医疗应用中的微波与射频技术
氩氦刀射频消融微波消融等治疗肿瘤的区别

射频消融,微波消融,海扶刀,氩氦刀,哪个效果好?屈立新现代微创治疗肿瘤的方法越来越多,各类“刀”五花八门,都被吹得天花乱坠。
而患者及家属没有专业医学知识,无法判断真实疗效,也不了解它的治疗风险及副作用。
我们目前了解到的“刀”就有物理消融方面的如:射频刀,氩氦刀,微波刀,海付刀以及最新出来尚未在国内应用的纳米刀;射频刀,微波刀,海扶刀都是属于热消融,其中射频刀及微波刀均使用电产生的高温杀灭肿瘤细胞,而海扶刀是通过超声聚焦加热高温杀灭肿瘤。
由于海扶刀只能在超声下进行,不适合肺肿瘤。
氩氦刀则是冷热交替消融杀灭肿瘤细胞。
其杀死肿瘤细胞是依靠反复多次迅速降温以及升温造成的细胞崩裂。
单纯的超低温冷冻可以保存组织,但是要复活细胞则需要非常缓慢的升温调控,反复超低温及复温下肿瘤细胞完全无法存活。
在这里我们只重点列出射频消融及冷冻消融。
因为它们是全世界肿瘤医生(包括中国大陆正规医院)公认权威的美国NCCN抗癌指南(2013版)中用于肺癌肝癌(含转移癌)的除外科切除手术外的唯一推荐治疗方法。
没有列出立体定向放疗是因为它对于肝癌效果甚微。
1.1射频消融治疗肿瘤:多极射频肿瘤消融术的原理是在CT、彩色B超的引导下,将多极子母针消融电极准确刺入肿瘤部位,射频消融仪在电子计算机控制下将射频脉冲能量通过多极针传导到肿瘤组织中,使肿瘤组织产生局部高温(70℃——95℃),从而达到使肿瘤组织及其邻近的可能被扩散的组织凝固坏死的目的,治疗范围约5公分。
1.2射频消融治疗肿瘤的禁区:1.贴近心脏及全身各大血管的肿瘤,热效应有可能造成严重心律失常;也可能烧穿血管造成无法控制的出现。
2.贴近胆囊,胆道,尿道,神经及胃肠道的肿瘤,这些部位如果烧穿将导致胆汁瘘,尿瘘及神经永久性损害。
3.贴近胸膜,隔膜的肿瘤如肺肿瘤肝肿瘤,胸膜烧伤可能导致严重的胸痛;而横隔膜烧穿的话有可能造成出血及隔疝。
2.1冷冻消融氩氦刀治疗肿瘤:氩氦刀冷冻消融治疗肿瘤的原理也是在CT,B超等影像引导下将多根氩氦刀探针插入肿瘤内部,氩气在针尖内急速释放,十几秒内冷冻肿瘤组织到零下120℃-零下160℃;而当氦气在针尖急速释放时,将产生急速复温快速将冰球解冻反复多次彻底杀灭肿瘤细胞。
微波与射频技术的发展和应用

微波与射频技术的发展和应用微波和射频技术是现代通信和无线网络应用的重要组成部分。
虽然它们已经存在多年,但随着技术的不断发展和人们对更高速、更可靠、更安全通信需求的不断增加,微波和射频技术的应用范围也在不断扩展。
1. 微波和射频技术的起源微波和射频技术的起源可以追溯到20世纪初期,当时无线电通信技术正处于蓬勃发展的时期。
由于当时需要进行长距离的无线电通信,传统的低频无线电技术已经不能满足通信要求。
在这种情况下,微波和射频技术应运而生。
微波通信的理论基础在1914年就已被提出,但直到1940年代才开始得到实际应用。
射频技术的应用则更早,在20世纪初期已经开始被用于无线电通信。
2. 微波和射频技术的发展随着技术的不断发展,微波和射频技术的应用范围也在不断扩展。
在通信领域,微波技术已经广泛应用于卫星通信、雷达、导航等系统中。
射频技术则被广泛应用于移动通信、射频识别、无线电广播等领域中。
此外,微波和射频技术还被广泛应用于医疗、安防、航空航天、军事等领域中。
例如,在医疗领域,微波技术可以用于医学诊断和治疗。
在安防领域,微波和射频技术可以用于无线安防系统。
在航空航天领域,微波和射频技术可以用于卫星通信和导航系统。
在军事领域,微波和射频技术可以用于雷达和通信系统。
3. 微波和射频技术的应用在移动通信领域中,微波和射频技术的应用越来越广泛。
例如,在5G网络中,微波和射频技术可以使网络数据传输速度更快,同时也更加安全可靠。
在物联网领域中,微波和射频技术可以使设备间的通信更加便捷和高效。
