贵州大学数值分析往年试题(6套)

合集下载

数值分析试题与答案

数值分析试题与答案

一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。

2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。

3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。

4. 1n +个节点的高斯求积公式的代数精确度为 。

二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。

三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y 2 4 12 i y '3并估计误差。

(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。

(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。

(10分) 六.试用Doolittle 分解法求解方程组:12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ (10分)七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛?(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。

(10分)《数值分析》(A )卷标准答案(2009-2010-1)一. 填空题(每小题3分,共12分) 1. ()1200102()()()()x x x x l x x x x x --=--; 2.7;3. 3,8;4. 2n+1。

(完整word版)数值分析试题(word文档良心出品)

(完整word版)数值分析试题(word文档良心出品)

一、填空题(每空2分,共20分)1、解非线性方程阿西吧的f(x)=0的牛顿迭代法具有_______收敛2、迭代过程(k=1,2,…)收敛的充要条件是___3、已知数 e=2.718281828...,取阿西吧的近似值 x=2.7182,那麽x具有的有效数字是___4、高斯--塞尔德迭代法解阿西吧的线性方程组的迭代格式中求阿西吧的______________5、通过四个互异节点的插值多项式p(x),只要满足_______,则p(x)是不超过二次的多项式6、对于n+1个节点的插值求积公式至少具有___次代数精度.7、插值型求积公式的求积系数之和___8、 ,为使A可分解为A=LL T, 其中L为对角线元素为正的下三角形,a的取值范围_9、若则矩阵A的谱半径(A)=___10、解常微分方程初值问题的梯形格式是___阶方法二、计算题(每小题15分,共60分)1、用列主元消去法解线性方程组2、已知y=f(x)的数据如下x 0 2 3f(x) 1 3 2求二次插值多项式及f(2.5)3、用牛顿法导出计算的公式,并计算,要求迭代误差不超过。

4、欧拉预报--校正公式求解初值问题取步长k=0.1,计算y(0.1),y(0.2)的近似值,小数点后保留5位.三、证明题(20分每题 10分)1、明定积分近似计算的抛物线公式具有三次代数精度2、若,证明用梯形公式计算积分所得结果比准确值大,并说明这个结论的几何意义。

参考答案:一、填空题1、局部平方收敛2、< 13、 44、5、三阶均差为06、n7、b-a8、9、 1 10、二阶方法二、计算题1、2、3、≈1.25992 (精确到,即保留小数点后5位)4、y(0.2)≈0.01903三、证明题1、证明:当=1时,公式左边:公式右边:左边==右边当=x时左边:右边:左边==右边当时左边:右边:左边==右边当时左边:右边:左边==右边当时左边:右边:故具有三次代数精度A卷一、填空题(本大题共8小题,每小题3分,共9×3=27分)1、要使11的近似值的相对误差不超过0.1%,应取______________有效数字。

数值分析期末试题及答案

数值分析期末试题及答案

数值分析期末试题及答案一、选择题(每题5分,共20分)1. 在数值分析中,下列哪个算法不是用于求解线性方程组的?A. 高斯消元法B. 牛顿法C. 雅可比法D. 追赶法答案:B2. 插值法中,拉格朗日插值法属于:A. 多项式插值B. 样条插值C. 线性插值D. 非线性插值答案:A3. 以下哪个选项不是数值分析中的误差来源?A. 截断误差B. 舍入误差C. 计算误差D. 测量误差答案:C4. 在数值积分中,梯形法则的误差项是:A. O(h^2)B. O(h^3)C. O(h)D. O(1)答案:A二、填空题(每题5分,共20分)1. 牛顿插值法中,插值多项式的一般形式为:______。

答案:f(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + ...2. 牛顿迭代法求解方程的根时,迭代公式为:x_{n+1} = x_n -f(x_n) / __________。

