自相关地检验与修正

合集下载

多重共线性、异方差及自相关的检验和修正

多重共线性、异方差及自相关的检验和修正

计量经济学实验报告多重共线性、异方差及自相关的检验和修正——以财政收入模型为例经济学 1班一、引言财政收入是一国政府实现政府职能的基本保障,对国民经济的运行及社会的发展起着非凡的作用。

首先,它是一个国家各项收入得以实现的物质保证。

一个国家财政收入规模的大小通常是衡量其经济实力的重要标志。

其次,财政收入是国家对经济实行宏观调控的重要经济杠杆。

财政收入的增长情况关系着一个国家的经济的发展和社会的进步。

因此,研究财政收入的增长显得尤为重要。

二、数据及模型说明研究财政收入的影响因素离不开一些基本的经济变量。

回归变量的选择是建立回归模型的一个极为重要的问题。

如果遗漏了某些重要变量,回归方程的效果肯定不会好;而考虑过多的变量,不仅计算量增大许多,而且得到的回归方程稳定性也很差,直接影响到回归方程的应用。

通过经济理论对财政收入的解释以及对实践的观察,对财政收入影响的因素主要有农业增加值、工业增加值、建筑业增加值、总人口数、最终消费、受灾面积等等。

全部数据均来源于中华人民共和国国家统计局网站/具体数据见附录一。

为分析被解释变量财政收入(Y)和解释变量农业增加值(X1)、工业增加值(X2)、建筑业增加值(X3)、总人口(X4)、最终消费(X5)、受灾面积(X6)的关系。

作如下线性图(图1)。

图1可以看出Y、X1、X2、X3、X5基本都呈逐年增长的趋势,仅增长速率有所变动,而X4和X6在多数年份呈现水平波动,可能这两个自变量和因变量间不一定是线性关系。

可以初步建立回归模型如下:Y=α+β1*X1+β2*X2+β3*X3+β4*X4 +β5*X5+β6*X6 +U i 其中,U i为随机干扰项。

三、模型的检验及验证(一)多重共线性检验及修正利用Eviews5.0,做Y对X1、X2、X3、X4、X5和X6的回归,Eviews的最小二乘估计的回归结果如下表(表1)所示:表1Dependent Variable: YMethod: Least SquaresDate: 11/16/13 Time: 20:54Sample: 1990 2011Included observations: 22Variable Coefficient Std. Error t-Statistic Prob.C 145188.0 26652.27 5.447488 0.0001X1 -0.972478 0.222703 -4.366701 0.0006X2 0.210089 0.068192 3.080851 0.0076X3 -0.100412 0.569465 -0.176327 0.8624X4 -1.268320 0.247725 -5.119870 0.0001X5 0.600205 0.130089 4.613794 0.0003X6 -0.007430 0.044233 -0.167964 0.8689R-squared 0.999306 Mean dependent var 27186.86Adjusted R-squared 0.999029 S.D. dependent var 28848.33S.E. of regression 899.0866 Akaike info criterion 16.69401Sum squared resid 12125351 Schwarz criterion 17.04116Log likelihood -176.6341 F-statistic 3600.848Durbin-Watson stat 1.825260 Prob(F-statistic) 0.000000 由上表的回归结果可见,,该模型可决系数R2=0.9993很高,F检验值3601,明显显著。

自相关的检验与修正

自相关的检验与修正

实验2自相关的检验与修正一、实验目的:
掌握自相关模型的检验方法与处理方法.。

二、实验内容及要求:
表1列出了1985-2007年中国农村居民人均纯收入与人均消费性支出的统计数据。

(1)利用OLS法建立中国农村居民人均消费性支出与人均纯收入的线性模型。

(2)检验模型是否存在自相关。

(3)如果存在自相关,试采用适当的方法加以消除。

实验如下:
首先对数据进行调整,将全年人均纯收入和全年人均消费性支出相应调整为全年实际人均纯收入和全年实际人均消费性支出。

图1
1、用OLS估计法估计参数
图2
图3
图形分析:
图4
从图4中可以看出,中国农村居民人均消费性支出与人均纯收入存在着显着的正相关关系。

估计回归方程:。

从图8中可以得出此时的D.W.=1.324681,在取显着水平为5%,n=23,k=2,d L=1.26, d U=1.44,模型中d L<DW<d U,此时不能确定是否存在自相关。

在广义差分法无法完成修正的情况下,现建立对对数模型:
图9
对双对数模型进行调整:
图10
图11
从图11中可以得出此时的D.W.=1.985950,在取显着水平为5%,n=23,k=2,d L=1.26,
d U=1.44,模型中d U<DW<4-d U,此时不存在自相关。

