数字图像处理 0
数字图像处理技术中的模式识别原理

数字图像处理技术中的模式识别原理一、引言数字图像处理是指通过计算机对数字图像进行各种操作的技术。
数字图像处理已经广泛应用在医学、物理、工程、计算机视觉等领域。
模式识别是数字图像处理中的一个重要技术,用于在图像中寻找和识别特定的模式或对象。
二、模式识别原理模式识别是指通过分析输入数据的特征来识别数据所属的类别。
在数字图像处理中,模式识别的目标是寻找和识别图像中的特定模式或对象。
模式识别可以分为监督学习和非监督学习两种。
监督学习的原理是根据已知类别的训练样本来创建模型,并将模型用于分类新的数据。
监督学习通常需要大量的标注数据和耗时的训练过程。
非监督学习则是通过分析数据的分布和结构来自动发现其中的模式,不需要事先标注数据。
常见的模式识别算法有$k$-均值聚类、支持向量机(SVM)、决策树、定义离散随机变量的概率分布来描述数据的贝叶斯分类等。
三、数字图像处理中的模式识别应用数字图像处理中的模式识别应用广泛,以下举几个例子。
1. 人脸识别人脸识别是模式识别的一个重要应用,其主要思想是将特定的人脸与未知人脸进行比较,判断它们是否属于同一人。
该技术在安全、身份验证和人脸检索等领域有广泛的应用。
2. 医学影像分析医学影像分析是数字图像处理和模式识别的应用之一,其主要应用于在医学影像中自动识别和定位病变。
例如,在CT扫描中自动检测肿瘤或在MRI扫描中检测脑出血等。
3. 目标跟踪目标跟踪是数字图像处理和模式识别的应用之一,其主要用于在视频中跟踪特定的目标。
例如,在安防监控中跟踪犯罪嫌疑人或在自动驾驶中跟踪其他车辆等。
四、总结数字图像处理中的模式识别是一项非常重要的技术。
它广泛应用于医学、物理、工程、计算机视觉等领域,与人工智能和机器学习等领域相互关联。
未来数字图像处理与模式识别将继续在各个领域得到更广泛的应用。
数字图像处理课件ppt

06 数字图像处理的应用案例
人脸识别系统
总结词
人脸识别系统是数字图像处理技术的重要应 用之一,它利用计算机视觉和图像处理技术 识别人的面部特征,实现身份认证和安全监 控等功能。
详细描述
人脸识别系统通过采集输入的人脸图像,提 取出面部的各种特征,如眼睛、鼻子、嘴巴 等部位的形状、大小、位置等信息,并与预 先存储的人脸特征进行比对,从而判断出人 的身份。该系统广泛应用于门禁系统、安全
分类器设计
总结词
分类器设计是图像识别技术的核心,它通过训练分类器,使其能够根据提取的特征对图 像进行分类和识别。
详细描述
分类器设计通常采用机器学习算法,如支持向量机、神经网络和决策树等。这些算法通 过训练数据集进行学习,并生成分类器模型,用于对新的未知图像进行分类和识别。
模式识别
总结词
模式识别是图像识别技术的最终目标,它通 过分类器对提取的特征进行分类和识别,实 现对图像的智能理解和处理。
源调查和环境监测。
计算机视觉
为机器人和自动化系统提供视 觉感知能力,用于工业自动化
、自主导航等。
数字图像处理的基本流程
特征提取
从图像中提取感兴趣的区域、 边缘、纹理等特征,为后续分 类或识别提供依据。
图像表示与压缩
将图像转换为易于处理和分析 的表示形式,同时进行数据压 缩,减少存储和传输成本。
预处理
详细描述
模式识别在许多领域都有广泛应用,如人脸 识别、物体识别、车牌识别等。通过模式识 别技术,可以实现自动化监控、智能安防、 智能驾驶等应用。随着深度学习技术的发展 ,模式识别的准确率和鲁棒性得到了显著提 高。
05 数字图像处理中的常用算 法
傅里叶变换算法
傅里叶变换
数字图像处理名词解释

•名词解释(每小题5分,本题共20分)数字图像数字图像是指由被称作像素的小块区域组成的二维矩阵。
将物理图像行列划分后,每个小块区域称为像素(PiXeI)O 数字图像处理指用数字计算机及其它有关数字技术,对图像施加某种运算和处理,从而达到某种预想目的的技术.8-连通的定义-对于具有值V的像素P和q ,如果q在集合N&p)中,则称这两个像素是8-连通的。
灰度直方图是指反映•幅图像各灰度级像元出现的频率。
灰度自方图是灰度级的函数,描述的是图像中该灰度级的像素个数。
即:横坐标农示灰度级,纵坐标衣示图像中该灰度级出现的个数。
性质:直方图是•幅图像中各像素灰度值出现次数(或频数)的统计结果,它只反映该图像中不同灰度值出现的次数(或频数),而未反映某•灰度值像素所在位置。
也就是说,它只包含了该图像中某•灰度值的像素出现的概率,而丢失了其所在位置的信息。
用途:用于判断图像量化是否恰当直方图给出了•个简单可见的指示,用来判断•幅图象是否合理的利用了全部被允许的灰度级范圉。
