法? (4)四个人互发一个电子邮件,共写了多少个电子邮件?解 (1)从集合A 中取出两个数后,改变两个数的顺序,其和不变.因此此问题,只与取出的元素有关,与元素的顺序无关,故是组合问题.(2)从集合A 中取出两个数相除,若改变其分子、分母的位置,其结果就不同,因此其商的值与元素的顺序有关,是排列问题.(3)由于从4名同学中取出的两名同学参加的同一项活动,没有顺序,因此是组合问题. (4)四人互发电子邮件,由于发信人与收信人是有区别的,与顺序有关,是排列问题. 探究2 组合数及组合数性质的运用 例2 (1)计算:C 410-C 37·A 33; (2)已知1C m 5-1C m 6=710C m 7,求C m8;(3)求C 38-n3n +C 3n21+n 的值; (4)证明:m C m n =n C m -1n -1. [解] (1)原式=C 410-A 37=10×9×8×74×3×2×1-7×6×5=210-210=0.(2)原方程可化为m !(5-m )!5!-m !(6-m )!6!=7×(7-m )!m !10×7!,即m !(5-m )!5!-m !(6-m )(5-m )!6×5!=7×m !(7-m )(6-m )(5-m )!10×7×6×5!,∴1-6-m 6=(7-m )(6-m )60,即m 2-23m +42=0,解得m =2或21(不符合题意,舍去).∴C m 8=C 28=28.(3)∵⎩⎪⎨⎪⎧38-n ≤3n ,3n ≤21+n ,∴9.5≤n ≤10.5,∵n ∈N *,∴n =10, ∴C 38-n3n +C 3n21+n =C 2830+C 3031=30!28!·2!+31!30!·1!=466.(4)证明:m C mn =m ·n !m !(n -m )!=n ·(n -1)!(m -1)!(n -m )!=n ·(n -1)!(m -1)!(n -m )!=n C m -1n -1.拓展提升(1)像排列数公式一样,公式C mn=n (n -1)(n -2)…(n -m +1)m !一般用于计算;而公式C m n =n !m !(n -m )!及C mn =A mn A m m 一般用于证明、解方程(不等式)等.(2)在解决与组合数有关的问题时,要注意隐含条件“m ≤n 且m ,n ∈N *”的运用.如本例(3).(3)要注意公式Am n =C m n A m m 的逆向运用,如本例(1)中可利用“C 37A 33=A 37”简化计算过程. (4)本例(4)所推导的结论“m C m n =n C m -1n -1”以及它的变形公式是非常重要的公式,应熟练掌握.[跟踪训练2] (1)①求值:C 5-n n +C 9-nn +1;②求证:C mn =m +1n -mC m +1n . (2)计算:①C 58+C 98100·C 77; ②C 05+C 15+C 25+C 35+C 45+C 55; ③C n n +1·C n -1n .解 (1)①⎩⎪⎨⎪⎧5-n ≤n ,5-n ≥0,9-n ≤n +1,9-n ≥0,解得4≤n ≤5.又因为n ∈N *,所以n =4或n =5. 当n =4时,原式=C 14+C 55=5, 当n =5时,原式=C 05+C 46=16.②证明:因为C mn =n !m !(n -m )!,m +1n -m C m +1n =m +1(m +1)!·n !(n -m )(n -m -1)!=n !m !(n -m )!,所以C mn =m +1n -mC m +1n . (2)①原式=C 38+C 2100×1=8×7×63×2×1+100×992×1=56+4950=5006.②原式=2(C 05+C 15+C 25)=2(C 16+C 25)=2×⎝ ⎛⎭⎪⎫6+5×42×1=32. ③原式=C 1n +1·C 1n =(n +1)n =n 2+n . 探究3 简单的组合问题例3 现有10名教师,其中男教师6名,女教师4名. (1)从中选2名去参加会议,有多少种不同的选法?(2)从中选出2名男教师或2名女教师去外地学习,有多少种不同的选法? (3)从中选出男、女教师各2名去参加会议,有多少种不同的选法?[解] (1)从10名教师中选2名去参加会议的选法种数,就是从10个不同元素中取出2个元素的组合数,即有C 210=10×92×1=45种不同的选法. (2)可把问题分两类:第1类,选出2名男教师,有C 26种方法;第2类,选出2名女教师,有C 24种方法,即共有C 26+C 24=21种不同的选法.(3)从6名男教师中选2名的选法有C 26种,从4名女教师中选2名的选法有C 24种,根据分步乘法计数原理,共有C 26·C 24=6×52×1×4×32×1=90种不同的选法. 拓展提升解简单的组合应用题时,首先要判断它是不是组合问题,组合问题与排列问题的根本区别在于:排列问题与取出的元素之间的顺序有关,而组合问题与取出元素的顺序无关.其次要注意两个基本原理的运用,即分类与分步的灵活运用,在分类与分步时,一定要注意有无重复和遗漏.[跟踪训练3] 在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人参加市级培训.在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加; (3)甲、乙、丙三人不能参加; (4)甲、乙、丙三人只能有1人参加.解 (1)从中任取5人是组合问题,共有C 512=792种不同的选法.(2)甲、乙、丙三人必须参加,则只需要从另外9人中选2人,是组合问题,共有C 29=36种不同的选法.(3)甲、乙、丙三人不能参加,则只需从另外的9人中选5人,共有C59=126种不同的选法.(4)甲、乙、丙三人只能有1人参加,可分两步:先从甲、乙、丙中选1人,有C13=3种选法;再从另外9人中选4人,有C49种选法.共有C13C49=378种不同的选法.1.下列问题不是组合问题的是 ( )A.10个朋友聚会,每两人握手一次,一共握手多少次?B.平面上有2015个不同的点,它们中任意三点不共线,连接任意两点可以构成多少条线段?C.集合{a1,a2,a3,…,a n}的含有三个元素的子集有多少个?D.从高三(19)班的54名学生中选出2名学生分别参加校庆晚会的独唱、独舞节目,有多少种选法?答案 D解析组合问题与次序无关,排列问题与次序有关,D项中,选出的2名学生,如甲、乙,其中“甲参加独唱、乙参加独舞”与“乙参加独唱、甲参加独舞”是两个不同的选法,因此是排列问题,不是组合问题,选D.2.若C 7n +1-C 7n =C 8n ,则n 等于( ) A .12 B .13 C .14 D .15 答案 C解析 C 7n +1=C 7n +C 8n =C 8n +1,∴n +1=7+8,n =14,故选C. 3.把三张游园票分给10个人中的3人,分法有 ( ) A .A 310种 B .C 310种 C .C 310A 310种 D .30种答案 B解析 三张票没区别,从10人中选3人即可,即C 310,故选B. 4.若C 4n >C 6n ,则n 的集合是________. 答案 {6,7,8,9} 解析 ∵C 4n >C 6n ,∴⎩⎪⎨⎪⎧C 4n >C 6n ,n ≥6⇒⎩⎪⎨⎪⎧n !4!(n -4)!>n !6!(n -6)!,n ≥6⇒⎩⎪⎨⎪⎧n 2-9n -10<0,n ≥6⇒⎩⎪⎨⎪⎧-1<n <10,n ≥6.∵n ∈N *,∴n =6,7,8,9. ∴n 的集合为{6,7,8,9}.5.在6名内科医生和4名外科医生中,现要组成5人医疗小组送医下乡,依下列条件各有多少种选派方法?(1)有3名内科医生和2名外科医生; (2)既有内科医生,又有外科医生.解 (1)先选内科医生有C 36种选法,再选外科医生有C 24种选法,故有C 36C 24=120种选派方法.(2)既有内科医生,又有外科医生,正面思考应包括四种情况,内科医生去1人,2人,3人,4人,有C 16C 44+C 26C 34+C 36C 24+C 46C 14=246种选派方法.若从反面考虑,则有C 510-C 56=246种选派方法.。
高中数学复习选修2-3 第一章章末总结 阶段复习课(一)

3. 的定义解释
是从Cmnn个 不Cnn同m元素中取出m个元素拼成一组,在从n个不同
元素中取出m个元素的同时,n个元素中剩余的n-m个元素就自
然C形mn 成了一组,所以 与 是相对应的,所以两数相等.
Cmn
Cnm n
【辨析】
1.组合与组合数的区别
组合与组合数是两个不同的概念,一个组合是由不同元素合成的一组数,组合
【辨析】
1.排列的概念 排列问题是针对不同元素的排列,若问题中允许元素重复,则不是排列问题. 2.排列与排列数的区别 排列与排列数是两个不同的概念,一个排列是按一定顺序排列的一列数,排列 数是所有不同排列的个数,是一个数.
三、组合 1.组合与组合数
概念
组合,组合数
一般地,从n个不同元素中取出m个元素合成一组, 叫做从n个不同元素中取出m个元素的一个组合, 所有不同组合的个数,叫做从n个不同元素中取 出m个元素的组合数.
各类方案之间是互斥的、 各步之间是关联的、相
并列的、独立的
互依存的
二、排列 1.排列与排列数
排列,排列数
排列 概念
一般地,从n个不同元素中取出m(m≤n)个元素, 按照一定的顺序排成一列,叫做从n个不同元素 中取出m个元素的一个排列 从n个不同元素中取出m(m≤n)个元素的所有不
排列数 同排列的个数,叫做从n个不同元素中取出m个
③④字a与C母knbaa的n,b次k是b数k一之种和“是符n号. ”,它可以是数、式及其他值.