由此完成对自相关的修正。

异方差、自相关检验及修正

异方差、自相关检验及修正

异方差、自相关的检验与修正实验目的:通过对模型的检验掌握异方差性问题和自相关问题的检验方法及修正的原理,以及相关的Eviews 操作方法。

模型设定:εβββ+++=23121i i i X X YYi----人均消费支出X1--从事农业经营的纯收入X2--其他来源的纯收入 中国内地2006年各地区农村居民家庭人均纯收入与消费支出 单位:元 城市 y x1 x2 城市 y x1 x2 北京 5724.5 958.3 7317.2 湖北 2732.5 1934.6 1484.8 天津 3341.1 1738.9 4489 湖南 3013.3 1342.6 2047 河北 2495.3 1607.1 2194.7 广东 3886 1313.9 3765.9 山西 2253.3 1188.2 1992.7 广西 2413.9 1596.9 1173.6 内蒙古 2772 2560.8 781.1 海南 2232.2 2213.2 1042.3 辽宁 3066.9 2026.1 2064.3 重庆 2205.2 1234.1 1639.7 吉林 2700.7 2623.2 1017.9 四川 2395 1405 1597.4 黑龙江 2618.2 2622.9 929.5 贵州 1627.1 961.4 1023.2 上海 8006 532 8606.7 云南 2195.6 1570.3 680.2 江苏 4135.2 1497.9 4315.3 西藏 2002.2 1399.1 1035.9 浙江 6057.2 1403.1 5931.7 陕西 2181 1070.4 1189.8 安徽 2420.9 1472.8 1496.3 甘肃 1855.5 1167.9 966.2 福建 3591.4 1691.4 3143.4 青海 2179 1274.3 1084.1 江西 2676.6 1609.2 1850.3 宁夏 2247 1535.7 1224.4 山东 3143.8 1948.2 2420.1 新疆 2032.4 2267.4 469.9 河南 2229.3 1844.6 1416.4 数据来源:《中国农村住户调查年鉴(2007)》、《中国统计年鉴(2007)》参数估计:估计结果如下:2709030.01402097.01402.728X X Y ++=Λ(2.218) (2.438) (16.999) 922173.02=R D.W.=1.4289 F=165.8853 SE=395.2538实验步骤:一、检查模型是否存在异方差1.图形分析检验(1)散点相关图分析分别做出X1和Y 、X2和Y 的散点相关图,观察相关图可以看出,随着X1、X2的增加,Y 也增加,但离散程度逐步扩大,尤其表现在X1和Y .这说明变量之间可能存在递增的异方差性。

实验四--自相关性的检验及修正

实验四--自相关性的检验及修正

实验四--自相关性的检验及修正
自相关性的检验是研究经济数据中自身序列的行为特征,它可用于识别趋势、判断虚
假反应、探究影响力以及衡量规律的发展变化,以及有助于指导未来政策的制定。

因此,自相关性检验是一项重要的经济学技术,它可以为序列分析获取相关信息,让研究者对特
定事件影响有更深刻的认识。

自相关性检验大概分为两个步骤:也就是统计学检验和模型修正。

统计学检验流程大
致包括参数估计、假设检验和结论。

其中,假设检验可以让研究者判断序列是否有自相关性,而参数估计则可以得到自相关性的大小和方向。

从模型修正的角度来说,研究的目的
是建立一个能够自相关数据的特性并形式化处理的模型,这个模型必须注意记录自相关数
据的自身行为特征。

研究者也可以尝试采用其他方法进行模型修正,比如添加外生变量、增加时间序列滞后期、建立自回归模型和分析突变点等。

自相关性检验和模型修正在实践中都带有一定的挑战,例如原始数据的质量,可能存
在噪声;外生变量的准确性和凝聚力;记录的常数和参数的可靠性;动态变化趋势的准确
性等。