除了通信领域外,微波和射频技术在工业和医疗领域中也有广泛应用。
在工业领域中,微波技术可以用于工业加热和干燥,使生产过程更加高效和可靠。
在医疗领域中,微波技术可以用于医学诊断和治疗,例如用于癌症治疗中的微波消融技术。
总的来说,微波和射频技术的发展和应用在现代通信和无线网络领域中起着重要的作用。
随着技术的不断发展和应用领域的不断扩展,微波和射频技术的应用前景将更加广阔。
射频与微波技术

射频与微波技术:让我们的世界更连通近年来,的发展和应用越来越受到关注。
从无线通讯到医疗设备,从航空航天到军事领域,这项技术已经渗透到了我们生活的各个方面。
那么,什么是射频和微波技术呢?它有哪些优点和应用呢?本文将探讨这些问题,为大家揭秘的奥秘。
一、的基本概念简单来说,射频就是指频率在几个千赫兹至几个千兆赫兹之间的无线电波。
而微波则是频率在1千兆赫兹至300千兆赫兹之间的电磁波。
与低频和中频相比,射频和微波的频率高,波长短,传输速度快,能量密度大,能够穿透障碍物并传输较远的距离。
这些特点使得射频和微波技术成为了一种重要的通信手段。
二、的优点1.高速传输:射频和微波技术的传输速度非常快,比起传统的有线传输方式,能够提高数据传输的效率。
2.节省空间:相对于有线传输方式而言,射频和微波技术的设备和器件体积小巧,节省了空间,适用于各种紧凑的应用场景。
3.维护成本低:无需担心线缆老化和损坏问题,也无需担心设备移动或更改位置带来的麻烦。
这样,射频和微波技术能够降低系统部署和维护的成本。
4.无干扰:射频和微波技术的传输方式可以减少噪音和干扰的影响,避免信息的损失和干扰。
三、的应用1.通讯领域:射频和微波技术在通讯领域的应用非常广泛,如手机、对讲机、卫星通讯等。
除此之外,无线电台、微波通道、通讯系统的天线等也都使用了这项技术。
2.医疗设备:射频和微波技术在医疗设备领域也有着广泛的应用,如磁共振成像、医疗诊断、治疗设备等。
3.航空航天:射频和微波技术在航空航天领域也有着广泛的应用,如雷达、导航设备等。
4.军事领域:射频和微波技术在军事领域的应用非常广泛,如合成孔径雷达、电子对抗等。
四、未来展望随着科技的不断发展,也将得到进一步的发展和应用。
例如,5G通讯技术的使用已经慢慢普及,机器人、智能家居等智能设备的开发也需要大量依赖射频和微波技术,这将为的发展提供更广阔的应用空间。
总之,的不断发展和应用,不仅让我们的生活更加便捷、舒适,而且也为人类社会的进步和发展作出了巨大的贡献。
肺部肿瘤消融治疗:射频消融治疗,立体定向放疗和微波消融

肺部肿瘤消融治疗:射频消融治疗,立体定向放疗和微波消融美国近来每年的新检出肺癌患者持续增加大约为175000例。
肺癌已经成为持续保持肿瘤相关死亡的第一位,尽管外科切除术仍然是早期NSCLC的主要治疗方法,但是诸多患者因为晚期肺癌或是机体因为心血管疾病等身体状况不能耐受手术治疗。
体外放射治疗(放疗)作为那些不能耐受手术的患者仍然是一种选择,尽管这种治疗方法治疗效果和治愈率比手术效果差。
在一项关于71例原发性淋巴结阴性肺癌患者接受60Gy体外放疗的研究中,3和5年的生存率仅为19%和12%。
最近的一项60例I期和II期NSCLC患者接受体外放疗的研究中,有53%的患者在平均18.3个月后发生肿瘤生长,全部的平均中位生存率为20个月。
另外体外放疗具有副反应,其中放射性肺炎是一种潜在的致命性并发症,尤其对那些由于肺功能差而不能耐受手术的患者。
上面的研究中有8.3%的放射性肺炎的发生率。
作为标准体外放疗技术的新的发展方法正在逐步进入临床应用来治疗那些不能耐受手术或者不适合手术的肺癌患者治疗其原发肺癌和一部分局限的肺部转移瘤。
现在正在为世界多个医学治疗中心所应用的新方法是射频消融技术(RFA)和立体定向放射技术(SRS)。