⑤通项公式是对(a+b)n这个标准形式而言的,如(a-b)n的展 开式的通项公式是
Tk1 1 k Cnkankbk .
Ckn (n N*,k 0,1,2,,n)
(2)二项式定理的特征 ①二项展开式有n+1项,比二项式的次数大1. ②二项式系数与二项展开式系数是两个不同的概念. ③要注意逆用二项式定理来分析问题、解决问题.
2021-2022学年高中数学 第一章 计数原理测评(含解析)新人教A版选修2-3

第一章测评(时间:120分钟满分:150分)一、选择题(本题共12小题,每小题5分,共60分)1.若A m4=18C m3,则m等于()A.9B.8C.7D.6,得m-3=3,m=6.A m4=m(m-1)(m-2)(m-3)=18·m(m-1)(m-2)3×2×12.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A.10B.11C.12D.15:分有两个对应位置、有一个对应位置及没有对应位置上的数字相同,可得N=C42+C41+1=11.3.若实数a=2-√2,则a10-2C101a9+22C102a8-…+210等于()A.32B.-32C.1 024D.512,得a10-2C101a9+22C102a8-…+210=C100(-2)0a10+C101(-2)1a9+C102(-2)2a8+…+C10(-2)10=(a-2)10=(-√2)10=25=32.104.分配4名水暖工去3户不同的居民家里检查暖气管道.要求4名水暖工都分配出去,且每户居民家都要有人去检查,那么分配的方案共有( ) A.A 43种B .A 33A 31种C .C 42A 33种D .C 41C 31A 33种4名水暖工选出2人分成一组,然后将三组水暖工分配到3户不同的居民家,故有C 42A 33种.5.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在直角坐标系中,位于第一、第二象限不同点的个数是( ) A.18B.16C.14D.10N 1=2×2+2×2=8(个),第二象限的不同点有N 2=1×2+2×2=6(个), 故N=N 1+N 2=14(个). 故答案为C .6.将A,B,C,D 四个小球放入编号为1,2,3的三个盒子中,若每个盒子中至少放一个球,且A,B 不能放入同一个盒子中,则不同的放法有( ) A.15种B.18种C.30种D.36种A,B 放入不同盒中,有3×2=6(种)放法,再放C,D,若C,D 在同一盒中,有1种放法;若C,D 在不同盒中,则有2×2=4(种)放法. 故共有6×(1+4)=30(种)放法.故答案为C .7.为支持地震灾区的灾后重建工作,某公司决定分四天每天各运送一批物资到A,B,C,D,E 五个受灾地点.由于A 地距离该公司较近,安排在第一天或最后一天送达;B,C 两地相邻,安排在同一天上午、下午分别送达(B 在上午、C 在下午与B 在下午、C 在上午为不同的运送顺序),且运往这两地的物资算作一批;D,E 两地可随意安排在其余两天送达.则安排这四天运送物资到五个受灾地点的不同运送顺序的种数为( ) A.72B.18C.36D.24.第1步,安排运送物资到受灾地点A,有C 21种方法;第2步,在余下的3天中任选1天,安排运送物资到受灾地点B,C,有C 31A 22种方法;第3步,在余下的2天中安排运送物资到受灾地点D,E,有A 22种方法.由分步乘法计数原理得,不同的运送顺序共有C 21·(C 31A 22)·A 22=24(种).8.将数字1,2,3,4,5,6排成一列,记第i 个数为a i (i=1,2,…,6),若a 1≠1,a 3≠3,a 5≠5,a 1<a 3<a 5,则不同的排列方法种数为( )A.30B.18C.36D.48a 1,a 3,a 5的大小顺序已定,且a 1≠1,a 3≠3,a 5≠5,所以a 1可取2,3,4,若a 1=2或3,则a 3可取4,5,当a 3=4时,a 5=6,当a 3=5时,a 5=6;若a 1=4,则a 3=5,a 5=6.而其他的三个数字可以任意排列,因而不同的排列方法共有(2×2+1)A 33=30(种).9.12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排(这样就成为前排6人,后排6人),若其他人的相对顺序不变,则不同调整方法的总数是()A.6C82 B.720C82C.30C82 D.20C822人有C82种方法,再插空.由题意知先在4人形成的5个空当中插入1人,有5种方法,余下的1人要插入前排5人形成的6个空当中,有6种方法,即为30种方法.故共有30C82种调整方法.10.设(2-x)5=a0+a1x+a2x2+…+a5x5,那么a0+a2+a4a1+a3的值为()A.-122121B.-6160C.-244241D.-1x=1,可得a0+a1+a2+a3+a4+a5=1,再令x=-1可得a0-a1+a2-a3+a4-a5=35.两式相加除以2求得a0+a2+a4=122,两式相减除以2可得a1+a3+a5=-121.又由条件可知a5=-1,故a0+a2+a4a1+a3=-6160.11.形如45 132的数称为“波浪数”,即十位数字、千位数字均比与它们各自相邻的数字大,则由1,2,3,4,5可构成不重复的五位“波浪数”的个数为()A.20B.18C.16D.11,十位和千位数字只能是4,5或3,5,若十位和千位排4,5,则其他位置任意排1,2,3,这样的数有A 22A 33=12(个);若十位和千位排5,3,这时4只能排在5的一边且不能和其他数字相邻,1,2在其余位置上任意排列,这样的数有A 22A 22=4(个).综上,共有16个.故答案为C .12.若自然数n 使得竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n 为“可连数”.例如:32是“可连数”,因32+33+34不产生进位现象;23不是“可连数”,因23+24+25产生进位现象.则小于1 000的“可连数”的个数为( ) A.27 B.36C.39D.48,要构造小于1000的“可连数”,个位上的数字的最大值只能为2,即个位数字只能在0,1,2中取.十位数字只能在0,1,2,3中取;百位数字只能在1,2,3中取.当“可连数”为一位数时,有C 31=3(个);当“可连数”为两位数时,个位上的数字有0,1,2三种取法,十位上的数字有1,2,3三种取法,即有C 31C 31=9(个);当“可连数”为三位数时,有C 31C 41C 31=36(个);故共有3+9+36=48(个).二、填空题(本题共4小题,每小题5分,共20分)13.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是 .(用数字作答).第1类,每级台阶只站一人,则有A 73种站法;第2类,若有一级台阶有2人,另一级有1人,则有C 31A 72种站法,因此共有不同的站法种数是A 73+C 31A 72=336.14.若(x +√x3)8的展开式中x 4的系数为7,则实数a= .(x √x 3)8的通项为C 8rx 8-r a r(x -13)r=C 8r a r x8-r x -r3=C 8r a r x8-43r,令8-43r=4,解得r=3. ∴C 83a 3=7,得a=12.15.6个人排成一行,其中甲、乙两人不相邻的不同排法共有 种.(用数字作答)个人排成一行,其中甲、乙两人不相邻的不同排法:先排列好除甲、乙两人外的4人,有A 44种方法,再把甲、乙两人插入4个人的5个空当,有A 52种方法,所以共有A 44·A 52=480(种).16.(1+sin x )6的二项展开式中,二项式系数最大的一项的值为52,则x 在[0,2π]内的值为 .,得T 4=C 63sin 3x=20sin 3x=52,∴sin x=12.∵x ∈[0,2π], ∴x=π6或x=5π6.5π6三、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)有6个除颜色外完全相同的球,其中3个黑球,红、白、蓝球各1个,现从中取出4个球排成一列,共有多少种不同的排法?.(1)若取1个黑球,和另外3个球排成一列,不同的排法种数为A 44=24;(2)若取2个黑球,和从另外3个球中选的2个排成一列,2个黑球是相同的,所以不同的排法种数为C 32C 42A 22=36;(3)若取3个黑球,和从另外3个球中选的1个排成一列,不同的排法种数为C 31C 41=12.综上,不同的排法种数为24+36+12=72.18.(12分)一个口袋内有4个不同的红球,6个不同的白球. (1)从中任取4个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?将取出的4个球分成三类:①取4个红球,没有白球,有C 44种;②取3个红球1个白球,有C 43C 61种;③取2个红球2个白球,有C 42C 62种,故有C 44+C 43C 61+C 42C 62=115(种).(2)设取x 个红球,y 个白球,则{x +y =5,2x +y ≥7,0≤x ≤4,0≤y ≤6,故{x =2,y =3或{x =3,y =2或{x =4,y =1.因此,符合题意的取法种数有C 42C 63+C 43C 62+C 44C 61=186(种).19.(12分)已知(x +2√x )n展开式中的前三项的系数成等差数列. (1)求n 的值;(2)求展开式中系数最大的项.由题意,得C n 0+14C n 2=2×12C n 1, 即n 2-9n+8=0,解得n=8或n=1(舍去).故n=8. (2)设第r+1项的系数最大,则{12r C 8r ≥12r+1C 8r+1,12r C 8r ≥12r -1C 8r -1, 即{18-r≥12(r+1),12r≥19-r.解得2≤r ≤3.∵r ∈N *,∴r=2或r=3.∴系数最大的项为T 3=7x 5,T 4=7x 72.20.(12分)设1+12x m =a 0+a 1x+a 2x 2+a 3x 3+…+a m x m,若a 0,a 1,a 2成等差数列. (1)求1+12x m 展开式的中间项;(2)求1+12x m展开式中所有含x 的奇次幂的系数和. 解(1)依题意a 0=1,a 1=m 2,a 2=C m2122.