因此,研究者在进行自相关性检验和模型修正时要注意仔细进行检测和修正,以确
保研究结果的可靠性和有效性。

自相关的检验与修正

自相关的检验与修正

实验2自相关的检验与修正、实验目的:掌握自相关模型的检验方法与处理方法.。

、实验内容及要求:表1列出了1985—2007年中国农村居民人均纯收入与人均消费性支出的统计数据。

(1)利用OLS法建立中国农村居民人均消费性支出与人均纯收入的线性模型。

(2)检验模型是否存在自相关。

(3)如果存在自相关,试采用适当的方法加以消除。

表1 1985 —2007年中国农村居民人均纯收入与人均消费性支出(单位:元)年份全年人均纯收入(现价)全年人均消费性支出(现价)消费价格指数(1985=100)1985397.6317.42100 1986423.8357106.1 1987462.6398.3112.7 1988544.9476.7132.4 1989601.5535.4157.9 1990686.3584.63165.1 1991708.6619.8168.9 1992784659.8176.8 1993921.6769.7201 199412211016.81248 19951577.71310.36291.4 19961923.11572.1314.4 19972090.11617.15322.3 199821621590.33319.1 19992214.31577.42314.3 20002253.41670314 20012366.41741316.5 20022475.61834315.2 20032622.241943.3320.2 20042936.42185335.6 20053254.932555343 200635872829348.1实验如下:首先对数据进行调整,将全年人均纯收入和全年人均消费性支出相应调整为全年实际人均纯收入和全年实际人均消费性支出。

LIL I. .一.... U h ―................ H全年人沟地收入全年人均泊箜低立出J泊费桥特描旷全年人均实际地收/全年人枸实加寸抵性女出tMM1昭W7…6J17.4Z m35^.60 31X42恤(山妙1441斯石Mid JMJ m.T41M7ma«44J J-L7JJ2.44IL5636*05MU UU期M45W.A8州IMJ nus ltf.1Uf矽»ill14^1TlV.b他E I4B.9m到W:71417*4⑷話珊肿1W3Kl.«THL73D1 4SU1M1M喻i*ii toirn3JS49*14』I・M157TJ IJ1IU4^1.4:出紺阳阳J157!4314J«1.«750•巧2000J3t:J 5OL75[潮2U3159U331S,1491^8L9M2114J isn«314J■04J1S0LJB32WI22S3J L6TO314 71T..U531.852«1UWJ P4I JMJ卿AS1W2倔ud)m31SJ■SS.I1繩US:621.21ifl-jjj irsij UU4乂MU wn困口6.4sits»71.97izM.yj皿會埠HLN T I4.W 加?n«HU 1W負建tUMSW741 4055T43M 8iraj^171711用OLS 估计法估计参数<-□ Group; UN1TTUD Wcrldilft UNTTTLED;;UMtided\[UMr][fi&£|[Oto[jKt |ftjrtt£narrtfeJprMafe]匚][Sart|Eart£pflgj&]旦fc#^[Sapli4j 』T 程]色3y?.弓13S$ [1936 VT1937 1920 193919^?19931934 1935 1936 1037 1939 2»J0 2001 20 J 2 205J 20342035G3E?017397 5000 317.42M1399 43DO 330,«Q0 410 47DO 353.420C 411 56D0 36D.050C SSOEWDO333.0 30C416.690041^ 54J0443 44DU 375 190C 45S5100 382.340C 492.34 DO 410.0000 541 4200 443.680C 611.6700 501030C 648 50 DO 50L75M 677 53DO 4DL3SO0 704 52 DO 501 aaoo J17MOO 531 B500 747 68DO 550.080C 75541D0 M1.350C G10 94DO GO5.930C C74 97D0 esijD7oo 阳⑹0 71J.030C 1033.4S0 81Z7DOO 112R170 Q7B 71 nr也 E\ie\;&zi e Edit Object View Proc Qui:k Options Window Heipdaw Uy ciO Eq uatio n: U NTTTLED Worlcflvc UMTTTLEI>:U 般―、3. frx| JDEU |f i rure I UEUE ihstma 世 心已工竄 '曲ts KKdtCoefficientSU Error t SkteticProa.G 50.21B7S 14 548SB 3.E642100.(]0Q9KC 6969260.02134231 99373 C 0000R-gquan&10S7QQ34dep^nd&ntvarjqu Q013-etiusted R-squar?d C.978947&D, ciependeTitvar15E.3tZ3 3.El ofreer&ssion 22.97705 4<aike info cnteilori 9.1B9B13 Sun squared resic 1105B.87 Sshwa-irz. cnUnon9.2ft Log hka || hood -1026826 Hannar^Oiilrin cfit&r. 9214646 h-S^tlStlC1023.933 □urciin Batson sealU4 码rroa(r-statistic) 0.000030-i e Edit Otwect Viav Proc Quick Options 州nticm 卜口 dacg iy图2DeDerKfentA ;an3ti«: T LlEtnnd: LEastSqijarss Dats: 04/24^5 Tria: 12:32 fianph 1Q95200?ricuaec ooser/atcns 、u图4从图4中可以看出,中国农村居民人均消费性支出与人均纯收入存在着显著的正相关关系。