答案:f'(x_n)3. 在数值分析中,______ 用于衡量函数在区间上的近似积分值与真实积分值之间的差异。

答案:误差4. 线性方程组的解法中,______ 法是利用矩阵的LU分解来求解。

答案:克兰特三、解答题(每题10分,共60分)1. 给定函数f(x) = e^(-x),使用拉格朗日插值法,求x = 0.5时的插值值。

解答:首先选取插值节点x_0 = 0, x_1 = 0.5, x_2 = 1,对应的函数值分别为f(0) = 1, f(0.5) = e^(-0.5), f(1) = e^(-1)。

拉格朗日插值多项式为:L(x) = f(0) * (x-0.5)(x-1) / (0-0.5)(0-1) + f(0.5) * (x-0)(x-1) / (0.5-0)(0.5-1) + f(1) * (x-0)(x-0.5) / (1-0)(1-0.5)将x = 0.5代入得:L(0.5) = 1 * (0.5-0.5)(0.5-1) / (0-0.5)(0-1) + e^(-0.5) * (0.5-0)(0.5-1) / (0.5-0)(0.5-1) + e^(-1) * (0.5-0)(0.5-0.5) / (1-0)(1-0.5)计算得L(0.5) = e^(-0.5)。

数值分析试题集(2020年7月整理).pdf

数值分析试题集(2020年7月整理).pdf
位-----------------。
2 设 f (x) = 3x2 + 5 , xi = i ( i = 0,1, 2,) ,则二阶差商 f [xn , xn+1, xn+2 ] = --------。
1 1 3 A = 5 1 ,则 A 1= -----------------。
4

A
=
a +1 −1
2 4
,当
a
满足条件
----------------
时,A 可作 LU 分解。
n
5 设 xi ( i = 0, 1, 2, , n ) 是互异节点,对于 k = 0, 1, 2, , n , xikli (x) -----------。 i=0
二(10 分)由下表求插值多项式
x
0
y
2
1
2
3
4
y
1
位-----------------。
2 设 f (x) = 3x2 + 5 , xi = i ( i = 0,1, 2,) ,则二阶差商 f [xn , xn+1, xn+2 ] = --------。
1 1 3 A = 5 1 ,则 A 1= -----------------。
4

A
=
a +1 −1
2 1
2
A = −1
4 ,则
A = -----------,
(A) = -----------------。
3

A
=
a +1 −1
2 4
,当
a
满足条件----------------时,A

数值分析习题(含答案)

数值分析习题(含答案)

第一章 绪论姓名 学号 班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。

1 若误差限为5105.0-⨯,那么近似数0.003400有几位有效数字?(有效数字的计算) 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。

2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算) 解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取(3.14109 , 3.14209)之间的任意数,都具有4位有效数字。

3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字?(有效数字的计算)解:3*1021-⨯≤-aa ,2*1021-⨯≤-b b ,而1811.2=+b a ,1766.1=⨯b a 2123****102110211021)()(---⨯≤⨯+⨯≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。

2123*****10210065.01022031.1102978.0)()(---⨯≤=⨯+⨯≤-+-≤-b b a a a b b a ab 故b a ⨯至少具有2位有效数字。

4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算) 解:已知δ=-**xx x ,则误差为 δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。