•般•幅图应该利用全部或几乎全部可能的灰度级,否则等于增加了量化间隔。
丢失的信息将不能恢复。
数字图像通常有两种表示形式:位图,矢量图位图和矢量图的比较:1、点位图由像素构成,矢量图由对象构成点位图的基本构图单位是像素,像素包含了色彩信息。
包含不同色彩信息的像素的矩阵组合构成了千变万化的图像。
矢量图形指由代数方程定义的线条或曲线构成的图形。
如:农示-个圆形,矢量图像保存了• 个画圆的命令、圆心的坐标、半径的长度等等。
欲显示该圆,矢量绘图软件则根据圆的坐标、半径等信息,经过方程式计算,将圆“画”在屏幕上。
矢量图像由许多矢量图形元素构成, 这些图形元素称为“对象”。
2、点位图面向像素绘画,矢量图面向对象“构画”两种图像的构成方式不同,其绘画力式也存在差别。
点位图是通过改变像素的色彩实现绘画和画面的修改。
点位图软件捉供了模拟手绘习惯的工具实现绘画。
数字图像处理-图像基本运算

数字图像处理_图像基本运算图像基本运算1点运算线性点运算是指输⼊图像的灰度级与输出图像呈线性关系。
s=ar+b(r为输⼊灰度值,s为相应点的输出灰度值)。
当a=1,b=0时,新图像与原图像相同;当a=1,b≠0时,新图像是原图像所有像素的灰度值上移或下移,是整个图像在显⽰时更亮或更暗;当a>1时,新图像对⽐度增加;当a<1时,新图像对⽐度降低;当a<0时,暗区域将变亮,亮区域将变暗,点运算完成了图像求补; ⾮线性点运算是指输⼊与输出为⾮线性关系,常见的⾮线性灰度变换为对数变换和幂次变换,对数变换⼀般形式为:s=clog(1+r)其中c为⼀常数,并假设r≥0.此变换使窄带低灰度输⼊图像映射为宽带输出值,相对的是输出灰度的⾼调整。
1 x=imread('D:/picture/DiaoChan.jpg');2 subplot(2,2,1)3 imshow(x);4 title('原图');5 J=0.3*x+50/255;6 subplot(2,2,2);7 imshow(J);8 title('线性点变换');9 subplot(2,2,3);10 x1=im2double(x);11 H=2*log(1+x1);12 imshow(H)13 title('⾮线性点运算');%对数运算幂次变换⼀般形式:s=cr^γ幂级数γ部分值把窄带暗值映射到宽带输出值下⾯是⾮线性点运算的幂运算1 I=imread('D:/picture/DiaoChan.jpg');2 subplot(2,2,1);3 imshow(I);title('原始图像','fontsize',9);4 subplot(2,2,2);5 imshow(imadjust(I,[],[],0.5));title('Gamma=0.5');7 imshow(imadjust(I,[],[],1));title('Gamma=1');8 subplot(2,2,4);9 imshow(imadjust(I,[],[],1.5));title('Gamma=1.5');2代数运算和逻辑运算加法运算去噪处理1 clear all2 i=imread('lenagray.jpg');3 imshow(i)4 j=imnoise(i,'gaussian',0,0.05);5 [m,n]=size(i);6 k=zeros(m,n);7for l=1:1008 j=imnoise(i,'gaussian',0,0.05);9 j1=im2double(j);10 k=k+j1;11 End12 k=k/100;13 subplot(1,3,1),imshow(i),title('原始图像')14 subplot(1,3,2),imshow(j),title('加噪图像')15 subplot(1,3,3),imshow(k),title(‘求平均后的减法运算提取噪声1 I=imread(‘lena.jpg’);2 J=imnoise (I,‘lena.jpg’,0,0.02);3 K=imsubtract(J,I);4 K1=255-K;5 figure;imshow(I);7 figure;imshow(K1);乘法运算改变图像灰度级1 I=imread('D:/picture/SunShangXiang.jpg')2 I=im2double(I);3 J=immultiply(I,1.2);4 K=immultiply(I,2);5 subplot(1,3,1),imshow(I);subplot(1,3,2),imshow(J);6 