多重共线性、异方差、自相关的检测与模型修正

多重共线性、异方差、自相关的检测与模型修正

多重共线性、异方差、自相关的检测与模型修正从《国家统计数据库》找到了自1978—2008年我国人均居民消费、人均国内生产总值、居民消费价格指数、前期人均居民消费、城镇居民人均可支配收入以及农村居民人均纯收入的官方数据。

以此来分析我国人均消费的影响因素以及它们具体是如何对消费产生影响的。

1978—2008年我国人均消费及其影响因素相关数据城镇居民农村居民人均居民人均国内居民消费前期人均年份人均可支人均纯收消费生产总值价格指数居民消费配收入入343 134 1978 184 381 100.7 165405 160 1979 208 419 101.9 184477 191 1980 238 463 107.5 208501 223 1981 264 492 102.5 238535 270 1982 288 528 102 264564 310 1983 316 583 102 288652 355 1984 361 695 102.7 316739 398 1985 446 858 109.3 361901 424 1986 497 963 106.5 4461002 463 1987 565 1112 107.3 4971180 545 1988 714 1366 111.8 5651373 602 1989 788 1519 118 7141510 686 1990 833 1644 103.1 7881701 709 1991 932 1893 103.4 8332027 784 1992 1116 2311 106.4 9322577 922 1993 1393 2998 114.7 11163496 1221 1994 1833 4044 124.1 13934283 1578 1995 2355 5046 117.1 18334839 1926 1996 2789 5846 108.3 23555160 2090 1997 3002 6420 102.8 27895425 2162 1998 3159 6796 99.2 30025854 2210 1999 3346 7159 98.6 31596280 2253 2000 3631 7858 100.4 33466859 2366 2001 3886 8622 100.7 36317703 2476 2002 4143 9398 99.2 38868472 2622 2003 4474 10542 101.2 41439422 2936 2004 5031 12336 103.9 447410493 3255 2005 5572 14053 101.8 503111759 3587 2006 6263 16165 101.5 557213786 4140 2007 7255 19524 104.8 626315781 4761 2008 8348 23648 105.9 7255来自《国家统计数据库》设定如下形式的计量经济模型1:=++++ Y,X,,,X,Xi33i24124其中,Y为人均居民消费 , X2为人均国内生产总值 , X3为居民消费价格指数 , X4为前期人均消费。

实验六自相关模型地检验和处理-学生实验报告材料

实验六自相关模型地检验和处理-学生实验报告材料

廣柬財建大孕辜商李幌HUASHANG COLLEGEGUANGDONG UNIVERSITY OF FINANCE & ECONOMICS实验报告课程名称:____________ 计量经济学______________实验项目:实验六自相关模型的检验和处理实验类型:综合件口设计性口验证性专业班别:_____________________________________姓名:________________________________________ 学号:________________________________________实验课室:指导教师:石立实验日期:2014年6月13日广东商学院华商学院教务处制、实验项目训练方案实验训练内容(包括实验原理和操作步骤):【实验原理】自相关的检验:图形法检验、D-W 检验 自相关的处理:广义差分变换、迭代法【实验步骤】本实验中考虑以下模型:【模型1】财政收入CS 对收入法GDPS 的回归模型 【模型2】财政支出CZ 对财政收入CS 的回归模型 【模型3】消费品零售额SLC 对收入法GDPS 的回归模型 【模型4】财政收入的对数log (cs )对时间T 的回归模型【模型5】收入法GDPS 的对数log ( GDPS )对时间T 的回归模型 数据见“附表:广东省宏观经济数据(部分)-第六章”(一)自相关的检验1•图形法检验使用图形检验法分别检验上述 【模型1-4】是否存在自相关问题。

分别作这四个 模型的残差散点图(即残差后一项对前一项的散点图:e t 对e-)和残差趋势图(即 残差e t 对时间t 的线图),并判断模型是否存在自相关以及是正的自相关还是负的自 相关。

结论:从图上看,CS 对GDPS 回归的残差有一定的自相关。

【模型1】残差散点图残差趋势图RESID(-I)------ Residual ------------- Actual ----------- Fitted【模型2】 残差散点图 残差趋势图1500050-100 •-150-150-100 -50 0 50 100 150RESID(-I)Residual Actual Fitted结论:从图上看,CZ 对CS 回归的残差应【模型3】 残差散点图DL bE K+400-2000 200400RESID(-I)400 . 200 -0_ -200 _ -400 - -600 r------ Residual Actual --------- Fitted结论:从图上看,SLC 对GDPS 回归的残差有很强的自相关结论:从图上看,log(CS)对T 回归的残差也有很强的自相关【模型4】残差散点图DISERG-54-3. ^1-0. 10^3—.OU .2.6RESID(-1)(请对得到的图表进行处理,以上在一页内)2. D-W检验分别计算上述【模型1-3】和【模型5】的D-W统计量的值,判断模型是否存在自相关冋题。

