第05章 时间序列模型(自相关性和协整检验)

合集下载

5时间序列模型

5时间序列模型

方差函数: 自协方差函数:
? ? 2 t
?
D(Y) t
?
?
[ yE?
??
(Y) td]2 FYt ( y)
?? Cov(Yt ,Ys ) ??E ???Yt EYt ??Ys ??EYs ??? t,s ? (t, s)
自相关函数(ACF):
? ?ts, ? ?? ts, ?
?(ts,) ??tt, ????s,
模型
? 完善阶段 :
? 异方差场合
? Robert F.Engle,1982年,ARCH模型 ? Bollerslov,1986年GARCH模型
? 多变量场合
? C.A.Sims等,1980年,向量自回归模型 ? C.Granger ,1987年,提出了协整(co-integration)理论
模拟时间序列数据:
8
? 随机过程与时间序列的关系如下所示:
随机过程: {y1, y2, …, yT-1, yT,} 第1次观测:{y11, y21, …, yT-11, yT1} 第2次观测:{y12, y22, …, yT-12, yT2}
???? ? 第n次观测:{y1n, y2n, …, yT-1n, yTn}
一般的,对于任意 m ? N,,t,1 t2 L , tm ? T,Yt1 ,L ,Ytm 的联合分布函数为:
FYt1 ,Yt2 ,L ,Ytm ( y1 ,,y,)2 L ymP ?? (Yt1 y1Y,,L tm ? ym )
均值方程:
? ?t ? E(Yt ) ?
?
?? ydFYt ( y)
9
2、随机过程的分布及其数字特征
设{Yt}为一个随机过程,对任意一个 t ? T ,Yt的分布函数为:

时间序列模型讲义

时间序列模型讲义

时间序列模型讲义时间序列模型讲义一、概念介绍时间序列模型是一种用于分析和预测时间上变化的数据模型。

它是一种建立在时间序列数据上的数学模型,旨在揭示时间序列中的隐藏规律和趋势,并利用这些规律和趋势进行预测和决策。

二、时间序列的特征时间序列数据具有以下几个主要特征:1. 时间相关性:时间序列数据中的观测值在时间上是相关的,前一个时刻的观测值往往会影响后续时刻的观测值。

2. 趋势性:时间序列数据往往具有明显的趋势性,即观测值随时间呈现出递增或递减的趋势。

3. 季节性:时间序列数据中可以存在固定的周期性变化,比如月份、季节、一周等周期性变化。

4. 周期性:时间序列数据中可能存在非固定的周期性变化,比如经济周期、股票市场周期等。

三、时间序列模型的构建过程时间序列模型的构建过程主要包括以下几个步骤:1. 数据探索和预处理:对时间序列数据进行可视化和探索,查看数据的分布、趋势和周期性等特征,并进行缺失值处理、异常值处理等预处理操作。

2. 模型选择:选择适合数据特征的时间序列模型,常用的模型包括移动平均模型(MA模型)、自回归模型(AR模型)和自回归移动平均模型(ARMA模型)等。

3. 参数估计:利用已选定的时间序列模型,对模型中的参数进行估计,通常采用极大似然估计或最小二乘估计等方法。

4. 模型诊断:对估计得到的时间序列模型进行诊断,检验模型是否满足统计假设,例如模型的残差序列是否具有零均值和白噪声等特征。

5. 模型评价和预测:通过对模型在历史数据上的拟合程度进行评价,选择最优的模型,并利用该模型对未来的数据进行预测和决策。

四、常见的时间序列模型1. 移动平均模型(MA模型):该模型假设当前观测值是过去几个时刻的观测值的加权平均,其中权重是模型的参数。

该模型适用于没有明显趋势和季节性的时间序列。

2. 自回归模型(AR模型):该模型假设当前观测值是过去几个时刻的观测值的线性组合,其中系数是模型的参数。

该模型适用于具有明显的趋势性的时间序列。

“时间序列模型的相关性”基本内容

“时间序列模型的相关性”基本内容

“时间序列模型的相关性”基本内容Abstract时间序列计量经济学模型是“计量经济学”课程中极其重要的内容。

区别于经典的一元(或多元)线性回归模型,其在违背基本假设的条件下,对参数进行一定的估计。

本文主要介绍时间序列模型的相关性概念和相关性检验方法。

一、序列相关性的定义Definition1.1如果模型的随机干扰项违背了相互独立的基本假设,称为存在序列相关性。

Definition1.2如果仅存在,则我们称为一阶序列相关或者自相关(autocorrelation).二、实际经济问题中的序列相关性实际经济问题中,序列相关性产生的原因主要是来自以下三个方面。