subplot(1,3,3);imshow(K);逻辑运算1 A=zeros(128);2 A(40:67,60:100)=1;3 figure(1)4 imshow(A);5 B=zeros(128);6 B(50:80,40:70)=1;7 figure(2)8 imshow(2);9 C=and(A,B);%与10 figure(3);11 imshow(3);12 D=or(A,B);%或13 figure(4);14 imshow(4);15 E=not(A);%⾮16 figure(5);17 imshow(E);3⼏何运算平移运算实现图像的平移1 I=imread('lenagray.jpg');2 subplot(1,2,1);3 imshow(I);4 [M,N]=size(I);g=zeros(M,N);5 a=20;b=20;6for i=1:M7for j=1:N8if((i-a>0)&(i-a<M)&(j-b>0)&(j-b<N)) 9 g(i,j)=I(i-a,j-b);10else11 g(i,j)=0;12 end13 end14 end15 subplot(1,2,2);imshow(uint8(g));⽔平镜像变换1 I=imread('lena.jpg');2 subplot(121);imshow(I);3 [M,N]=size(I);g=zeros(M,N);4for i=1:M5for j=1:N6 g(i,j)=I(i,N-j+1);7 end8 end9 subplot(122);imshow(uint8(g));垂直镜像变换1 I=imread('lena.jpg');2 subplot(121);imshow(I);3 [M,N]=size(I);g=zeros(M,N);4for i=1:M5for j=1:N6 g(i,j)=I(M-i+1,j);7 end8 end9 subplot(122);imshow(uint8(g));图像的旋转1 x=imread('D:/picture/DiaoChan.jpg');2 imshow(x);3 j=imrotate(x,45,'bilinear');4 k=imrotate(x,45,'bilinear','crop');5 subplot(1,3,1),imshow(x);6 title(‘原图')7 subplot(1,3,2),imshow(j);8 title(‘旋转图(显⽰全部)')9 subplot(1,3,3),imshow(k);10 title(‘旋转图(截取局部)')⼏种插值法⽐较1 i=imread('lena.jpg');2 j1=imresize(i,10,'nearest');3 j2=imresize(i,10,'bilinear');4 j3=imresize(i,10,'bicubic');5 subplot(1,4,1),imshow(i);title(‘原始图像')6 subplot(1,4,2),imshow(j1);title(‘最近邻法')7 subplot(1,4,3),imshow(j2);title(‘双线性插值法')8 subplot(1,4,4),imshow(j3);title(‘三次内插法')放缩变换1 x=imread('D:/picture/ZiXia.jpg')2 subplot(2,3,1)3 imshow(x);4 title('原图');5 Large=imresize(x,1.5);6 subplot(2,3,2)7 imshow(Large);8 title('扩⼤为1.5');9 Small=imresize(x,0.1);10 subplot(2,3,3)11 imshow(Small);12 title('缩⼩为0.3');13 subplot(2,3,4)14 df=imresize(x,[600700],'nearest');15 imshow(df)16 title('600*700');17 df1=imresize(x,[300400],'nearest');18 subplot(2,3,5)19 imshow(df1)20 title('300*400');后记:(1)MATLAB基础知识回顾1:crtl+R是对选中的区域注释,ctrl+T是取消注释2:有的代码中点运算如O=a.*I+b/255 ,其中b除以255原因是:灰度数据有两种表式⽅法:⼀种是⽤unit8类型,取值0~255;另⼀种是double类型,取值0~1。