由2a 1=a 0+a 2,求得m=8或m=1(应舍去),所以1+12x m展开式的中间项是第五项, T 5=C 8412x 4=358x 4.(2)因为1+12x m =a 0+a 1x+a 2x 2+…+a m x m, 即1+12x 8=a 0+a 1x+a 2x 2+…+a 8x 8. 令x=1,则a 0+a 1+a 2+a 3+…+a 8=328, 令x=-1,则a 0-a 1+a 2-a 3+…+a 8=128,所以a 1+a 3+a 5+a 7=38-129=20516,所以展开式中所有含x 的奇次幂的系数和为20516.21.(12分)把n 个正整数全排列后得到的数叫做“再生数”,“再生数”中最大的数叫做最大再生数,最小的数叫做最小再生数.(1)求1,2,3,4的再生数的个数,以及其中的最大再生数和最小再生数; (2)试求任意5个正整数(可相同)的再生数的个数.的再生数的个数为A 44=24,其中最大再生数为4321,最小再生数为1234.(2)需要考查5个数中相同数的个数. 若5个数各不相同,有A 55=120(个);若有2个数相同,则有A 55A 22=60(个);若有3个数相同,则有A 55A 33=20(个);若有4个数相同,则有A 55A 44=5(个);若5个数全相同,则有1个.22.(12分)已知m ,n 是正整数,f (x )=(1+x )m +(1+x )n 的展开式中x 的系数为7. (1)对于使f (x )的x 2的系数为最小的m ,n ,求出此时x 3的系数; (2)利用上述结果,求f (0.003)的近似值;(精确到0.01)(3)已知(1+2x )8展开式的二项式系数的最大值为a ,系数的最大值为b ,求ba .根据题意得C m 1+C n 1=7,即m+n=7,①f (x )中的x 2的系数为C m 2+C n 2=m (m -1)2+n (n -1)2=m 2+n 2-m -n2.将①变形为n=7-m 代入上式得x 2的系数为m 2-7m+21=m-722+354, 故当m=3或m=4时,x 2的系数的最小值为9.当m=3,n=4时,x 3的系数为C 33+C 43=5;当m=4,n=3时,x 3的系数为C 43+C 33=5.(2)f (0.003)=(1+0.003)4+(1+0.003)3≈C 40+C 41×0.003+C 30+C 31×0.003≈2.02.(3)由题意可得a=C 84=70,再根据{C 8k ·2k≥C 8k+1·2k+1,C 8k ·2k ≥C 8k -1·2k -1,即{k ≥5,k ≤6, 求得k=5或6,此时,b=7×28,∴b a =1285.2021-2022学年高中数学第一章计数原理测评(含解析)新人教A版选修2-311 / 1111。
高中数学新人教A版选修2-3课件:第一章计数原理本章整合

组,使得每组中都至少有一个元素,求一共有多少种不同的分法的问题.
首 页
专题一
专题二
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
专题三
应用 1 设 4 名同学报名参加同一时间安排的三种课外活动的方案有 a
的方法都有 n 种,由分步乘法计数原理得,从 n 个不同元素里有放回地取出
m 个元素(允许重复出现)的排列数为:N=n·
n·
n·
…·
n=nm(m,n∈N*,m≤n).
(2)“隔板法”是解决组合问题中关于若干个相同元素的分组问题的一
种常用方法,用这种方法解决此类问题,过程简捷明了,富有创意性和趣味性.
提示:本题既有相邻问题也有不相邻问题,故是捆绑法与插空法的综合
应用.
解析:先将甲乙捆绑,看作一个元素,有A22 种排法,然后将除甲乙丙之外
的 4 名学生全排列,有A44 种不同的排法,再将甲乙丙插入 5 个空中的两个,有
A25 种不同的排法,所以一共有A22 A44 A25=960 种不同排法.
答案:960
答案:B
首 页
S 随堂练习
J 基础知识 Z 重点难点
ICHU ZHISHI
1
2
UITANG LIANXI
HONGDIAN NANDIAN
3
4
5
6
7
8
2.(2013·福建高考)满足 a,b∈{-1,0,1,2},且关于 x 的方程 ax2+2x+b=0 有实
人教版高中数学选修2-3课后习题参考答案

新课程标准数学选修2—3第一章课后习题解答第一章 计数原理1.1分类加法计数原理与分步乘法计数原理 练习(P6) 1、(1)要完成的“一件事情”是“选出1人完成工作”,不同的选法种数是5+4=9; (2)要完成的“一件事情”是“从A 村经B 村到C 村去”,不同路线条数是3×2=6. 2、(1)要完成的“一件事情”是“选出1人参加活动”,不同的选法种数是3+5+4=12; (2)要完成的“一件事情”是“从3个年级的学生中各选1人参加活动”,不同选法种数是3×5×4=60.3、因为要确定的是这名同学的专业选择,并不要考虑学校的差异, 所以应当是6+4-1=9(种)可能的专业选择. 练习(P10)1、要完成的“一件事情”是“得到展开式的一项”.由于每一项都是i j k a b c 的形式,所以可以分三步完成:第一步,取i a ,有3种方法;第二步,取j b ,有3种方法;第三步,取k c ,有5种方法. 根据分步乘法计数原理,展开式共有3×3×5=45(项).2、要完成的“一件事情”是“确定一个电话号码的后四位”. 分四步完成,每一步都是从0~9这10个数字中取一个,共有10×10×10×10=10000(个).3、要完成的“一件事情”是“从5名同学中选出正、副组长各1名”. 第一步选正组长,有5种方法;第二步选副组长,有4种方法. 共有选法5×4=20(种).4、要完成的“一件事情”是“从6个门中的一个进入并从另一个门出去”. 分两步完成:先从6个门中选一个进入,再从其余5个门中选一个出去. 共有进出方法6×5=30(种). 习题1.1 A 组(P12) 1、“一件事情”是“买一台某型号的电视机”. 不同的选法有4+7=11(种). 2、“一件事情”是“从甲地经乙地或经丙地到丁地去”. 所以是“先分类,后分步”,不同的路线共有2×3+4×2=14(条). 3、对于第一问,“一件事情”是“构成一个分数”. 由于1,5,9,13是奇数,4,8,12,16是偶数,所以1,5,9,13中任意一个为分子,都可以与4,8,12,16中的任意一个构成分数. 因此可以分两步来构成分数:第一步,选分子,有4种选法;第二步,选分母,也有4种选法. 共有不同的分数4×4=16(个). 对于第二问,“一件事情”是“构成一个真分数”. 分四类:分子为1时,分母可以从4,8,12,16中任选一个,有4个;分子为5时,分母可以从8,12,16中选一个,有3个;分子为9时,分母从12,16中选一个,有2个;分子为13时,分母只能选16,有1个. 所以共有真分数4+3+2+1=10(个). 4、“一件事情”是“接通线路”. 根据电路的有关知识,容易得到不同的接通线路有3+1+2×2=8(条).5、(1)“一件事情”是“用坐标确定一个点”. 由于横、纵坐标可以相同,因此可以分两步完成:第一步,从A 中选横坐标,有6个选择;第二步,从A 中选纵坐标,也有6个选择. 所以共有坐标6×6=36(个). (2)“一件事情”是“确定一条直线的方程”. 由于斜率不同截距不同、斜率不同截距相同、斜率相同截距不同的直线都是互不相同的,因此可分两步完成:第一步,取斜率,有4种取法;第二步,取截距,有4种取法. 所以共有直线4×4=16(条). 习题1.1 B 组(P13) 1、“一件事情”是“组成一个四位数字号码”. 由于数字可以重复,最后一个只能在0~5这六个数字中拨,所以有号码10×10×10×6=6000(个). 2、(1)“一件事情”是“4名学生分别参加3个运动队中的一个,每人限报一个,可以报同一个运动队”. 应该是人选运动队,所以不同报法种数是43.(2)“一件事情”是“3个班分别从5个风景点中选择一处游览”. 应该是人选风景点,故不同的选法种数是35. 1.2排列与组合 练习(P20)1、(1),,,,,,,,,,,ab ac ad ba bc bd ca cb cd da db dc ;(2),,,,,,,,,,,,,,,,,,,ab ac ad ae ba bc bd be ca cb cd ce da db dc de ea eb ec ed .2、(1)4151514131232760A =⨯⨯⨯=; (2)777!5040A ==; (3)4288287652871568A A -=⨯⨯⨯-⨯⨯=; (4)87121277121255A A A A ==.3、4、(1)略. (2)876777787677778788A A A A A A A -+=-+=.5、3560A =(种). 6、3424A =(种). 练习(P25) 1、(1)甲、乙, 甲、丙, 甲、丁, 乙、丙, 乙、丁, 丙、丁; (2)2、ABC ∆,ABD ∆,ACD ∆,BCD ∆.3、3620C =(种). 4、246C =(个). 5、(1)26651512C ⨯==⨯; (2)3887656123C ⨯⨯==⨯⨯; (3)3276351520C C -=-=; (4)328532356210148C C -=⨯-⨯=. 6、()1111(1)!!11(1)![(1)(1)]!!!m m n n m m n n C C n n m n m m n m +++++=⋅==++++-+- 习题1.2 A 组(P27)1、(1)325454*********A A +=⨯+⨯=; (2)12344444412242464A A A A +++=+++=. 2、(1)315455C =; (2)19732002001313400C C ==; (3)346827C C ÷=;(4)22211(1)(1)(1)22n n n n nn nn n n n CCCC n -++--⋅=⋅=+⋅=.3、(1)12111(1)n n n n n n n n n n nn A A n A A nA n A +-+--=+-==; (2)(1)!!(1)!!(1)!!(1)!!!n n n k n n k n k k k k ++-⋅-+-==-. 4、由于4列火车各不相同,所以停放的方法与顺序有关,有481680A =(种)不同的停法.5、4424A =. 6、由于书架是单层的,所以问题相当于20个元素的全排列,有2020A 种不同的排法.7、可以分三步完成:第一步,安排4个音乐节目,共有44A 种排法;第二步,安排舞蹈节目,共有33A 种排法;第三步,安排曲艺节目,共有22A 种排法. 