另一种消融技术,就是微波消融术(MWA),也已经开始用于临床,尽管对这种方法临床还没有经验。
本文回顾综述这些治疗方法的特点,及其在治疗胸部肿瘤方面的意义。
射频消融的原理是利用高频波使目标蛋白受热变形达到治疗目的的。
射频消融系统由3个主要部件:1、主机,2、一个置入肿瘤的主动电极,3、一个贴在患者大腿上的体外电极(电极板)。
当射频能量经主机发出,经由体内电极、人体,然后经体外电极回到主机,形成回路的时候,粒子在组织内振动,摩擦生热。
随着组织内温度的增高,达到60度以上时,因为蛋白变性和凝固坏死,细胞就会随之死亡。
RFA最多的经验来自于肝肿瘤的应用,不论是用于手术的辅助治疗还是主要治疗。
因为较少的并发症发生率,RFA已经较多的替代了其他的未创治疗方法。
射频消融与微波消融

微波消融与xx射频消融之间的比较肿瘤的局部热消融治疗是近10年来国内外研究的热点,该方法主要是在影像引导下,将某种能量导入体内,作用于肿瘤组织,使治疗区温度达到60℃(即刻)或54℃(3分钟),造成组织细胞不可逆凝固性坏死,从而达到治疗肿瘤的目的。
射频、微波、激光及海扶均属局部热消融治疗,在各种热消融方法中,目前国内外应用最广泛的主要是射频消融和微波消融。
微波消融除具有其他热消融技术的优点外,还具有不受电流传导影响、受碳化及血流灌注影响小、温度上升快、消融范围大等特点。
1、消融肿瘤大小:多极射频采用伞状多爪的电极形式,目的是为了有效扩大消融范围,一改单极射频消融范围小的缺点。
目前进口多极射频理论上最大消融范围在5cm左右。
而微波消融经过多年的发展与改进,目前2450MHz仪器的单针实际消融范围已稳定在5cm以上,915MHz仪器的单针实际消融范围可达8cm。
2、消融时间:微波在消融同样大小肿瘤的情况下,基本只需要多极射频一半左右时间。
而术中多极射频因为要多次打开和收回伞状电极所以这过程将大大增加手术时间。
所以微波的手术时间大大优于多极射频可有效降低麻醉的风险和其他不必要的手术风险。
上述两点在国际上以已得到广泛认同。
3、电极穿刺操作中的复杂程度:首先微波电极是不需要Pad(负极板)的,而多极射频一定要在病人的大腿或臀部贴一个Pad。
Pad贴的是否到位直接影响多极射频的消融范围。
并且要求病人体内不能有供心脏使用的仪器。
其次相对于微波电极的一针穿刺到位,多极射频在术中要多次反复的打开和回收电极,大大增加了手术的复杂度。
又因为在肿瘤组织内伸缩电极,因肿瘤组织质的的不同,电极的形态不可能像在空气中打开一样完美,所以必然影响消融形态。
4、两种消融方法在现有影响引导方式下的风险不同:现在引导方式,无论CT、超声或其他方式都是在2D的图像下进行引导。
微波的单针电极在2D图像下完全没有风险。
而多极射频的伞状电极是立体打开的,所以在2D图像下医生不能完全撑握所有电极的伸展方向。
微波与射频技术在医疗领域中的应用

微波与射频技术在医疗领域中的应用微波和射频技术已经成为现代医疗领域中不可或缺的技术。
在医学诊断和治疗中,微波和射频技术被广泛应用。
本文将介绍微波和射频技术在医疗领域中的应用,着重介绍它们的概念、工作原理和应用实例。
一、微波技术微波是指波长介于1mm至1m之间的电磁波。
微波技术的应用范围非常广泛,包括通信、探测、加热、杀菌等。
在医疗领域中,微波技术主要应用在医学诊断和治疗中。
1、医学诊断中的微波技术在医学诊断中,微波技术主要用于医学影像学。
微波成像技术可以帮助医生在不伤害病人的情况下直接观察体内的器官和组织结构。
微波成像技术最初是用于军事领域的,用来寻找隐藏在地下和建筑物中的物体。
后来,微波成像技术逐渐被应用于医学领域。
医学微波成像技术不仅可以检测恶性肿瘤和血管内的病变,还可以用于定位靶标、检测神经功能、测量生理性参数等。
例如,乳腺癌是世界范围内女性健康问题的主要原因之一,而微波成像技术可以帮助医生早期发现乳腺癌。