数字图像处理的概念

二、数字图像处理的概念 1. 什么是图像“图”是物体投射或反射光的分布,“像” 是人的视觉系统对图的接受在大脑中形成的印象或反映。
是客观和主观的结合。
2数字图像是指由被称作象素的小块区域组成的二维矩阵。
将 物理图象行列划分后,每个小块区域称为像素(pixel )。
–每个像素包括两个属性:位置和灰度。
对于单色即灰度图像而言,每个象素的亮度用一个数值来表示,通常数值范围在0到255之间,即可用一个字节来表示,0表示黑、255表示白,而其它表示灰度级别。
物理图象及对应 的数字图象3彩色图象可以用红、绿、蓝三元组的二维矩阵来表示。
–通常,三元组的每个数值也是在0到255之间,0表示相应的基色在该象素中没有,而255则代表相应的基色在该象素中取得最大值,这种情况下每个象素可用三个字节来表示。
4什么是数字图像处理数字图像处理就是利用计算机系统对数字图像进行各种目的的处理 5对连续图像f (x ,y )进行数字化:空间上,图像抽样;幅度上,灰度级量化 x 方向,抽样M 行 y 方向,每行抽样N 点整个图像共抽样M ×N 个像素点一般取M=N=2n=64,128,256,512,1024,2048 6数字图像常用矩阵来表示:f(i,j)=0~255,灰度级为256,设灰度量化为8bitNN N N f N f N f N f f f N f f f y x f ⨯⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------=)1,1( )1,1( )0,1( )1,1( )1,1( )0,1( )1,0( )1,0( )0,0( ),(7 数字图像处理的三个层次8 图像处理:9建立对图像的描述;以观察者为中心研究客观世界;图像分析是一个从图像到数据的过程。
10图像理解:研究图像中各目标的性质和它们之间的相互联系;得出对图像内容含义的理解及原来客观场景的解释;以客观世界为中心,借助知识、经验来推理、认识客观世界,属于高层操作(符号运算)11图像处理是比较低层的操作,处理的数据量非常大。
数字图像处理知识点总结

数字图像处理知识点总结第一章导论1.图像:对客观对象的一种相似性的生动性的描述或写真.2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段),按空间坐标和亮度的连续性(模拟和数字)。
3.图像处理:对图像进行一系列操作,以到达预期目的的技术。
4.图像处理三个层次:狭义图像处理、图像分析和图像理解。
5.图像处理五个模块:采集、显示、存储、通信、处理和分析。
第二章数字图像处理的基本概念6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0< i(x,y)< ∞ ,反射分量0 <r(x,y)〈1.7.图像数字化:将一幅画面转化成计算机能处理的形式——数字图像的过程。
它包括采样和量化两个过程。
像素的位置和灰度就是像素的属性。
8.将空间上连续的图像变换成离散点的操作称为采样。
采样间隔和采样孔径的大小是两个很重要的参数。
采样方式:有缝、无缝和重叠。
9.将像素灰度转换成离散的整数值的过程叫量化。
10.表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。
11.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。
12.采样间隔对图像质量的影响:一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。
13.量化等级对图像质量的影响:量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小.但在极少数情况下对固定图像大小时,减少灰度级能改善质量,产生这种情况的最可能原因是减少灰度级一般会增加图像的对比度。
例如对细节比较丰富的图像数字化.14.数字化器组成:1)采样孔:保证单独观测特定的像素而不受其它部分的影响。
2)图像扫描机构:使采样孔按预先确定的方式在图像上移动。
《数字图像处理》教学大纲

《数字图像处理》课程教学大纲Digital Image Processing一、课程说明课程编码:045236001 课程总学时(理论总学时/实践总学时):51(42/9),周学时:3,学分:3,开课学期:第6学期。