自相关性的检验和处理实验报告

自相关性的检验和处理实验报告

ˆ 1
3.7831 13.9366 1 0.72855
由此,我们得到最终的收入-消费模型为
Yt 13.9366 0.9484 X t
二、根据北京市连续 19 年城镇居民家庭人均收入与人均支出的数据进行相关分析 1、建立居民收入-消费函数 以人均实际收入为 X,人均实际支出为 Y,创建工作文件,输入数据,命令如下: Create a 1 19 Data x y 建立居民收入-消费模型,输入命令 ls y c x,回归结果如下:
ˆ 0.72855 ,对原模型进行广义差分,得到差 ˆ 0.72855et 1 ,由回归方程可知 回归方程为 e
分方程: Yt 0.72855Yt 1 1 (1 0.72855) 2 ( X t 0.72855 X t 1 ) t 对 上 式 广 义 差 分 方 程 进 行 回 归 , 在 Eviews 命 令 栏 中 输 入 命 令 : ls Y -0.72855*Y(-1) c X-0.72855*X(-1),回归结果如下: 由回归结果可得回归方程为:
关进行相关检验。 (二)检验收入—消费模型的自相关情况 1、德宾-沃森检验(DW 检验)法 因为 n=36, k=1, 在 5%的显著水平下查表得 DL 1.411 , DU 1.525 , 而 0<0.5234=DW< D L , 因此此模型存在一阶正自相关。 2、偏相关系数检验法 由于 DW 法只能检验一阶自相关性,我们用偏相关系数检验法来检验是否存在高阶自相关性。 在模型回归结果中选择操作:View/Residual Test/Correlogram-Q-statistics ,默认滞后期为 16,得到偏 相关系数结果如下:
由偏相关系数分布图可知,该模型存在明显一阶自相关性,不存在显著高阶自相关性。 3、BG 检验法 在偏相关系数检验之后,我们运用 BG 检验对前面的检验结果进行进一步验证,选择操作 View/Residual Test/Serial Correlation LM Test ,选择滞后期为 5,得到结果如下:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验2 自相关的检验与修正
一、实验目的:
掌握自相关模型的检验方法与处理方法.。

二、实验容及要求:
表1列出了1985-2007年中国农村居民人均纯收入与人均消费性支出的统计数据。

(1)利用OLS法建立中国农村居民人均消费性支出与人均纯收入的线性模型。

(2)检验模型是否存在自相关。

(3)如果存在自相关,试采用适当的方法加以消除。

表1 1985-2007年中国农村居民人均纯收入与人均消费性支出(单位:元)
实验如下:
首先对数据进行调整,将全年人均纯收入和全年人均消费性支出相应调整为全年实际人均纯收入和全年实际人均消费性支出。

图1
1、用OLS估计法估计参数
图2
图3
图4
从图4中可以看出,中国农村居民人均消费性支出与人均纯收入存在着显著的正相关关系。

估计回归方程:
从图3中可以得出,估计回归方程为:
Y=56.21878+0.698928X
t=(3.864210)(31.99973)
R2=0.979904 F=1023.983 D.W.=0.409903
(1)图示法
图5
从图5中,可以看出残差的变化有系统模式,连续为正或连续为负,表示残差项存在一阶正自相关。

(2)DW检验
从图3中可以得到D.W.=0.409903,在显著水平去5%,n=23,k=2,d L=1.26, d U=1.44。

此时0<D.W.< d L,表明存在正自相关。

(3)B-G检验
图6
从图6中可得到,nR2=14.90587,临界概率P=0.0006,因此辅助回归模型是显著的,即存在自相关性。

又因为,e t-1,e t-2的回归系数均显著地不为0
3.自相关的修正
使用广义差分法对自相关进行修正:
图7
对原模型进行广义差分,得到广义差分方程:
Y t-0.815024Y t-1=β1(1-0.815024)+β2(X t -0.815024X t-1)+u t
对广义差分方程进行回归:
图8
从图8中可以得出此时的D.W.=1.324681,在取显著水平为5%,n=23,k=2,d L=1.26, d U=1.44,模型中d L<DW<d U,此时不能确定是否存在自相关。

在广义差分法无法完成修正的情况下,现建立对对数模型:
图9
对双对数模型进行调整:
图10
图11
从图11中可以得出此时的D.W.=1.985950,在取显著水平为5%,n=23,k=2,d L=1.26, d U=1.44,模型中d U<DW<4-d U,此时不存在自相关。

由此完成对自相关的修正。

相关文档
最新文档