所以不同的排法有432432288A A A ⋅⋅=(种).8、由于n 个不同元素的全排列共有!n 个,而!n n ≥,所以由n 个不同的数值可以以不同的顺序形成其余的每一行,并且任意两行的顺序都不同. 为使每一行都不重复,m 可以取的最大值是!n .9、(1)由于圆上的任意3点不共线,圆的弦的端点没有顺序,所以共可以画21045C =(条)不同的弦;(2)由于三角形的顶点没有顺序,所以可以画的圆内接三角形有310120C =(个). 10、(1)凸五边形有5个顶点,任意2个顶点的连线段中,除凸五边形的边外都是对角线,所以共有对角线2555C -=(条);(2)同(1)的理由,可得对角线为2(3)2n n n C n --=(条).说明:本题采用间接法更方便. 11、由于四张人民币的面值都不相同,组成的面值与顺序无关,所以可以分为四类面值,分别由1张、2张、3张、4张人民币组成,共有不同的面值1234444415C C C C +++=(种). 12、(1)由“三个不共线的点确定一个平面”,所确定的平面与点的顺序无关,所以共可确定的平面数是3856C =;(2)由于四面体由四个顶点唯一确定,而与四个点的顺序无关,所以共可确定的四面体个数是410210C =. 13、(1)由于选出的人没有地位差异,所以是组合问题,不同的方法数是3510C =. (2)由于礼物互不相同,与分送的顺序有关系,所以是排列问题,不同方法数是3560A =;(3)由于5个人中每个人都有3中选择,而且选择的时间对别人没有影响,所以是一个“可重复排列”问题,不同方法数是53243=;(4)由于只要取出元素,而不必考虑顺序,所以可以分两步取元素:第一步,从集合A 中取,有m 种取法;第二步,从集合B 中取,有n 种取法. 所以共有取法mn 种. 说明:第(3)题是“可重复排列”问题,但可以用分步乘法计数原理解决.14、由于只要选出要做的题目即可,所以是组合问题,另外,可以分三步分别从第1,2,3题中选题,不同的选法种数有32143224C C C ⋅⋅=. 15、由于选出的人的地位没有差异,所以是组合问题.(1)225460C C ⋅=; (2)其余2人可以从剩下的7人中任意选择,所以共有2721C =(种)选法;(3)用间接法,在9人选4人的选法中,把男甲和女乙都不在内的去掉,就得到符合条件的选法数为449791C C -=; 如果采用直接法,则可分为3类:只含男甲;只含女乙;同时含男甲女乙,得到符合条件的方法数为33277791C C C ++=; (4)用间接法,在9人选4人的选法中,把只有男生和只有女生的情况排除掉,得到选法总数为444954120C C C --=. 也可以用直接法,分别按照含男生1,2,3人分类,得到符合条件的选法数为132231545454120C C C C C C ++=.16、按照去的人数分类,去的人数分别为1,2,3,4,5,6,而去的人大家没有地位差异,所以不同的去法有12345666666663C C C C C C +++++=(种). 17、(1)31981274196C =; (2)142198124234110C C ⋅=; (3)51982410141734C =; (4)解法1:3141982198125508306C C C =⋅=. 解法2:55200198125508306C C -=. 说明:解答本题时,要注意区分“恰有”“至少有”等词.习题1.2 B 组(P28)1、容易知道,在737C 注彩票中可以有一个一等奖.在解决第2问时,可分别计算37选6及37选8中的一等奖的中奖机会,它们分别是637112324784C =和8371138608020C =. 要将一等奖的机会提高到16000000以上且不超过1500000,即375000006000000nC ≤<, 用计算机可得,6n =,或31n =.所以可在37个数中取6个或31个.2、可以按照I ,II ,III ,IV 的顺序分别着色:分别有5,4,3,3种方法,所以着色种数有5×4×3×3=180(种).3、“先取元素后排列”,分三步完成:第一步,从1,3,5,7,9中取3个数,有35C 种取法;第二步,从2,4,6,8中取2个数,有24C 种取法;第三步,将取出的5个数全排列,有55A 种排法. 共有符合条件的五位数3255457200C C A ⋅⋅=(个).4、由于甲和乙都没有得冠军,所以冠军是其余3人中的一个,有13A 种可能;乙不是最差的,所以是第2,3,4名中的一种有13A 种可能;上述位置确定后,甲连同其他2人可任意排列,有33A 种排法. 所以名次排列的可能情况的种数是11333354A A A ⋅⋅=. 5、等式两边都是两个数相乘,可以想到分步乘法计数原理,于是可得如下分步取组合的方法.在n 个人中选择m 个人搞卫生工作,其中k 个人擦窗,m k -个人拖地,共有多少种不同的选取人员的方法?解法1:利用分步计数原理,先从n 个人中选m 个人,然后从选出的m 个人中再选出k 个人擦窗,剩余的人拖地,这样有m knm C C 种不同的选取人员的方法; 解法2:直接从n 个人中选k 个人擦窗,然后在剩下的n k -个人中选m k -个人拖地,这样,由分步计数原理得,共有k m knn k C C --种不同的人员选择方法. 所以,k m k m knn k n m C C C C --=成立. 说明:经常引导学生从一个排列组合的运算结果或等式出发,构造一个实际问题加以解释,有助于学生对问题的深入理解,检查结果,纠正错误. 1.3二项式定理 练习(P31)1、7652433425677213535217p p q p q p q p q p q pq q +++++++.2、2424236(2)(3)2160T C a b a b =⋅=.3、231(1)(2n rr r n rrr r nn r T C C x --+-=⋅=.4、D . 理由是5105555511010(1)T C x C x -+=-=-. 练习(P35)1、(1)当n 是偶数时,最大值2nnC ;当n 是奇数时,最大值12n nC-.(2)1311111111111210242C C C +++=⋅=. (3)12.2、∵0122knn nn n n n C C C C C ++++++=, 2、∵0122k n n nn n n n C C C C C ++++++=,0213nn n n C C C C ++=++∴012knnn n n n C C C C C ++++++0213()()n n n n C C C C =+++++022()2n n n C C =++=∴021222nn n n nnC C C -+++==. 3、略.习题1.3 A 组(P36)1、(1)011222(1)(1)(1)(1)n n n r n rr nn nn n n n C P C P P C P P C P P C P ---+-+-++-++-;(2)0122222nn n nn n n n n C C C C ++++.2、(1)9965432(9368412612684a a a a a b a a a b =+++23369a b ab b(2)27311357752222222172135701682241281283282x x x x x x x x ----=-+-+-+-.3、(1)552(1(122010x x ++=++; (2)11114412222(23)(23)192432x x x x x x ---+--=+. 4、(1)前4项分别是1,30x -,2420x ,33640x -; (2)91482099520T a b =-; (3)7924T =; (4)展开式的中间两项分别为8T ,9T ,其中78711815((6435T C x y =-=-87811915((6435T C x y =-=5、(1)含51x 的项是第6项,它的系数是5510163()28C -=-; (2)常数项是第6项,5105561012()2522T C -=⋅-=-.6、(1)2221221()(1)r n r r r r n rr n n T C x C xx --+=-=- 6、(1)2221221()(1)r n r r r r n rr n n T C x C xx--+=-=- 由220n r -=得r n =,即21()n x x-的展开式中常数项是12(1)n rn n T C +=-(2)!(1)!!nn n n =- 12345(21)2(1)!!n n nn n ⋅⋅⋅⋅⋅⋅-⋅=-…[135(21)][2462](1)!!n n n n n ⋅⋅⋅⋅-⋅⋅⋅⋅=-……[135(21)]2!(1)!!n nn n n n ⋅⋅⋅⋅-⋅⋅=-…135(21)(2)!nn n ⋅⋅⋅⋅-=-…(2)2(1)n x +的展开式共有21n +项,所以中间一项是12135(21)(2)!n nn n n n T C x x n +⋅⋅⋅⋅-==…7、略.8、展开式的第4项与第8项的二项式系数分别是3n C 与7n C , 由37n n n C C -=,得37n =-,即10n =.所以,这两个二项式系数分别是310C 与710C ,即120.习题1.3 B 组(P37)1、(1)∵1122221(1)111n n n n n n n n n n n n C n C n C n C n ----+-=++++++- 1122222n n n n nn n n C n C n C n n ---=+++++2213242(1)n n n n nn n n n C n C n C ----=+++++∴(1)1n n +-能被2n 整除; (2)∵1010991(1001)1-=--1019288291010101010010010010010011C C C C =-⋅+⋅++⋅-⋅+- 1019288210101010010010010010100C C C =-⋅+⋅++⋅-⨯1711521381010101000(101010101)C C C =-⋅+⋅++⋅-∴10991-能被1000整除.2、由0112211(21)222(1)2(1)n n n n n n n nnn n n n C C C C C -----=⋅-⋅+⋅++-⋅⋅+-,得112211222(1)2(1)1n n n n n n nn n C C C -----⋅+⋅++-⋅⋅+-=.