1.课程性质:专业选修课2.适用专业:电子信息与技术专业3.课程教学目的和要求《数字图像处理》是信号处理类的一门重要的专业选修课,通过本课程的学习,应在理论知识方面了解和掌握数字图像的概念、类型,掌握数字图像处理的基本原理和基本方法:图像变换、图像增强、图像编码、图像的复原和重建。
并通过实验加深理解数字图像处理的基本原理。
4.本门课程与其他课程关系本课程的先修课程为:数字信号处理和应用5.推荐教材及参考书推荐教材:阮秋琦,《数字图像处理学》(第二版),电子工业出版社,2007年参考书(1)姚敏等,《数字图像处理》,机械工业出版社,2006年(2)何东健,《数字图像处理》(第二版),西安电子工业出版社,2008年(3)阮秋琦,《数字图像处理基础》,清华大学出版社,2009年(4) (美)Rafael C. Gonzalez著,阮秋琦译,《数字图像处理》(第二版),电子工业出版社,2007年6.课程教学方法与手段主要采用课堂教学的方式,通过多媒体课件进行讲解,课外作业,答疑辅导。
并辅以适当的实验加深对数字图像处理的理解。
7.课程考核方法与要求本课程为考查课课程的实验成绩占学期总成绩的50%,期末理论考查占50%;考查方式为笔试。
8.实践教学内容安排实验一:图像处理中的正交变换实验二:图像增强实验三:图像复原详见实验大纲。
二、教学内容纲要与学时分配(一)数字图像处理基础(3课时)1.主要内容:图像处理技术的分类,数字图像处理的特点,数字图像处理的主要方法及主要内容,数字图像处理的硬件设备,数字图像处理的应用,数字图像处理领域的发展动向2.基本要求:了解图像处理技术的分类和特点,数字图像处理的主要方法及主要内容,熟悉数字图像处理的硬件设备。
数字图像处理基本知识

数字图像处理基本知识数字图像处理基木知识图像处理最早出现于20世纪50年代,当时的电子计算机己经发展到一定水平,人们开始利用计算机来处理图形和图像信息。
数字图像处理作为一门学科大约形成于20世纪60年代初期。
早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。
图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。
数字图像处理常用方法:1)图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。
因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。
目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。
2)图像编码压缩:图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。
压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。
编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
3)图像增强和复原:图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。
图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。
如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。
图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。
4)图像分割:图像分割是数字图像处理中的关键技术之一。
图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。
虽然目前己研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0.2.3 数字图像处理和识别的一些应用
0.3 数字图像处理的预备知识
邻接性、连通性、区域和边界
邻接性 像素p的4邻域、8邻域和对角邻域
P的4邻域
P的8邻域
P的对角邻域
邻接性
定义V 是用于决定邻接性的灰度值集合,它是一种相似性的度量,用 于确定所需判断邻像素之间的相似程度。
4 邻接(4-Neighbor): 如果Q∈N4(P),则称具有V中数值的两个像素 P和Q是4邻接的。
数字图像的显示
位图图像的例子
数字图像的分类
根据每个像素所代表的信息的不同,可将数字图像分为
二值图像
灰度图像 RGB图像 索引图像
......