贵州大学2005-2015年数学分析考研真题

贵州大学2005-2015年数学分析考研真题

贵州大学2005年数学分析考研真题一、判断下列结论的正误,正确的简要说明理由,错误的给出反例(每小题5分,共30分)1、设有数列}{a n ,满足0)(lim 1=-+∞→n n n a a ,则极限n n a ∞→lim 存在.2、设)()(limx g x f x x →存在,)(lim 0x g x x →存在,则)(lim 0x f x x →必存在.3、若)(x f 在开区间),(b a 上连续,则)(x f 在),(b a 上一致连续.4、若可导函数)(x f 在],[b a 严格单调递增,则在),(b a 内必有0)('>x f .5、若)(x f 在0x x =处有定义,且)0()0-(00+=x f x f ,则)(x f 在0x x =处连续.6、若二元函数),(y x f 在),(00y x 处偏导数存在,则),(y x f 在),(00y x 连续.二、求解下列各题(每小题10分,共60分)1、求数列的极限nnn a a +∞→2lim ,(其中0||≠a ).2、设⎭⎬⎫⎩⎨⎧<-≥=0),1ln(0,)(x x x chx x f ,试讨论)(x f 的可导性并在可导处求出')(x f .3、确定a,b 之值,使函数⎪⎩⎪⎨⎧>+=<=00,0,)(x b x x a x e x f x ,当当当处处连续.4、在抛物线2x y =找出直线243=-y xk 的距离为最短的点.5、求由不等式33cos sin x y x ≤≤,40πx ≤≤所确定的区域的面积.6、求曲线222,1t t y t x -=+=与x 轴所围成的封闭图形绕x 轴旋转所得的立体的体积.三、证明题(每小题15分,共60分)1、)(x f 在],[b a 上连续,且a a f <)(,b b f >)(,证明:在),(b a 内至少存在一点ξ,使得ξξf =)(.2、函数),(y x z z =由方程)(z φy x z +=所确定,其中)(z φ具有连续导数,且0)(-1'≠z φy ,证明xzz φy z ∂∂=∂∂)(.3、设)(x f ,)(x g 都在],[b a 上连续,)}(),({max )(],[x g x f x M b a x ∈=,证明)(x M 在],[b a 上连续.4、设)}({x S n 在],[b a 上一致收敛于)(x S ,且每个)(x S n 在],[b a 上连续,则)(x S 连续.贵州大学2006年数学分析考研真题一、单项选择题(共六小题,每小题5分,满分30分)1.在以下格式中,极限存在,但不能用洛必达法则计算的是()A.0sin lim x x x→ B.1lim(1)xx x →∞+ C.sin lim x x x x →∞+ D.lim axnx e x→∞2.设f(x)在[0,1]连续可导,不恒为常数,若f(0)=f(1),则在开区间(0,1)内()A.'()0f x = B.'()0f x >C.'()0f x < D.存在12ξξ≠,使得''12()()0f f ξξ<3.设()f x 可导,()()(1|sin |)F x f x x =+,则(0)0f =是()F x 在0x =处可导的()A.充分必要条件B.充分条件但非必要条件C.必要条件但非充分条件D.既非充分条件又非必要条件4.设()f x 在区间[a,b]上非负,在(a,b )内''()0f x >,'()0f x <,1(()())2b aI f b f a -=-,2()baI f x dx =⎰,1()()I b a f b =-,则123,,I I I 的大小关系()A.213I I I ≤≤B.123I I I ≤≤C.132I I I ≤≤ D.321I I I ≤≤5.设函数()f x 在(,)-∞∞内连续,则导函数的图形如图1所示,则图1()f x 的图形为()6.'00(,)0x Z x y =,'00(,)0y Z x y =是函数(,)Z f x y =在00(,)x y 取得极值的()A.必要条件但非充分条件B.充分条件但非必要条件C.充要条件D.既非充分条件又非必要条件二、判断下列结论是否正确,请说明理由或举出反例(每小题5分,共25分)1.11limsin()lim lim sin()0lim sin()0n n n n n n n n n →∞→∞→∞→∞=⨯=⨯=.2.函数()f x 在0x x =处可导,则|()|f x 在0x 处可导.3.设()f x 是在区间[a,b]上取0,1两值的函数,则()f x 在[a,b]必存在间断点.4.设()f x 是在区间[a,b]上可导且严格单调下降,则在区间(a,b )上,'()0f x <.5.1nnn a x∞=∑在数域上必绝对收敛,三、解答题(共7小题,共95分)1.(16分)分别举出满足下列要求的函数(1)定义域为R ,值域为{-1,0,1}的递减函数.(2)定义在闭区间[0,1]上的无上界的函数.(3)定义在R 上的不是常数的周期函数,且无最小周期(在定义域(a,b )内任意区间上都不是单调的.(4)定义在闭区间[0,1]上的函数,它有反函数,但在[0,1]的任意区间上都不单调.2.(10分)试给出lim n n a A →∞≠的N ε-定义,并由此证明lim cos 1n n π→∞=.3.(14分)1110,1,(1,2,...2n n naa x a x n x +>==+=,证明数列{}n x 收敛,并求极限lim n x x →∞.4.(14分)试叙述罗尔中值定理,并证明罗尔中值定理与下面的命题等价:若()f x 在[a,b]上连续,在(a,b )上可导,且存在0(,)x a b ∈,使得00(()())(()())0f x f a f x f b -->,则存在(,)a b ξ∈,使得'()0f ξ=5.