第一章 复习参考题A 组(P40)1、(1)2n ;说明:这里的“一件事情”是“得到展开式中的一项”. 由于项的形式是i j a b ,而,i j 都有n 种取法.(2)3276525C C ⋅=; (3)1545480A A ⋅=,或2454480A A ⋅=; 说明:第一种方法是先考虑有限制的这名歌手的出场位置,第二种方法是先考虑有限制的两个位置. (4)45C ;说明:因为足球票无座,所以与顺序无关,是组合问题. (5)53;说明:对于每一名同学来说,有3种讲座选择,而且允许5名同学听同一个讲座,因此是一个“有重复排列”问题,可以用分步乘法原理解答. (6)54;说明:对角线的条数等于连接正十二边形中任意两个顶点的线段的条数212C ,减去其中的正十二边形的边12条:21212111212542C ⨯-=-=. (7)第1n +项.说明:展开式共有21n +项,且各系数与相应的二项式系数相同.2、(1)1234566666661956A A A A A A +++++=; 说明:只要数字是1,2,3,4,5,6中的,而且数字是不重复的一位数、二位数、三位数、四位数、五位数和六位数都符合要求.(2)552240A =. 说明:只有首位数是6和5的六位数才符合要求.3、(1)3856C =; (2)1234555530C C C C +++=. 4、468898C C +=.说明:所请的人的地位没有差异,所以是组合问题. 按照“其中两位同学是否都请”为标准分为两类.5、(1)2(1)2n n n C -=; 说明:任意两条直线都有交点,而且交点各不相同. (2)2(1)2n n n C -=. 说明:任意两个平面都有一条交线,而且交线互不相同. 6、(1)59764446024C =; (2)23397442320C C ⋅=; (3)2332397397446976C C C C ⋅+⋅=. 7、34533453103680A A A A ⋅⋅⋅=. 说明:由于不同类型的书不能分开,所以可以将它们看成一个整体,相当于是3个元素的全排列. 但同类书之间可以交换顺序,所以可以分步对它们进行全排列. 8、(1)226x -;说明:第三项是含2x 的项,其系数是22112244553(23)(2)26C C C C ⋅+⋅-⨯+--. (2)18118(9)(rr r r T C x -+=,由题意有1802rr --= 解得12r =,1318564T =;(3)由题意得98102n n n C C C =+,即2!!!9!(9)!8!(8)!10!(10)!n n n n n n ⋅=+---化简得2373220n n -+=,解得14n =,23n =;(4)解法1:设1r T +'是10(1)x -展开式的第1r +项,由题意知,所求展开式中4x 的系数为41T +',31T +'与21T +'的系数之和.444110()T C x +'=-,333110()T C x +'=-,222110()T C x +'=-,因此,4x 的系数432101010135C C C =-+=. 解法2:原式39(1)(1)x x =--3223344999(1)(19)x x C x C x C x =--+-++因此,4x 的系数499135C =+=. 9、5555559(561)9+=-+5515454555556565619C C =-⋅++⋅-+ 551545455555656568C C =-⋅++⋅+由于551545455555656568C C -⋅++⋅+中各项都能被8整除,因此55559+也能被8整除.第一章 复习参考题B 组(P41)1、(1)121121n n n C C -++==,即1(1)212n n +⋅=,解得6n =; (2)1144244224192A A A ⋅⋅=⨯⨯=; 说明:先排有特殊要求的,再排其他的. (3)433333⨯⨯⨯=,34444⨯⨯=;说明:根据映射定义,只要集合A 中任意一个元素在集合B 中能够找到唯一对应的元素,就能确定一个映射,对应的元素可以相同,所以是“有重复排列”问题.(4)2426106500000A ⨯=; (5)481258C -=; 说明:在从正方体的8个顶点中任取4个的所有种数48C 中, 排除四点共面的12种情况,即正方体表面上的6种四点共面的情况,以及如右图中ABC D ''这样的四点共面的其他 6种情况,因此三棱锥的个数为481258C -= (6)1或1-.说明:令1x =,这时(12)n x -的值就是展开式中各项系数的和,其值是1,(12)(1)1n n n n -⎧-=-=⎨⎩是奇数,是偶数2、(1)先从1,3,5中选1个数放在末位,有13A 种情况;再从除0以外的4个数中选1个数放在首位,有14A 种情况;然后将剩余的数进行全排列,有44A 种情况. 所以能组成的六位奇数个数为114344288A A A ⋅⋅=. (2)解法1:由0,1,2,3,4,5组成的所有没有重复数字的正整数的个数是1555A A ⋅,其中不大于201345的正整数的个数,当首位数字是2时,只有201345这1个;当首位数字是1时,有55A 个. 因此,所求的正整数的个数是155555(1)479A A A ⋅-+=. 解法2:由0,1,2,3,4,5组成的没有重复数字的正整数中,大于201345的数分为以下几种情况:前4位数字为2013,只有201354,个数为1;同理,前3位数字为201,个数为1222A A ⋅;前2位数字为20,个数为1333A A ⋅;首位数字为2,个数为1444A A ⋅;首位数字为3,4,5中的一个,个数为1535A A ⋅;根据分类计数原理,所求的正整数的个数是12131415223344351479A A A A A A A A +⋅+⋅+⋅+⋅=. 3、(1)分别从两组平行线中各取两条平行线,便可构成一个平行四边形,所以可以构成的平行四边形个数为221(1)(1)4m n C mn m n ⋅=--; (2)分别从三组平行平面中各取两个平行平面,便可构成一个平行六面体,所以可以构成的平行六面体个数为2221(1)(1)(1)8m n l C C C mnl m n l ⋅⋅=---. 4、(1)先排不能放在最后的那道工序,有14A 种排法;再排其余的4道工序,有44A 种排法.根据分步乘法计数原理,排列加工顺序的方法共有144496A A ⋅=(种);(2)先排不能放在最前和最后的那两道工序,有23A 种排法;再排其余的3道工序,有33A 种排法,根据分步乘法计数原理,排列加工顺序的方法共有233336A A ⋅=(种). 5、解法1:由等比数列求和公式得33342(1)(1)(1)(1)(1)n n x x x x x x+++-+++++++=, 上述等式右边分子的两个二项式中含2x 项的系数分别是33n C +,33C ,因此它们的差23333(611)6n n n n C C +++-=,就是所求展开式中含2x 项的系数. 解法2:原式中含2x 项的系数分别是23C ,24C ,…,22n C +,因此它们的和就是所求展开式中含2x 项的系数. 与复习参考题B 组第2题同理,可得22223334233(611)6n n n n n C C C C C +++++++=-=修2—3第二章课后习题解答第二章 随机变量及其分布2.1离散型随机变量及其分布列练习(P45)1、(1)能用离散型随机变量表示. 可能的取值为2,3,4,5,6,7,8,9,10,11,12.(2)能用离散型随机变量表示. 可能的取值为0,1,2,3,4,5. (3)不能用离散型随机变量表示.说明:本题的目的是检验学生是否理解离散型随机变量的含义. 在(3)中,实际值与规定值之差可能的取值是在0附近的实数,既不是有限个值,也不是可数个值.2、可以举的例子很多,这里给出几个例子:例1 某公共汽车站一分钟内等车的人数;例2 某城市一年内下雨的天数;例3 一位跳水运动员在比赛时所得的分数; 例4 某人的手机在1天内接收到电话的次数.说明:本题希望学生能观察生活中的随机现象,知道哪些量是随机变量,哪些随机变量又是离散型随机变量.练习(P49)1、设该运动员一次罚球得分为X说明:这是一个两点分布的例子,没投中看作试验失败. 通过这样的例子可以使学生理解两点分布是一个很常用的概率模型,实际中大量存在. 虽然离散型随机变量的分布列可以用解析式的形式表示,但当分布列中的各个概率是以数值的形式给出时,通常用列表的方式表示分布列更为方便.2、抛掷一枚质地均匀的硬币两次,其全部可能的结果为{正正,正反,反正,反反}. 正面向上次数X 是一个离散型随机变量,1(0)({})0.254P X P ====反反 2(1)({}{})0.54P X P ====正反反正 1(2)({})0.25P X P ====正正 因此X 的分布列为说明:这个离散型随机变量虽然简单,但却是帮助学生理解随机变量含义的一个很好的例子. 试验的全部可能的结果为{正正,正反,反正,反反},随机量X 的取值范围为{0,1,2},对应关系为正正→2 正反→1 反正→1 反反→0在这个例子中,对应于1的试验结果有两个,即“正反”和“反正”,因此用随机变量X 不能表示随机事件{正反}. 这说明对于一个具体的随机变量而言,有时它不能表示所有的随机事件.可以通过让学生们分析下面的推理过程存在的问题,进一步巩固古典概型的知识. 如果把X 所有取值看成是全体基本事件,即{0,1,2}Ω=.根据古典概型计算概率的公式有 1(1)({1})3P X P ===. 这与解答的结果相矛盾. 原因是这里的概率模型不是古典概型,因此上面式中的最后一个等号不成立. 详细解释下:虽然Ω中只含有3个基本事件,但是出现这3个基本事件不是等可能的,因此不能用古典概型计算概率的公式来计算事件发生的概率.3、设抽出的5张牌中包含A 牌的张数为X ,则X 服从超几何分布,其分布列为 5448552()i i C C P X i C -==,i =0,1,2,3,4.因此抽出的5张牌中至少3张A 的概率为(3)(3)(4)0.002P X P X P X ≥==+=≈.说明:从52张牌任意取出5张,这5张牌中包含A 的个数X 是一个离散型随机变量. 把52张牌看成是52件产品,把牌A 看成次品,则X 就成为从含有四件次品的52件产品中任意抽取5件中的次品数,因此X 服从超几何分布.