1. 二值图像
每个像素只有黑、白两种颜色的图像成为二值图像。 在二值图像中,像素只有0和1两种取值,一般用0来表示黑色,用1来表示白色。
2. 灰度图像
对于三原色RGB中的每一种颜色,可以像灰度图那样使用L等级来表 示含有这种原色成分的多少。 如果每一种原色都可以划分为256个等级,即每一种原色都用8位2进 制数据表示,则三原色总共需要24位2进制数来表示,这样能够表示出的 颜色种类可达224,大约1600万种。
(207,137,130) (220,179,163) (215,169,161) (210,179,172) (210,179,172) (207,154,146) (217,124,121) (215,169,161) (216,179,170) (216,179,170) (207,137,120) (159, 51, 71) (213,142,135) (216,179,170) (221,184,170) (190, 89, 89) (204,109,113) (204,115,118) (216,179,170) (220,188,176) (190, 77, 84) (206, 95, 97) (217,113,113) (189, 85, 97) (222,192,179) (150, 54, 71) (177, 65, 73) (145, 39, 65) (150, 47, 67) (112, 20, 56) (136, 38, 65) (112, 20, 56) (112, 20, 56) (109, 30, 65) (112, 20, 56) ( 95, 19, 64) (136, 38, 65) ( 91, 11, 56) (113, 25, 60) (103, 19, 59) ( 81, 12, 59) (126, 62, 94) (138, 46, 71) (103, 19, 59) (158, 65, 83) (124, 40, 70) (145, 62, 79) (130, 46, 73)
194 198 203 203 207 208 207 204 193 158 129 124 110 104 99 100
194 198 199 202 203 202 197 181 143 111 101 90 93 105 111 97
193 198 197 194 199 189 167 122 92 86 78 85 105 108 114 107
180 170 159 128 75 54 50 49 53 65 60 61 58 81 111 139
162 151 132 91 61 58 51 44 60 67 84 94 85 65 90 114
153 138 118 78 56 51 45 43 52 63 80 100 97 85 77 105
8 邻接(8-Neighbor): 如果Q∈N8(P),则称具有V中数值的两个像素 P和Q是4邻接的。 对于两个图像子集S1和S2,如果S1中的某些像素和S2中的某些像素 相邻,则称这两个子集是邻接的。
190 193 190 188 186 159 112 81 67 69 79 103 120 128 129 125
192 193 185 178 156 101 65 54 50 56 78 97 120 134 144 137
187 183 173 158 118 56 49 50 50 50 51 61 93 118 148 150
数字图像的表示
i0,0 i 1,0 I I [m, n] iM 1,0
图0.2 数字图像的坐标约定
i0,1 i1,1
iM 1,1
i0, N 1 i1, N 1 iM 1, N 1
图像的空间和灰度级分辨率
灰度级分辨率又称色阶, 是指图像中可分辨的灰度级数目, 由于灰度级度量的是投射到传感器上光辐射的强度,也叫辐 射计量分辨率。 灰度级分辨率的逐渐降低,图像中包含的颜色数目变少,从 而在颜色的角度造成图像信息受损。
图像的灰度级/辐射计量分辩率例子
0.2 数字图像处理与识别
• 0.2.1 从图像处理到图像识别
授课内容
• 第 0 章 数字图像处理概述
• 第1章 Matlab 图像处理编程基础 • 第2章 Visual C++ 图像处理编程基础 • 第3章 图像的点运算 • 第4章 图像的几何变换
• 第5章 空间域图像增强
参考书目
u 1、教材 • 数字图像处理与机器视觉--Visual C++与Matlab实现,张峥等,人民邮 电出版社,2010年4月
• 1. 数字图像处理
• 对一个物体的数字表达进行一系列的操作,以得到期 望的效果。一般是指对图像的修改或增强。
• 2. 数字图像分析
ቤተ መጻሕፍቲ ባይዱ
• 对感兴趣的目标进行检测和测量,获得距离、目标对 象的计数或其尺寸等. 外延:边缘检测和图像分割、 特征提取以及几何测量与计数等.