(18分)(1)110,0,,1,2,...n n n n n na b a b n a b ++>>≤=,试证:i )1nn b∞=∑收敛,则1nn a∞=∑也收敛.Ii )1nn a∞=∑发散,则1nn b∞=∑也发散.(2)幂级数1nnn a x∞=∑在2x =处收敛,试证1(1)n n n a ∞=-∑绝对收敛.6.(11分)设sin()(,xz xy x y ϕ=+,其中(,)u v ϕ具有二阶连续的偏导数,求:22z x ∂∂,2zxy∂∂7.计算累次积分2222yRy y y x I dy edx dy dx----=+⎰贵州大学2007年数学分析考研真题一、填空题(每小题5分,满分40分)1.已知201cos 2lim 1ln (1)x x a x b →-=++,则a ,b 的值为____________.2.设vz u =,u x y =+,v x y =-,那么zy ∂∂______________.3.()sin sin sin(cos )f x x x x =+⋅在[,44ππ-上的定积分值是__________.4.已知曲线积分(,)Ly Q x y dy +⎰与积分路径无关,则(,)Q x y _______________.5.设)(x f是可导函数,⎰+=xdy y f y x x F 0)()()(,则)(''x F ____________.6.使级数nn xx n )11(1211+--∑+∞=绝对收敛的x 的取值范围__________________.7.写出一个闭区间[0,1]的函数)(x f ,使得)(2x f 是Riemann 可积的,但)(x f 不是Riemann 可积的,例如__________________.8.关于数列}{n x 收敛的Cauchy 收敛原理是________________________________________.二、计算题,每小题10分,满分40分1.求极限0lim x x +→2.讨论1()sin xf x e x =在开区间(0,1)内的一致连续性.3.按定义讨论级数1111()1n n n x x n n +∞+=-+∑在闭区间[-1,1]上的一致收敛性.4.设(,)f x y =,按定义证明(,)f x y 在(0,0)处连续,(0,0)x f 与(0,0)y f 存在,但(,)f x y 在(0,0)处不可微.三、本题15分,设()ln(),(,)f x x x e x e =-+∈-+∞1.求()f x 在(,)e -+∞上的最小值2.令11,(),1n n x e x f x n +==≥,讨论数列{}n x 极限的存在性,若极限存在,求出此极限,若极限不存在,说明理由.四、本题12分,计算积分()()()I x y dydz y z dzdx z x dxdy =+++++∑⎰⎰,其中∑为中心在原点,边长为2的正方体:[1,1][1,1][1,1]-⨯-⨯-的表面,积分沿外侧.五、本题13分,设22(,),()(,)yf x y I y f x y dxx y +∞==+⎰1.证明()I y 在y=0处不连续2.证明()I y 在含有y=0的任何闭区间上连续六、本题15分,设()f x 在[0,2]连续,在(0,2)可导,(0)(2)0,(1)2f f f ===1.证明存在(1,2), ()c f c c∈=使2.证明存在'(0,),st ()[()]1c f c f ξξξξ∈--=七、本题15分,利用幂级数21!n n n x n +∞=∑的和函数S(x).证明212!n n e n +∞==∑,并求31!n n n +∞=∑的值贵州大学2008数学分析考研真题一、填空题(每小题5分,共30分)1.已知1)1(ln 2cos 1lim2=++-→bx a x x ,则b a ,的值分别为___________________________________.2.设y x v y x u u z v -=+==,,,那么=∂∂yz__________________________________________.3.)sin(cos sin sin )(x x x x f +=在]4,4[ππ-上的定积分值是_____________________________.4.已知曲线积分⎰+Ldy y x Q dx x y ),(sin与积分路径无关,则=),(y x Q _________________.5.设)(x f 是可导函数,⎰+=xdy y f y x x F 0)()()(,则=)(x F n ___________________________.6.级数∑∑∑+∞=+∞=+∞=--11111cos ,)1(,n 1n n n n n n 中收敛的有_______________________________________.二、(每小题9分,满分54分)按要求解答以下各题1.(1)给出区间[0,1]上函数)(x f 黎曼可积的两种不同类型的条件;(2)给出[0,1]上的一个函数)(x f ,使得|)(|x f 黎曼可积,但)(x f 非黎曼可积.2.叙述数列}{n x 收敛的Cauchy 收敛原理,并且此原理讨论数列1,121122≥+++=n nx n 的敛散性.3.求极限11ln 11lim-+-+--→x x x e x x .4.讨论xe xf x 1sin)(=在开区间(0,1)内的已知连续性.5.按定义讨论级数∑+∞=++-11)111(n n n x n x n 在闭区间[-1,1]上的一致收敛性.6.设||),(xy y x f =,按定义证明),(y x f 在(0,0)处连续,),(),(与0000||yfx f ∂∂∂∂存在但),(y x f 在(0,0)处不可微.三、(本题14分)设),(),ln()(+∞-∈+-=e x e x x x f 1.求)(x f 在),(+∞-e 上的最小值;2.令1),(11≥==+n x f x e x n n ,。