本题的目的是让学生熟悉超几何分布模型,体会超几何分布在不同问题背景下的表现形式. 当让本题也可以用古典概型去解决,但不如直接用超几何分布简单. 另外,在解题中分布列是用解析式表达的,优点是书写简单,一目了然.4、两点分布的例子:掷一枚质地均匀的硬币出现正面的次数X 服从两点分布;射击一次命中目标的次数服从两点分布.超几何分布的例子:假设某鱼池中仅有鲤鱼和鲑鱼两种鱼,其中鲤鱼200条,鲑鱼40条,从鱼池中任意取出5条鱼,这5条鱼包含鲑鱼的条数X 服从超几何分布.说明:通过让学生举例子的方式,帮助学生理解这两个概率模型.习题2.1 A 组(P49)1、(1)能用离散型随机变量表示.设能遇到的红灯个数为X ,它可能的取值为0,1,2,3,4,5.事件{X =0}表示5个路口遇到的都不是红灯;事件{X =1}表示5个路口其中有1个路口遇到红灯,其他4个路口都不是红灯;事件{X =2}表示5个路口其中有2个路口遇到红灯,其他3个路口都不是红灯;事件{X =3}表示5个路口其中有3个路口遇到红灯,剩下2个路口都不是红灯;事件{X =4}表示5个路口其中有4个路口遇到红灯,另外1个路口都不是红灯;事件{X =5}表示5个路口全部都遇到红灯.(2)能用离散型随机变量表示.定义 12345X ⎧⎪⎪⎪=⎨⎪⎪⎪⎩,成绩不及格,成绩及格,成绩中,成绩良,成绩优则X 是一个离散型随机变量,可能的取值为1,2,3,4,5.事件{X =1}表示该同学取得的成绩为不及格;事件{X =2}表示该同学取得的成绩为及格;事件{X =3}表示该同学取得的成绩为中;事件{X =4}表示该同学取得的成绩为良;事件{X =5}表示该同学取得的成绩为优.说明:本题是考查学生是否理解离散型随机变量的含义. 在(2)中,需要学生建立一个对应关系,因为随机变量的取值一定是实数,但这个对应关系不是唯一的,只要是从五个等级到实数的意义映射即可.2、某同学跑1 km 所用时间X 不是一个离散型随机变量. 如果我们只关心该同学是否能够取得优秀成绩,可以定义如下的随机变量:01km 4min 11km 4minY >⎧=⎨≤⎩,跑所用的时间,跑所用的时间 它是离散型随机变量,且仅取两个值:0或1.事件{1}Y =表示该同学跑1 km 所用时间小于等于4 min ,能够取得优秀成绩;事件{0}Y =表示该同学跑1 km 所用时间大于4 min ,不能够取得优秀成绩.说明:考查学生在一个随机现象中能否根据关心的问题不同定义不同的随机变量,以简化问题的解答. 可以与教科书中电灯泡的寿命的例子对比,基本思想是一致的.3、一般不能. 比如掷一枚质地均匀的硬币两次,用随机变量X 表示出现正面的次数,则不能用随机变量X 表示随机事件{第1次出现正面且第2次出现反面}和{第1次出现反面且第2次出现正面}. 因为{X =1}={第1次出现正面且第2次出现反面}∪{第1次出现反面且第2次出现正面},所以这两个事件不能分别用随机变量X 表示.说明:一个随机变量是与一个事件域相对应的,一个事件域一般是由部分事件组成,但要满足一定的条件. 对离散型随机变量,如果它取某个值是由几个随机变量组成,则这几个随机事件就不能用随机变量表示,比如从一批产品中依次取出几个产品,用X 表示取出的产品中次品的个数,这时我们不能用X 表示随机事件{第i 次取出次品,其他均为合格品}.4、不正确,因为取所有值的概率和不等于1.说明:考查学生对分布列的两个条件的理解,每个概率不小于0,其和等于1,即 (1)0i p ≥,1,2,,i n =;(2)11n i i p ==∑.5、射击成绩优秀可以用事件{X ≥8}表示,因此射击优秀的概率为P {X ≥8}=(8)(9)(10)0.280.290.220.79P X P X P X =+=+==++=说明:本题知识点是用随机变量表示随机事件,并通过分布列计算随机事件的概率.6、用X 表示该班被选中的人数,则X 服从超几何分布,其分布列为104261030()i i C C P X i C -==, i =0,1,2,3,4. 该班恰有2名同学被选到的概率为2842610304!26!1902!2!8!18!(2)0.31230!60910!20!C C P X C ⨯⨯⨯====≈⨯. 说明:本题与49页练习的第3题类似,希望学生在不同背景下能看出超几何分布模型. 习题2.1 B 组(P49)1、(1)设随机抽出的3篇课文中该同学能背诵的 篇数为X ,则X 是一个离散型随机变量,它可能的 取值为0,1,2,3,且X 服从超几何分布,分布列 为即(2112(2)(2)(3)0.667263P X P X P X ≥==+==+==. 说明:本题是为了让学生熟悉超几何分布模型,并能用该模型解决实际问题.2、用X 表示所购买彩票上与选出的7个基本号码相同的号码的个数,则X 服从超几何分布,其分布列为7729736()i i C C P X i C -==, i =0,1,2,3,4,5,6,7. 至少中三等奖的概率为52617072972972977736363697(5)0.00192752C C C C C C P X C C C ≥=++=≈. 说明:与上题类似同样是用超几何分布解决实际问题,从此题的结算结果可以看出至少中三等奖的概率近似为1/1000.2.2二项分布及其应用练习(P54)1、设第1次抽到A 的事件为B ,第2次抽到A 的事件为C ,则第1次和第2次都抽到A 的事件为BC .解法1:在第1次抽到A 的条件下,扑克牌中仅剩下51张牌,其中有3张A ,所以在第1次抽到A 的条件下第2次也抽到A 的概率为3()51P C B =. 解法2:在第1次抽到A 的条件下第2次也抽到A 的概率为()433()()45151n BC P C B n B ⨯===⨯. 解法3:在第1次抽到A 的条件下第2次也抽到A 的概率为43()35251()451()515251P BC P C B P B ⨯⨯===⨯⨯. 说明:解法1是利用缩小基本事件范围的方法计算条件概率,即分析在第1次抽到A 的条件下第2次抽取一张牌的随机试验的所有可能结果,利用古典概型计算概率的公式直接得到结果. 解法2实际上是在原来的基本事件范围内通过事件的计数来计算条件概率. 第3种方法是利用条件概率的定义来计算. 这里可以让学生体会从不同角度求解条件概率的特点.2、设第1次抽出次品的时间为B ,第2次抽出正品的事件为C ,则第1次抽出次品且第2次抽出正品的事件为BC .解法1:在第1次抽出次品的条件下,剩下的99件产品中有4件次品,所以在第1次抽出次品的条件下第2次抽出正品的概率为95()99P C B =. 解法2:在第1次抽出次品的条件下第2次抽出正品的概率为()59595()()59999n BC P C B n B ⨯===⨯. 解法3:在第1次抽出次品的条件下第2次抽出正品的概率为595()9510099()599()9910099P BC P C B P B ⨯⨯===⨯⨯.说明:与上题类似,可以用不同方法计算条件概率.3、例1 箱中3张奖券中只有1张能中奖,现分别由3人无放回地任意抽取,在已知第一个人抽到奖券的条件下,第二个人抽到奖券的概率或第三个人抽到奖券的概率,均为条件概率,它们都是0.例2 某班有45名同学,其中20名男生,25名女生,依次从全班同学中任选两名同学代表班级参加知识竞赛,在第1名同学是女生的条件下,第2名同学也是女生的概率.说明:这样的例子很多,学生举例的过程可以帮助学生理解条件概率的含义.练习(P55)1、利用古典概型计算的公式,可以求得()0.5P A =,()0.5P B =,()0.5P C =,()0.25P AB =,()0.25P BC =,()0.25P AC =,可以验证()()()P AB P A P B =,()()()P BC P B P C =,()()()P AC P A P C =.所以根据事件相互独立的定义,有事件A 与B 相互独立,事件B 与C 相互独立,事件A 与C 相互独立.说明:本题中事件A 与B 相互独立比较显然,因为抛掷的两枚硬币之间是互不影响的. 但事件B 与C 相互独立,事件A 与C 相互独立不显然,需要利用定义验证, 从该习题可以看出,事件之间是否独立有时根据实际含义就可做出判断,但有时仅根据实际含义是不能判断,需要用独立性的定义判断.2、(1)先摸出1个白球不放回的条件下,口袋中剩下3个球,其中仅有1个白球,所以在先摸出1个白球不放回的条件下,再摸出1个白球的概率是1/3.(2)先摸出1个白球后放回的条件下,口袋中仍然有4个球,其中有2个白球,所以在先摸出1个白球后放回的条件下,再摸出1个白球的概率是1/2.说明:此题的目的是希望学生体会有放回摸球与无放回摸球的区别,在有放回摸球中第2次摸到白球的概率不受第1次摸球结果的影响,而在无放回摸球中第2次摸到白球的概率受第1次摸球结果的影响.3、设在元旦期间甲地降雨的事件为A ,乙地降雨的事件为B .(1)甲、乙两地都降雨的事件为AB ,所以甲、乙两地都降雨的概率为()()()0.20.30.06P AB P A P B ==⨯=(2)甲、乙两地都不降雨的事件为AB ,所以甲、乙两地都不降雨的概率为()()()0.80.70.56P AB P A P B ==⨯= (3)其中至少一个地方降雨的事件为()()()AB AB AB ,由于事件AB ,AB 和AB 两两互斥,根据概率加法公式和相互独立事件的定义,其中至少一个地方降雨的概率为()()()0.060.20.70.80.30.44P AB P AB P AB ++=+⨯+⨯=.说明:与例3类似,利用事件独立性和概率的性质计算事件的概率,需要学生复习《数学3(必修)》中学过的概率性质.4、因为()()A AB AB =,而事件AB 与事件AB 互斥,。
新人教A版高二数学选修2-3第一章计数原理 1.1 第二课时 两个计数原理的综合应用
由分类加法计数原理知,有 3+4=7 种方法. 第四步:由分步乘法计数原理有 N=4×3×7=84 种不同的种植方法. 法二:(1)若 A,D 种植同种作物,则 A、D 有 4 种不同的种法,B 有 3 种种植方法,C 也有 3 种种植方法,由分步乘法计数原理,共有 4×3×3=36 种种植方法. (2)若 A,D 种植不同作物,则 A 有 4 种种植方法,D 有 3 种种植方法, B 有 2 种种植方法,C 有 2 种种植方法,由分步乘法计数原理,共有 4×3×2×2=48 种种植方法. 综上所述,由分类加法计数原理,共有 N=36+48=84 种种植方法.