美国MIT大学研究人员开发了一种基于微波成像技术的乳腺癌筛查系统,它可以在不使用放射线的情况下,比传统的X光检查更准确地检测到乳腺癌。
2、医学治疗中的微波技术与医学诊断相比,微波技术在医学治疗中的应用更加广泛。
微波技术已经成为现代肿瘤治疗的一种主要方式。
微波消融和微波治疗技术可以在不开刀的情况下缩小或消灭肿瘤。
例如,对于一些难以手术切除的恶性肿瘤,微波消融可以在不开刀的情况下消除肿瘤细胞。
微波治疗技术可以在肿瘤细胞周围产生高温,从而破坏肿瘤细胞,并激发机体免疫系统,增强机体对肿瘤的自我防御力。
二、射频技术射频技术是指从3kHz到300GHz之间的电磁波,它们被广泛应用于传输、通信和能量传输等领域。
在医疗领域中,射频技术主要用于医学成像和治疗。
1、医学成像中的射频技术在医学成像中,射频技术主要应用于磁共振成像(MRI)。
MRI是一种非常有用的医学成像技术,它可以获得人体内部不同区域的精细图像。
微波无线电射频技术的应用前景

微波无线电射频技术的应用前景微波无线电射频技术,是指在微波范围内进行高频通讯和高速数据传输的技术。
随着无线通信技术的发展,微波无线电射频技术的应用越来越广泛,其应用前景不仅局限于通讯领域,而且涵盖了众多领域,如医疗、工业、汽车以及智能家居等方面,这种技术已经成为各种业务的重要支撑。
一、通讯领域的应用微波无线电射频技术在通讯领域的应用是最为广泛的,其应用范围几乎涵盖了所有的通讯方式,如移动通信、卫星通信、宽带无线接入、无线局域网等。
其中,4G和5G通信技术更是将微波无线电射频技术应用得淋漓尽致,这种技术使得用户在高速移动中也可以稳定快速地进行网络通信,极大地提高了用户的使用体验。
二、医疗领域的应用微波无线电射频技术在医疗领域的应用也是非常重要的,具体来说,该技术主要应用于检测、治疗、诊断等方面。
其中,射频能量可以用于加热治疗,通过微波能量将肿瘤加热至高温度,以实现肿瘤的消融,这种方法常用于肺癌、乳腺癌、前列腺癌等癌症的治疗。
三、工业领域的应用微波无线电射频技术在工业领域的应用也是越来越广泛。
例如,该技术可以用于材料加热和干燥,以实现节省能源的目的;在焊接和切割等领域,也被广泛地应用,以提高生产效率。
此外,微波无线电射频技术可用于检测材料的结构和性能,并通过对材料的微波反射率进行分析,来探测材料的品质以及纯度等问题。
四、汽车领域的应用微波无线电射频技术在汽车领域的应用也是日益增加。
例如,该技术可以用于无线充电技术,让电动车不再需要插头即可实现快速充电,同时也减少了电动车充电时的危险性。
另外,该技术也可以用于汽车的自动驾驶技术,通过微波雷达以及毫米波雷达来检测车辆周围的情况,从而实现对行车状态的控制和智能驾驶等功能。
总之,微波无线电射频技术的应用前景是非常广泛的,其应用领域不仅涉及通讯、医疗、工业、汽车等领域,而且也有着极大的创新潜力。
在未来的发展中,微波无线电射频技术将继续加速各个领域的发展,从而提高这些领域的效率和智能化程度,为人们的生活和工作等方面带来更多的便利。
微波能量传输技术在医疗中的应用

微波能量传输技术在医疗中的应用近年来,随着微波技术的不断发展和进步,微波能量传输技术在医疗领域也得到了广泛的应用。
微波能量传输技术利用微波辐射产生的热效应,将能量高效、快速、安全地传递到特定部位,从而实现治疗效果,大大减轻了医生和患者的痛苦。
一、微波能量传输技术的基本原理和特点微波能量传输技术的基本原理是利用微波反复穿透人体组织,当微波通过患部组织时,其能量被组织吸收而产生的热效应可以达到治疗效果。
与传统的治疗方法相比,微波能量传输技术的优点主要体现在以下几个方面:1.高能量密度:微波能量传输技术的能量密度比其他传统治疗方式的能量密度要高,因此对于不同类型的疾病和不同层次的治疗需要,都可以实现高效、精确的治疗效果。