数值分析整理版试题及答案

数值分析整理版试题及答案

例1、 已知函数表求()f x 的Lagrange 二次插值多项式和Newton 二次插值多项式. 解:(1)插值基函数分别为()()()()()()()()()()1200102121()1211126x x x x x x l x x x x x x x ----===--------()()()()()()()()()()021*******()1211122x x x x x x l x x x x x x x --+-===-+---+-()()()()()()()()()()0122021111()1121213x x x x x x l x x x x x x x --+-===-+--+-故所求二次拉格朗日插值多项式为()()()()()()()()()()()2202()11131201241162314121123537623k k k L x y l x x x x x x x x x x x x x ==⎡⎤=-⨯--+⨯-+-+⨯+-⎢⎥⎣⎦=---++-=+-∑(2)一阶均差、二阶均差分别为[]()()[]()()[][][]010*********011201202303,11204,41234,,52,,126f x f x f x x x x f x f x f x x x x f x x f x x f x x x x x ---===-----===----===---故所求Newton 二次插值多项式为()()[]()[]()()()()()20010012012,,,35311126537623P x f x f x x x x f x x x x x x x x x x x x =+-+--=-++++-=+-例2、 设2()32f x xx =++,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{}span 1,x Φ=的最佳平方逼近多项式.解:若{}span 1,x Φ=,则0()1x ϕ=,1()x x ϕ=,且()1x ρ=,这样,有()()()()()()()()1120011011201100012101,11,,3123,,,,32269,324dx x dx xdx f x x dx f x x x dx ϕϕϕϕϕϕϕϕϕϕ========++==++=⎰⎰⎰⎰⎰ 所以,法方程为01123126119234a a ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦,经过消元得01231162110123a a ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦再回代解该方程,得到14a =,0116a =故,所求最佳平方逼近多项式为*111()46S x x =+ 例3、 设()xf x e =,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{}span 1,x Φ=的最佳平方逼近多项式. 解:若{}span 1,x Φ=,则0()1x ϕ=,1()x x ϕ=,这样,有()()()()()()100012110101100100110,111,31,,2, 1.7183,1x x dx x dx xdx f e dx f xe dx ϕϕϕϕϕϕϕϕϕϕ===========⎰⎰⎰⎰⎰所以,法方程为0111 1.7183211123a a ⎡⎤⎢⎥⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⎢⎥⎣⎦解法方程,得到00.8732a =,1 1.6902a =, 故,所求最佳平方逼近多项式为*1()0.8732 1.6902S x x =+例4、 用4n =的复合梯形和复合辛普森公式计算积分1⎰。