• 去年高考延续了五年的总体要求并在创新上有较大的突破; • 难度把控趋于稳定,基本控制在0.55左右; • 充分体现国家意志“一核”、“四层”、 “四翼”, “一核”是总体框架
体现突 出传统文化及党的教育方针:“德智体美劳”五育并举; • 学科思维考察更加凸显,体现数学学科的理性思维特点;
(3)被 2 整除的数即偶数,末位数字可取 0,2,4,因此,可以分 两类,一类是末位数字是 0,则有 4×3=12(种)排法;一类是末 位数字不是 0,则末位有 2 种排法,即 2 或 4,再排首位,因 0 不能在首位,所以有 3 种排法,十位有 3 种排法,因此有 2×3×3 =18(种)排法.因而有 12+18=30(种)排法.即可以排成 30 个能 被 2 整除的无重复数字的三位数.
用计数原理解决涂色(种植)问题
[典例] 如图所示,要给“优”、 “化”、“指”、“导”四个区域分别涂上 3 种不同颜色中的某一种,允许同一种颜色 使用多次,但相邻区域必须涂不同的颜色, 有多少种不同的涂色方法?
[解] 优、化、指、导四个区域依次涂色,分四步. 第 1 步,涂“优”区域,有 3 种选择. 第 2 步,涂“化”区域,有 2 种选择.
高中数学 第1章 计数原理阶段性测试题一 新人教A版高二选修2-3数学试题
第一章 计数原理(时间:120分钟 满分:150分) 第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若实数a =2-2,则a 10-2C 110a 9+22C 210a 8-…+210=( ) A .32 B .-32 C .1 024 D .512解析:由题意得a 10-2C 110a 9+22C 210a 8-…+210=(a -2)10,又a =2-2,所以原式=(2-2-2)10=32.答案:A2.已知(2-x )10=a 0+a 1x +a 2x 2+…+a 10x 10,则a 8等于( ) A .180 B .-180 C .45D .-45解析:依题意知,a 8=C 81022(-1)8=180,故选A. 答案:A3.(2019·某某省八校高三联考)某工厂安排6人负责周一至周六的中午午休值班工作,每天1人,每人值班1天,若甲、乙两人需安排在相邻两天值班,且都不排在周三,则不同的安排方式有( )A .192种B .144种C .96种D .72种解析:因为甲、乙两人都不排在周三,且安排在相邻两天,所以分两类:①甲、乙两人安排在周一,周二,则有A 22·A 44=48种;②甲、乙两人安排在周四,周五,周六中的相邻两天,则有2A 22·A 44=96种,则共有48+96=144(种).答案:B4.5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有( )A .150种B .180种C .200种D .280种解析:不同的分派方法⎝ ⎛⎭⎪⎫C 25C 23A 22+C 15C 14A 22A 33=150种,故选A.答案:A5.(2019·某某市、某某市部分学校联合模拟)二项式⎝ ⎛⎭⎪⎫ax 2+228的展开式中x 6的系数为562,则⎠⎛1a (x -cos πx )d x =( )A .2B .1C.32D.12 解析:二项式⎝⎛⎭⎪⎫22+ax 28的展开式的通项公式为T r +1=C r 8⎝ ⎛⎭⎪⎫228-r (ax 2)r ,∵2r =6,∴r =3.令r =3,则C 38×⎝⎛⎭⎪⎫225×a 3=562,解得a =2,所以⎠⎛1a (x -cos πx )dx =⎠⎛12(x -cos πx )dx答案:C6.已知6C x -7x -3=10A 2x -4,则x 的值为( ) A .11 B .12 C .13D .14解析:由6C x -7x -3=10A 2x -4,得6·(x -3)(x -4)(x -5)(x -6)4×3×2×1=10·(x -4)(x -5).∴x 2-9x -22=0,∴x =11或x =-2(舍). 答案:A7.(2019·某某一中高二月考)用红、黄、蓝三种颜色给如图所示的六个相连的圆涂色,若每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,则不同的涂色方案的种数为( )A .12B .24C .30D .36解析:因为一种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,所以分两类,第一类,涂前三个圆用三种颜色,有A 33=6种涂法,则涂后三个圆有C 12C 12=4种涂法,共有6×4=24种涂法;第二类,涂前三个圆用两种颜色,则涂后三个圆也用两种颜色,共有C 13C 12=6种涂法.综上,可得不同的涂色方案的种数为24+6=30.答案:C8.设⎝ ⎛⎭⎪⎫3x +1x n 展开式的各项系数之和为M ,其二项式系数之和为N ,若M +N =272,则n 的值为( )A .1B .4C .3 D.12解析:由题意得M =4n ,N =2n. ∵M +N =272,∴4n +2n=272,得n =4. 答案:B9.12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排(这样就成为前排6人,后排6人),若其他人的相对顺序不变,则不同调整方法的总数是( )A .C 28A 23 B .C 28A 66 C .C 28A 26D .C 28A 25解析:先从后排中抽出2人有C 28种方法,再插空,由题意知,先从4人中的5个空中插入1人,有5种方法,余下1人则要插入前排5人的空中,有6种方法,即抽出的2人插入前排为A 26.共有C 28A 26种调整方法.故选C.答案:C10.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有( )A .6种B .12种C .24种D .30种解析:首先,甲、乙两人同选1门,有4种方法;其次,甲从剩下的3门课中选1门,有3种方法;最后,乙从剩下的2门课中选1门,有2种方法.所以共有4×3×2=24种.答案:C11.若C 3n +123=C n +623(n ∈N *),且(3-x )n =a 0+a 1x +a 2x 2+…+a n x n,则a 0-a 1+a 2-…+(-1)na n =( )A .250B .-250C .256D .-150解析:由C 3n +123=C n +623,得3n +1=n +6或3n +1+n +6=23,∴n =52(舍去)或n =4.令x=-1,则(3-x )n=(3+1)4=a 0-a 1+a 2-a 3+a 4=256.∴a 0-a 1+a 2-…+(-1)na n =256.故选C.答案:C12.由1,2,3,0组成没有重复数字的三位数,其中0不在个位上,则这些三位数的和为( )A .1 320B .1 332C .2 532D .2 544解析:共组成A 33+A 23=12个这样的三位数,个位数有4个3,4个2 ,4个1,和为24;十位数有2个3,2个2,2个1,6个0,和为12;百位数有4个1,4个2,4个3,和为24,∴这些位数的和为2 544,故选D.答案:D第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.(2019·某某市高三质量预测)已知⎝⎛⎭⎪⎫1x+x 2n的展开式的各项系数和为64,则展开式中x 3的系数为_______________________________________.解析:令x =1,得2n =64,解得n =6,则⎝ ⎛⎭⎪⎫1x+x 26的展开式的通项T r +1=C r 6⎝ ⎛⎭⎪⎫1x 6-r x 2r =C r6x 3r -6,令3r -6=3,得r =3,故x 3的系数为C 36=20.答案:2014.设a ≠0,n 是大于1的自然数,⎝⎛⎭⎪⎫1+x a n 的展开式为a 0+a 1x +a 2x 2+…+a n x n.若点A i (i ,a i )(i =0,1,2)的位置如图所示,则a =________.解析:由题图可知a 0=1,a 1=3,a 2=4,由题意知⎩⎪⎨⎪⎧C 1n ·1a=a 1=3,C 2n·1a 2=a 2=4,故⎩⎪⎨⎪⎧n a =3,n (n -1)a 2=8,可得⎩⎪⎨⎪⎧n =9,a =3.答案:315.盒子里有完全相同的6个球,每次至少取出1个球(取出不放回),取完为止,则共有________种不同的取法(用数字作答).