1.经济变量固有的惯性大多数经济时间数据的惯性表现在时间序列数据不同时间的前后关联上。

2.模型设定的偏误所谓的模型设定偏误,是指所设定的模型"不正确",主要表现在模型中丢掉了重要的解释变量或模型函数形式有偏误。

3.数据的"编造"在实际的经济问题中,有些数据是通过已知数据生成的,因此,新生成的数据与原数据之间就有内在的联系,表现出序列相关性。

三、序列相关性的后果1.参数估计量非有效这是因为在有效性证明中利用了2.变量的显著性检验失去意义在变量显著性检验中,统计量是建立在参数方差正确估计基础上的,只有当随机干扰项具有同方差性和相互独立时才成立。

因此,若存在序列相关性,估计的参数方差出现偏误,检验就失去了意义。

3.模型的预测失效四、序列相关性的检验序列相关性检验的方法:冯诺比曼检验、回归检验法、D.W.检验法等.下面着重介绍D.W.检验法和拉格朗日乘数(LM)检验.D.W.检验法(1951年由J.Durbin和G.S.Watson提出)考虑构造如下的D.W.统计量:注意到我们可以证明D.W.统计量的值介于0与4之间。

一个很重要的结论是:(1)如果存在完全一阶正相关,则D.W. 0; (2)如果存在完全一阶负相关,则D.W. 4; (3)如果完全不相关,则D.W.= 0.D.W.统计量缺陷:其一,存在一个不能确定的D.W.值区域;其二,D.W.检验只能检验一阶自相关;其三,对存在滞后被解释变量的模型无法检验.拉格朗日乘数(LM)检验/GB检验(1978年由Breusch和Godfrey提出)与D.W.检验相比较,其适用于高阶序列相关及模型中存在滞后被解释变量的情形。