数值分析期末考试题及答案

数值分析期末考试题及答案

数值分析期末考试题及答案一、选择题(每题2分,共20分)1. 在数值分析中,下列哪个算法用于求解线性方程组?A. 牛顿法B. 高斯消元法C. 插值法D. 傅里叶变换答案:B2. 以下哪个选项不是数值分析中的误差类型?A. 舍入误差B. 截断误差C. 测量误差D. 累积误差答案:C3. 多项式插值中,拉格朗日插值法的特点是:A. 插值点必须等距分布B. 插值多项式的次数与插值点的个数相同C. 插值多项式是唯一的D. 插值多项式在插值点处的值都为1答案:B4. 在数值分析中,下列哪个方法用于求解非线性方程?A. 辛普森法则B. 牛顿迭代法C. 欧拉法D. 龙格-库塔法答案:B5. 以下哪个是数值稳定性的指标?A. 收敛性B. 收敛速度C. 条件数D. 误差传播答案:C二、简答题(每题10分,共20分)1. 简述高斯消元法求解线性方程组的基本原理。

答案:高斯消元法是一种直接解法,通过行变换将增广矩阵转换为上三角形式,然后通过回代求解线性方程组。

它包括三个基本操作:行交换、行乘以非零常数、行相加。

2. 解释什么是数值稳定性,并举例说明。

答案:数值稳定性是指数值解对输入数据小的扰动不敏感的性质。

例如,某些数值方法在计算过程中可能会放大舍入误差,导致结果不可靠,这样的方法就被认为是数值不稳定的。

三、计算题(每题15分,共30分)1. 给定线性方程组:\[\begin{align*}x + 2y - z &= 4 \\3x - y + 2z &= 1 \\-x + y + z &= 2\end{align*}\]使用高斯消元法求解该方程组,并给出解。

答案:首先将增广矩阵转换为上三角形式,然后回代求解,得到\( x = 1, y = 2, z = 1 \)。

2. 给定函数 \( f(x) = x^2 - 3x + 2 \),使用拉格朗日插值法在\( x = 0, 1, 2 \) 处插值,并求出插值多项式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

得分 评卷人
三.(26 分)已知 f (x) 的一组实验数据如下:
x
-0.1
0.3
0.7
f (x)
0.995
0.955
0.765

(1) 用三次插值公式求 f (0.8) 的近似值; (2) 用最小二乘法求形如 y a bx 的拟合曲线; (3)用中心差商微分公式,求 (0.3)的近似值。
1.1 0.454
分)构造微分方程的初值问题
y f (x, y) y |xx0
的数值求解公式:
yn1 ayn3 bhf (xn1, yn1) ,使其具有二阶精度。
得分 评卷人
八、(5 分)设 A 为非奇异矩阵, B 为奇异矩阵,证明
1
|| A B ||
cond ( A) || A ||
贵州大学 2011 级工程硕士研究生考试试卷 A
数值分析
注意事项: 1.请考生按要求在下列横线内填写姓名、学号和年级专业。 2.请仔细阅读各种题目的回答要求,在规定的位置填写答案。 3.不要在试卷上乱写乱画,不要在装订线内填写无关的内容, 4.满分 100 分,考试时间 120 分钟。
专业
学号
姓名
题号







总分 统分人
得分
得分 评卷人
一、(9
贵州大学 2009 级工程硕士研究生考试试卷
数值分析
注意事项: 1.请考生按要求在下列横线内填写姓名、学号和年级专业。 2.请仔细阅读各种题目的回答要求,在规定的位置填写答案。 3.不要在试卷上乱写乱画,不要在装订线内填写无关的内容。 4.满分 100 分,考试时间 120 分钟。
专业
学号
姓名
题号

得分 评卷人
五、(20
分)设方程组
1212x1x1 31x21x233xx33
1 0
x1 4x2 2x3 1
(1)用列主元消去法求解方程组的解。
(2)用收敛的 Gauss Seidel 迭代法求线性代数方程组的近似解(取初值 x(0) (1,1,1)T ,迭
得分 评卷人
四、(16 分)将积分区间 2 等分,分别用复化梯形公式与复化辛普森公式求
1ex2 dx 的近似值。 0
得分 评卷人
cond1( A) 。
五、(9
分)设
A
3
1
2 1