解析:依题意,取盒子中6个小球,可以看作6个小球排成一排,在中间插入挡板,由于每次至少取出一个球,所以最多可以插入5个挡板,即C 05+C 15+C 25+C 35+C 45+C 55=25=32.答案:3216.(2019·某某一中高二月考)将6名报名参加运动会的同学分别安排到跳绳、接力、投篮三项比赛中(假设这些比赛都不设人数上限),每人只参加一项,则共有x 种不同的方案,若每项比赛至少要安排一人,则共有y 种不同的方案,其中x +y 的值为________.解析:6名同学报名参加跳绳、接力、投篮三项比赛,每人只参加一项,每人有3种报名方法,根据分步乘法计数原理可得x =36=729.而每项比赛至少要安排一人时,先分组有C 16C 15C 44A 22+C 16C 25C 33+C 26C 24C 22A 33=90(种),再排列有A 33=6(种),所以y =90×6=540.所以x +y =1 269. 答案:1 269三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明,证明过程或演算步骤)17.(10分)为支援西部开发,需要从8名男干部和2名女干部中任选4人组成支援小组到西部某地支边,要求男干部不少于3人,问有多少种选派方案.解:解法一:男干部有四人时有C 48种选法;男干部有3人时有C 38C 12种选法,故适合条件的选派方案有C 48+C 38C 12=182种.解法二:从10名干部中选4名减去2名女干部全被选中的方案数,共有C 410-C 28C 22=182种.18.(12分)已知(3x 2+3x )n展开式中各项系数的和比它的二项式系数的和大4 032. (1)求展开式中含x 4的项;(2)求展开式中二项式系数最大的项.解:(1)令x =1得展开式各项系数和为4n ,而二项式系数和为C 0n +C 1n +…+C n n =2n, 由题意得4n -2n =4 032,即(2n -64)(2n +63)=0,得2n =64或2n=-63, 又∵n ∈N *,∴2n=64,故n =6,二项展开式的第r +1项为,令12+r 3=4,得r =0,∴展开式中含x 4的项为T 1=30·C 06·x 4=x 4. (2)∵n =6,∴展开式中第4项的二项式系数最大,19.(12分)2名女生和4名男生外出参加比赛活动.(1)他们排成一列照相时,若2名女生必须在一起,有多少种排列方法? (2)他们排成一列照相时,若2名女生不相邻,有多少种排列方法?(3)从这6名学生中挑选3人担任裁判,至少要有1名女生,则有多少种选法? 解:(1)有2A 55=240种. (2)有A 44A 25=480种. (3)有C 36-C 34=16种.20.(12分)求证:1+4C1n+7C2n+10C3n+…+(3n+1)C n n=(3n+2)·2n-1.证明:设S=1+4C1n+7C2n+10C3n+…+(3n+1)C n n,①则S=(3n+1)C n n+(3n-2)C n-1n+…+4C1n+1.②①+②得2S=(3n+2)(C0n+C1n+C2n+…+C n n)=(3n+2)·2n,∴S=(3n+2)·2n-1.21.(12分)带有编号1,2,3,4,5的五个球.(1)全部投入4个不同的盒子里;(2)放进不同的4个盒子里,每盒一个;(3)将其中的4个球投入4个盒子里的一个(另一个球不投入);(4)全部投入4个不同的盒子里,没有空盒;各有多少种不同的放法?解:(1)由分步计数原理知,五个球全部投入4个不同的盒子里共有45种放法.(2)由排列数公式知,五个不同的球放进不同的4个盒子里(每盒一个)共有A45种放法.(3)将其中的4个球投入一个盒子里共有C45C14=20种放法.(4)全部投入4个不同的盒子里(没有空盒)共有C25A44种不同的放法.22.(12分)设x10-3=Q(x)(x-1)2+ax+b,其中Q(x)是关于x的多项式,a,b∈R.(1)求a,b的值;(2)若ax+b=28,求x10-3除以81的余数.解:(1)由已知等式,得[(x-1)+1]10-3=Q(x)(x-1)2+ax+b,∴C010(x-1)10+C110(x-1)9+…+C810(x-1)2+C910(x-1)+C1010-3=Q(x)(x-1)2+ax+b,∴[C010(x-1)8+C110(x-1)7+…+C810](x-1)2+10x-12=Q(x)(x-1)2+ax+b,∴10x-12=ax+b.∴a=10,b=-12.(2)∵ax+b=28,即10x-12=28,∴x=4,∴x10-3=410-3=(3+1)10-3=C010×310+C110×39+…+C910×3+C1010-3=34×(C010×36+C110×35+…+C610)+40×34+5×34+28=81(C010×36+C110×35+…+C610+45)+28,∴所求的余数为28.。
2018-2019学年高中数学 第一章 计数原理 1.2.2 第1课时 组合(一)讲义 新人教A版选修2-3
含组合数的化简、证明或解方程、不
(1)对于含组合数的化简、证明或解方程、不等式等问题多利 ①组合数公式,即: Cnm=m!nn!-m!=nn-1…m!n-m+1; ②组合数的性质,即 Cnm=Cnn-m和 Cnm+1=Cmn +Cmn -1; ③排列数与组合数的关系,即 Anm=Cmn Amm. (2)当含有字母的组合数的式子要进行变形论证时,利用阶乘 便.
1.由 Cx1+0 1+C1170-x可得不相同的值的个数是
A.1
B.2
C.3
D.4
[解析]
x+1≤10 ∵x1+7-1≥x≤010,∴7≤x≤9,
17-x≥0
又 x∈Z,∴x=7,8,9.
当 x=7 时,C810+C1100=46
当 x=8 时,C910+C910=20 当 x=9 时,C1100+C810=46.
规律总结』 1.性质“Cnm=Cnn-m”的意义及作用. 反映的是组合数的对称性,即从n个不
意义 → 同的元素中取m个元素的一个组合与 剩下的n-m个元素的组合相对应
作用 → 当m>n2时,计算Cnm通常转化为计算Cnn-m
2.与排列组合有关的方程或不等式问题要用到排列数、组 组合数的性质,求解时,要注意由 Cnm中的 m∈N+,n∈N+,且 的范围,因此求解后要验证所得结果是否适合题意.
序写出,即
• ∴所有组合为ABC,ABD,ABE,ACD,ACE BCD,BCE,BDE,CDE.
解法二:画出树形图,如图所示.
∴所有组合为 ABC,ABD,ABE,ACD,ACE,ADE,BCD CDE.
命题方向2 ⇨组合数公式
典例 2 (2018·江西玉山一中检测)若 20C5n+5=4(n+4)Cnn+- 的值.
高中数学 第1章《计数原理》课件 新人教A版选修23
r n
(r=0,1,2,…,n)称为二项
式系数,第r+1项Crnan-rbr称为通项.
• [说明] ①二项式系数与项的系数是不同的概念,前者只与 项数有关,而后者还与a,b的取值有关.
• ②运用通项求展开式的特定值(或特定项的系数),通常先由 题意列方程求出r,再求所需的项(或项的系数).
(2)二项式系数的性质: ①对称性:与首末两端“等距离”的两个二项式系数相 等,体现了组合数性质Cnm=Cnn-m; ②增减性与最大值: 当k<n+2 1时,二项式系数Ckn逐渐增大; 当k>n+2 1时,二项式系数Ckn逐渐减小;
•
有3封信,4个信简.
• (1)把3封信都寄出,有多少种寄信方法?
• (2)把3封信都寄出,且每个信简中最多一封信,有多少种寄 信方法?
• [思维点击] 本题关键是要搞清楚以“谁”为主研究问 题.解决这类问题,切忌死记公式,应清楚哪类元素必须应 该用完,就以它为主进行分析,再用分步计数原理求解.
(1)分3步完成寄出3封信的任务:第一步,寄 出1封信,有4种方法;第二步,再寄出1封信,有4种方法;第 三步,寄出最后1封信,有4种方法,完成任务.根据分步计数 原理,共有4×4×4=43=64种寄信方法.
(2)典型的排列问题,共有A34=24种寄信方法.
• 1.有7名女同学和9名男同学,组成班级乒乓球混合双打代 表队,共可组成( )
• A.7队 B.8队 • C.15队 D.63队 • 解析: 由分步乘法计数原理,知共可组成7×9=63队. • 答案: D
• 2.如图,用6种不同的颜色把图中A,B,C,D四块区域分开, 若相邻区域不能涂同一种颜色,则不同的涂法共有( )
[说明] 公式①主要用于具体的计算,公式②主要用于 化简.