2.可控性强:微波能量传输技术可以通过射频功率、微波频率等调节使能量集中在治疗部位,可以埋置在人体内部,控制微波电场和电磁波的传输,从而实现精准治疗。
3.有效治疗:微波能量传输技术可以有效地治疗一些远端和难以通过传统手术方法治疗的疾病,例如,疣、败血病等等。
二、微波能量传输技术在医疗中的应用1.微波治疗肿瘤疾病肿瘤疾病是严重威胁人类健康和生命的疾病。
传统的治疗方法如化疗和手术治疗常常带来疼痛、恶心、呕吐、免疫系统响应等一系列严重的副作用,给患者带来了很大的困扰。
微波能量传输技术利用微波辐射产生的热效应,可以在短时间内将能量精确地传输到肿瘤组织中,使得肿瘤组织的细胞死亡,从而实现治疗效果。
2.微波治疗疑难杂症除了治疗肿瘤疾病外,微波能量传输技术还可以应用于一些临床上的疑难杂症治疗,例如,口腔溃疡、冷疮、湿疹、皮炎等等。
微波能量传输技术对于这些疾病的治疗效果也非常显著。
3.微波技术在手术中的应用微波技术在医疗中还可以应用于一些手术中。
例如,肝脏介入治疗、颅内疾病治疗、静脉曲张治疗等等。
由于微波能量传输技术可以控制微波电场和电磁波的传输,可以使得手术中的创伤减轻,手术过程更加安全和快速。
三、微波能量传输技术的发展前景微波能量传输技术在医疗领域中的应用也得到了越来越广泛的关注。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
医疗应用中的微波与射频技术来源:互联网多年来,器件公司一直为诸如核磁共振成像()系统等成像应用提供器件。
虽然成像应用继续提供了坚实的机会,但许多其它医疗应用领域也开始为无线微波和技术敞开了大门。
例如,远程监控支持在病人在家中的将诸如血压、脉搏等健康状况以无线方式发送给它们的医生。
其它创新也在帮助医院和医疗中心得以跟踪资产和个人的位置。
在现有的成像市场和无线技术正在创造的新机遇中,医疗产业业已成为一个实实在在的新市场,许多微波和射频公司都以此为目标。
幸运的是,许多这样的机遇都只要求这些公司利用他们在电信和无线局域网领域已有的专业知识。
诸如MRI等成像设备的使用普及率在增加,目前全球每年要实施超过6千万例MRI诊断。
它们通常用于诊断阿尔茨海默氏症(老年痴呆症)、癌症细胞和韧带撕裂等各种疾病和损伤。
成像系统采用了多种射频/微波器件,包括振荡器、发射器和天线。
例如,ADI公司现在就提供一款为提高成像分辨率而设计的20位数据转换器(DAC)AD5791。
AD5791具有真正的百万分之一(ppm)的分辨率和精度(图1)。
AD5791具有±1LSB DNL 的相对精度规范,确保了操作一致性。
该DAC的低频噪声仅为0.025ppm,输出漂移仅为0.05ppm/C。
如此低的噪声减少了不期望的图像伪影,从而降低了对多次核磁共振扫描的需要,因此病人可以在更短时间内得到诊治。
输出可配置为标准单极(+5V,+10V)或双极(±5V,±10 V)范围。
AD5791的3线串行接口工作时钟速率为50MHz。
图1:ADI单芯片DAC具有很高精度,能实现非常清楚的诊断成像图片。
分光镜应用是射频/微波技术在医疗领域的另一个增长市场,它本质上是通过把光照射在标本上实现化学分析。
近日,安捷伦和德州大学达拉斯分校宣布计划创建一个毫米波和亚毫米波电子表征设施。
该设施最初将支持针对医疗保健和安全应用对在CMOS上实现180到300GHz光谱技术的可行性研究。
Hittite Microwave公司的一个新比较器产品线也锁定光谱应用。
该公司表示,这6款比较器具有如下特性:20Gbps的速率、150mW的功耗、120ps的时钟到数据输出延时(图2)。
通常情况下,它们具有最小60ps的可检出输入脉冲宽度,而额定的随机抖动仅为0.2ps。
这些比较器支持±1.75V的共模输入电压范围,其典型过驱动和压摆率离差低于10ps。