• 3 . 数字图像识别
• 图像中各目标的性质和相互关系,识别出目标对象的 类别,从而理解图像的含义。例如光学字符识别 ( OCR ) 、产品质量检验、人脸识别、自动驾驶、医 学图像和地貌图像的自动判读理解等.
数字图像不同角度的观察
• 静态的灰度图像:f(x, y); 动态画面f (x. y. t) ; 函 数值可能是一个数值,也可能是一个向量(对于 彩色图像) 。 • 从线性代数和矩阵论的角度, 数字图像就是一个 由图像信息组成的二维/三维矩阵。
• 由于随机变化和噪声的原因,图像在本质上是统 计性的。因而有时将图像函数作为随机过程的实 现来观察。 • 从线性系统的角度考虑, 图像及其处理也可以表 示为用狄拉克冲激公式表达的点展开函数的叠加, 在使用这种方式对图像进行表示时,可以采用成 熟的线性系统理论研究。
灰度图像通常显示为从最暗黑色到最亮的白色的灰度,每种 灰度(颜色深度)称为一个灰度级。 每个像素可以取0~L-1之间的整数值,其中L是指全部灰度等 级的个数,一般为2的乘方。常用如8位灰度图像,其中8是指 灰度图像在计算机中以2进制数形式表达或存储时的位数或容 量,即8位灰度图像有28,共256个灰度级。
可见的图像 (visible image)
图片 (picture)
照片 (photograph) 图(drawing)
光图像 (optical image)
画(painting)
0.1 数字图像
什么是数字图像
数字图像是指一个被采样和量化后的二维函数(该二维函数 由光学方法产生),采用等距矩形网格采样,对幅度进行等 间隔量化。至此,一幅是指图像是一个被量化的采样数值的 二维矩阵。 这样,我们可以用f (x, y)来表达数字图像,其中, x , y:2-D空间中XY坐标点的位置, f:代表图象在(x, y)的性质F 的数值。 f,x,y 的值可以是任意实数
1. 图像的空间分辨率( Spatial Resolution )
u
u
图像的空间分辨率是指图像中每单位长度所包含的像 素或点的数目,常以像素/英寸( pixels per inch, ppi) 为 单位来表示。 通常会称一幅大小为M×N的数字图像的空间分辨率 为M×N像素.
图像的空间分辨率例子
2.图像的灰度级/辐射计量分辩率 ( Radiometric Resolution)
3. RGB图像
颜色模型主要有HSV、RGB、HSI、CHL、LAB、CMY等。它们在不同的行业各 有所指,但在计算机技术方面运用较为广泛是RGB模型。 自然界中几乎所有颜色都可以由红(Red,R),绿(Green,G),蓝(Blue,B )三种颜色组合而成,通常称为RGB三原色。 RGB图像中,每个像素的颜色信息由RGB三个分量构成。对于每一个像素,通过 控制R,G,B三原色的合成比例可决定该像素的最终显示颜色。
第0章 数字图像处理概论
数字图像 数字图像处理与识别 数字图像处理的预备知识知识
图像的概念
一幅图像是对另一个事物的一种表示。
图像(image) 不可见 物理图像 (invisible physical image) 物体 (object) 数学函数 (function)
连续函数 (continuous) 离散函数 (discrete)
138 115 87 59 53 47 46 49 48 54 63 89 100 103 75 88
137 100 58 56 59 50 42 44 43 45 42 75 93 100 89 79
132 97 62 60 53 55 49 44 45 40 46 67 86 96 88 79
103 68 53 49 51 54 59 55 61 60 72 87 88 98 86 86
性质F : 可对应不同物理量; 灰度图象里用灰度表示
这样,我们可以用f (x, y)来表达数字图像,其中, x , y:2-D空间中XY坐标点的位置, f:代表图象在(x, y)的性质F 的数值。 f,x,y 的值可以是任意实数 性质F : 可对应不同物理量;