x
3 1
,求
||
x
||2
;谱半径
s(
A)
及条件数
得分 评卷人
y(2) (0.2) 。
六 、( 16 分 ) 取 步 长 h 0.1 , 用 Euler 预 报 - 校 正 公 式 求 微 分 方 程
cond ( A) || b ||
|| x ||
贵州大学 2010 级工程硕士研究生考试试卷 A
数值分析
注意事项: 1.请考生按要求在下列横线内填写姓名、学号和年级专业。 2.请仔细阅读各种题目的回答要求,在规定的位置填写答案。 3.不要在试卷上乱写乱画,不要在装订线内填写无关的内容, 4.满分 100 分,考试时间 120 分钟。
得分 评卷人
四、(18
分)设方程组
3x41

4x2 x1 3x2
x3
30 24
x2 4x3 24
(1)用列主法求解方程组;
(2)构造使 G-S 方法收敛的迭代法,并取 x(0) (1,1,1)T ,求方程组的二次迭代近似解。
得分 评卷人
31
五、(8 分)将积分区间 2 等分,用复化辛普森公式求 e x dx 的近似值。 1
专业
学号
姓名
题号







总分 统分人
得分
得分 评卷人
一、(9
分)设
A
3 1
数 cond ( A) 。
2 1

x
3 5
,求 ||
Ax
||
;谱半径
s(
A)
及条件
得分 评卷人
二、(10 分)用牛顿迭代法求 x3 3x 1 0 在区间[1.1,2]内的一个近似根, 要求| xk1 xk | 103 。
f (x)
0
5
0
5
(1)用三次插值公式求 f (1.28) 的近似值; (2)用中心差商微分公式,求 (1.5)与求 (2.0)的近似值。
得分 评卷人
三、(20
分)设方程组
x1 x1 4
x2 x2
3x3 2x3
5 1
5x1 x2 3x3 7
(1)用列主法求解方程组;
(2)构造使 G-S 方法收敛的迭代法,并取 x(0) (0, 0, 0)T ,求方程组的二次迭代近似解根。
三、(10 分)用复化梯形公式( 取 h =0.2)求定积分 1 sin xdx 的近似值,其参考数据可见下 0x

x
0.0 0.2 0.4 0.6 0.8 1.0
sin x 1.000 0.993 0.973 0.941 0.896 0.841 x
0
3
5
1
7
5
得分 评卷人 四、(10 分)用 Newton 迭代法求解 115 的近似值,要求取迭代初值 x0 10 , 迭代 3 次。(提示 x2 115 0 )。
得分 评卷人
y(2) (0.2) 。
六 、( 16 分 ) 取 步 长 h 0.1 , 用 Euler 预 报 - 校 正 公 式 求 微 分 方 程
y
y
2y 4x |x0 2
的解
y(x) 在 x =0.1
与 x =0.2
处 的 近 似 值 y(2) (0.1) ,
得分 评卷人
七、(8
分)设
A
1 4
数 cond ( A) 。
2 1

x
3 1
,求
||
Ax
||2
;谱半径
s(
A)
及条件
得分 评卷人 二、(25 分)已知函数 y f (x) 的函数值为:
x
1.0
1.5
2.0
2.5
3.0
f (x)
0.00
0.40
0.69
0.82
0.86
(1)用三次插值多项式求 f (1.2) 的近似值; (2)用一次多项式 p(x) ax b 拟合表中数据; (3)用中心差商微分公式,求 (1.5)的近似值。






总分 统分人
得分
得分 评卷人
一、(12 分)用牛顿迭代法求 x3 2x 2 0 在区间[1.5,2]内的一个近似根, 要求| xk1 xk | 103 。
得分 评卷人
二、(20 分)已知 f (x) 的一组实验数据如下:
x 1.0 1.5 2.0 2.5
8.0 13.7 21.0 29.7
y
y
2y 4x |x0 2


y(x) 在 x =0.1
与 x =0.2
处 的 近 似 值 y(2) (0.1) ,
得分 评卷人
七、(7 分)设 A 为非奇异矩阵,b 0 , x 是 Ax b 的近似解, x 是 Ax b
的解,证明 1 . || b Ax || || x x || 。
相关文档
最新文档