HMC874LC3C、HMC875LC3C和HMC876LC3C单片比较器具有带可编程迟滞的高速锁存特性,它们分别提供低摆幅PECL、CML和ECL输出驱动器。
图2:Hittite Microwave公司的比较器可满足分光镜应用要求。
该公司还发布了三款具有电平锁存输入的新的单片10GHz比较器HMC*LC3C、HMC675LC3C和HMC676LC3C。
这三款比较器支持10GHz输入带宽、同时具有85ps的传输延迟以及0.2psRMS随机抖动下的60ps最小脉冲宽度。
它们具有10ps的过驱动和压摆率离差、小于140mW的功耗。
这些器件具有差分锁存控制和可编程迟滞,可被配置工作在锁存模式或作为跟踪比较器使用。
与该系列其它器件一样,它们分别提供低摆幅PECL、CML和ECL输出驱动器。
远程监控应用在医院、诊所和家中,涉及无线网络的远程监控可能是最欣欣向荣的医疗市场。
远程监控最吸引人的地方是它还可被用来与患者沟通及对患者提供教育。
当然,需要同时发送和接收信息将对所需的设备和网络基础设施有不同需求。
在伊利诺斯州进行的一项临床研究,就采用了远程监护来管理Gleevec这种药的施用。
Gleevec是Novartis公司研制并生产的用于治疗慢性粒细胞白血病的药物。
这项研究将*估一个以手机为基础的、称为eMedonline的个性化药物管理系统的使用情况。
在这项研究中,eMedonline作为一种“智能服务”,充分发挥了射频识别(RFID)和手机的无线功能,将智能手机变成一个药物传感器。
手机以无线方式实时从药品包装上的RFID“智能标签”上读取、收集药物数据,它在监测病人报告结果的同时,有助于核实病人是否在正确的时间服用了正确的药物。
手机内的数据被无线发送到一个安全服务器,借助服务器内的数据再进行临床审查和分析。
可根据情况发送警报,以对漏服药物或不良情况实施干预,使它们不致成为严重的健康风险。
这项研究的初衷来自于这样一个事实:病人往往不遵从医嘱。
近日在波士顿举行的一个旨在提升服药依从性的方案演示中,支持蓝牙的Vena吸入器实时并无线地记录服药剂量的历史数据。
数据上传到称为Vena-Hub的以用户为中心的软件平台,当患者没按时服药时,就会对他们发出提醒。
被用来从无线医疗设备这一生态系统采集数据的Vena-Hub,也是支持Vena的肺活量计的门户。
将服药依从性和肺活量等数据与花粉计数等其它变量组合起来,形成一系列建议和有关信息,然后通过警报自动发送给用户。
警报可能会通过在线阅读器、社区网络、电子邮件,甚至文本信息等形式发送。
远程监控的另一个好处是,专家将能够与农村地区的病人沟通,这些病人因而不必赶大老远的路。
例如,AT&T最近宣布了与加州大学的一项协议。
作为这项为期3年、总价2,700万美元合约的一部分,AT&T将提供管理的网络服务以支持这项远程保健计划。
美国加州远程保健网络是全州范围内由保健、技术、政府及其它相关各方结成的联盟,该机构从联邦通讯委员会(FCC)的农村卫生保健试点项目寻求资金支持。
该网络正在构建一个全州范围内的网络基础设施,它将小医院、小诊所与大医院及大医院内的专家连接起来。
该网络完成后,将覆盖全州860多个站点。
无线网络标准也越来越多地用于资产跟踪项目。
例如,Henry Mayo医院已与AT&T签约以部署AeroScout的Wi-Fi RFID资产跟踪和温度监控方案。
作为洛杉矶县的灾害资源中心,Henry Mayo医院负责提供医疗设备、药品以及在发生紧急事件时对整个社会提供关照。
AeroScout的资产跟踪和管理方案旨在帮助医院在全院范围内跟踪,诸如病床、轮椅、轮床、病人自控镇痛泵和输液泵等关键资产的使用情况。
此外,AeroScout的温度监控方案通过确保冰箱内温度满足药品、组织样本及其它对温度敏感的材料的保质所规定的温度范围,从而简化了为满足国际医院认证联合委员会条例相关要求的实施,在加拿大魁北克的圣热罗姆卫生和社会服务中心,医院工作人员佩戴着Ekahau传呼机标签,这样就可容易地对他们进行定位。
这个T301BD Wi-Fi寻呼机标签具有双向通信能力,使用户能够发送和接收文字信息。
这些寻呼机还包括一个可以在遇到紧急情况时按下的专门按钮。
Ekahau实时定位系统利用医院现有的Wi-Fi网络可在几秒内定位网络覆盖范围内、由钮扣电池供电的小标签。
这些产品和服务是当今医疗保健行业内更具主导性、并增长着的一些应用。
随着技术进步以及宽带计划的实施,将会出现更多机会。
这些新服务和系统的主干依靠无线网络来收集和提供信息。
与此同时,公司将继续在成像等领域收获成功。
诸多因素将带来一个增长的市场,它为各企业及其产品提供了盈利机会。
医疗应用中的无线技术要进入医疗市场,重要的是要了解哪些无线标准是主导。
有趣的是,主导技术就是诸如ZigBee或IEEE 802.15.4、蓝牙、IEEE 802.11x以及识别(RFID)等主流技术。
展望未来,康体佳健康联盟(Continua Health Alliance)似乎将在很大程度上推动医疗保健领域内标准的发展。
它的任务是建立一个使个人健康方案具有互操作的系统,以促进自主性并使个人和机构能更好地管理健康、保障福利。
康体佳健康联盟已批准ZigBee Health Care作为一种低功耗局域网(LAN)标准,用于专业环境、家庭、活动中心、大型校园内的传感与控制。
ZigBee Health Care 是互操作无线设备的全球开放标准,可安全监测及管理慢性疾病、肥胖、老化这类非重大、低危险病症的保健服务。
ZigBee Health Care 完整支持IEEE 11073 设备。
ZigBee Health Care 提供了不受干扰的无线连接,可在单一网络上支持数千部设备。
ZigBee 能与Wi-Fi 等其它无线技术和平共存,这是保护医疗设施内病患安全及确保应用时不可或缺的关键要求。
ZigBee Health Care 设备可以与消费电子、家庭自动化、商业建筑自动化中已部署的其它ZigBee 无线技术交互。
飞思卡尔等公司将ZigBee用于各种保健产品。
新批准的ZigBee Health Care标准为具有互操作的低功率无线设备提供了一个全球性的开放标准。
这样,它就确保了针对慢性病管理、老人护理、保健、住院管理和资产跟踪等非致命、非紧急保健服务的安全监测和管理。
它支持一个网络内的数千台设备,并提供对IEEE 11073设备的完全支持,从而使每台设备都能够通过FDA认证。
ADI的工作在2.4GHz工业、科学和医疗(ISM)频段的模拟电路ADF7242,在IEEE 802.15.4模式下支持250kbps速率。
这款收发器可用于实施基于诸如ZigBeeIPv6/6LowWPAN等协议的方案。
ADF7242支持IEEE 802.15.4和GFSK/FSK双模工作模式,即同一款器件既能以250kbps的速率支持基于IEEE 802.15.4协议的标准,又能以2Mbps的速率支持采用GFSK/FSK调制方案的专有协议。
一年多以前,康体佳的第二版设计指南批准了低功耗蓝牙。
低功耗蓝牙无线技术是4.0版蓝牙内核规范的主要特征,它使由纽扣电池供电、小巧的无线产品和传感器成为可能。
这些小巧、低成本的方案预计会培育出各种医用表、远程控制和医疗传感器市场。
德州仪器(TI)是将蓝牙用于无线医疗应用的倡导者之一。
该公司将其第七代蓝牙产品CC2560与一个嵌入式蓝牙栈整合起来,使其运行于其MSP430微控制器(MCU)。
设计人员可以在一系列便携设备内,利用低功耗MSP430 MCU同时与模拟信号、传感器和数字器件连接。
当然,随着新的医疗服务的出现,将会涌现出更多的标准和技术,比如结合如长期演进(LTE)等第四代通信标准和WiMAX等宽带技术来实施医疗应用。