时间序列分析模型概述

时间序列分析模型概述

时间序列分析模型概述时间序列分析是一种统计方法,用于研究时间序列数据中的模式、趋势和周期性。

它基于时间序列数据的特点,通过建立数学模型来预测未来的数值。

时间序列数据是按照时间顺序排列的一系列观测值,它们通常用于描述一种随时间变化的现象。

例如,股票价格、气温、销售数据等都是时间序列数据。

时间序列分析的目标是通过对已知的观测值进行分析,找出数据中的规律,并利用这些规律来预测未来的数值。

时间序列分析模型通常可以分为两类:基于统计方法的模型和基于机器学习的模型。

基于统计方法的时间序列模型包括AR(自回归模型)、MA (移动平均模型)、ARMA(自回归移动平均模型)和ARIMA(差分自回归移动平均模型)等。

这些模型基于不同的假设和理论,通过寻找数据中的自相关和移动平均性质,来建立模型并进行预测。

它们常常需要对数据进行平稳性检验和参数估计。

基于机器学习的时间序列模型包括神经网络模型、支持向量机模型和深度学习模型等。

这些模型不同于统计方法,它们通过学习时间序列数据中的特征和模式来建立预测模型。

这些模型通常需要大量的数据进行训练,并且需要对模型进行调参。

除了上述模型,时间序列分析还可以包括季节性调整模型、外生变量模型等。

季节性调整模型是用于处理具有明显季节性的时间序列数据,它通过分解数据中的趋势和季节成分,来消除季节性的影响,从而提高预测的准确性。

外生变量模型是将其他影响因素(例如经济指标、政策变化等)引入时间序列模型中,以更全面地考虑影响因素对数据的影响。

时间序列分析模型在经济学、金融学、气象学等领域有着广泛的应用。

例如,在金融领域,时间序列分析模型可以用于预测股票价格和汇率等,帮助投资者做出更准确的投资决策。

在气象学领域,时间序列分析模型可以用于预测天气变化,从而为农业生产和灾害预防提供支持。

总之,时间序列分析是一种重要的数据分析方法,用于处理时间序列数据并进行预测。

它采用统计方法和机器学习方法来建立模型,并通过对数据的分析来找出数据中的规律和趋势。

时间序列模型 自相关性和协整检验

时间序列模型 自相关性和协整检验

8
T
(uˆt uˆt1)2
D.W . t2 T
uˆt2
2(1 ˆ )
t 1
如果序列不相关,D.W.值在2附近。
如果存在正序列相关,D.W.值将小于2。
如果存在负序列相关,D.W.值将在2~4之间。
正序列相关最为普遍,根据经验,对于有大于50个观测 值和较少解释变量的方程,D.W.值小于1.5的情况,说明残 差序列存在强的正一阶序列相关。
第五章 时间序列模型
关于标准回归技术及其预测和检验我们已经在 前面的章节讨论过了,本章着重于时间序列模型的估 计和定义,这些分析均是基于单方程回归方法,第9 章我们还会讨论时间序列的向量自回归模型。
这一部分属于动态计量经济学的范畴。通常是运 用时间序列的过去值、当期值及滞后扰动项的加权和 建立模型,来“解释”时间序列的变化规律。
10
2 . 相关图和Q -统计量
1. 自相关系数 我们还可以应用所估计回归方程残差序列的自相关系数
和偏自相关系数来检验序列相关。时间序列 ut 滞后 k 阶的
自相关系数由下式估计
rk
T
t k 1
ut
u
utk u
TtLeabharlann 1utu2
(5.2.26)
其中 u 是序列的样本均值,这是相距 k 期值的相关系数。
15
反之,如果,在某一滞后阶数 p,Q-统计量超过设定 的显著性水平的临界值,则拒绝原假设,说明残差序列存 在 p 阶自相关。由于Q-统计量的 P 值要根据自由度 p 来 估算,因此,一个较大的样本容量是保证Q-统计量有效 的重要因素。
在EViews软件中的操作方法: 在方程工具栏选择View/Residual Tests/correlogramQ-statistics。EViews将显示残差的自相关和偏自相关函数 以及对应于高阶序列相关的Ljung-Box Q统计量。如果残 差不存在序列相关,在各阶滞后的自相关和偏自相关值都 接近于零。所有的Q-统计量不显著,并且有大的 P 值。

时间序列分析方法

时间序列分析方法

时间序列分析方法时间序列分析是一种常见的统计分析方法,它研究的是定量和定性的数据的动态变化情况,能反映系统潜在变化的趋势和规律,并且能通过预测技术预测未来趋势。

时间序列分析是研究随时间变化的数据可靠性和有效性的重要工具,能够发现其中的趋势和变化规律,从而帮助企业和投资者更全面地了解各种现象,更好地进行决策和行为分析。

时间序列分析可以通过应用不同的统计方法来完成,例如自相关分析、序列回归分析、协整和非线性统计分析等。

1.自相关分析自相关分析(AutoRegressive Analysis)是分析时间序列上延迟自身的统计方法,主要是描述时间序列动态变化趋势和长时间趋势。

它主要利用某一特定时刻以前t个时刻的数据来预测该时刻的值,并用一个具有时间序列模型来计算,如指数移动平均(EMA)和ARMA (Autoregressive Moving Average)等。

自相关分析的优点是简单容易,能够充分发挥时间序列的短期显著特征,缺点是只能反映短期的趋势,无法发现和分析长期的趋势。

2.序列回归序列回归(Sequence Regression)是一种统计学方法,它根据时间序列的趋势,建立一种回归关系,利用某一特定时刻以前n个时刻的数据,预测该时刻的数值,并以此来表示时间序列的趋势,如线性回归、非线性回归等。

序列回归的优点是能够表示时间序列上一些重要的长期特征,缺点是忽略了时间序列上短期的变化特征。

3.协整分析协整分析(Cointegration Analysis)是指时间序列上两个或多个序列的滞后值的长期关系。

它通过检验两个序列的相关度分析系统的同步变化,检测出两个长期运动不相关的非零均值,并利用协整分析模型来预测未来的发展趋势。

协整分析的优点是能够发现时间序列上的长期趋势,缺点是忽略了短期变化特征,而且模型拟合效果不太好。

4.非线性统计分析非线性统计分析(Nonlinear Statistical Analysis)是时间序列分析的一种方法,它可以用来描述一个序列的非线性变化特性,如分析非线性的自相关系数、分析变量的越界规律、预测变量系统整体特性,如混沌理论等。

时间序列建模案例VAR模型分析与协整检验

时间序列建模案例VAR模型分析与协整检验

传统的经济计量方法是以经济理论为基础来描述变量关系的模型。

但是,经济理论通常并不足以对变量之间的动态联系提供一个严密的说明,而且内生变量既可以出现在方程的左端又可以出现在方程的右端使得估计和推断变得更加复杂。

为了解决这些问题而出现了一种用非结构性方法来建立各个变量之间关系的模型。

本章所要介绍的向量自回归模型(vector autoregression ,V AR)和向量误差修正模型(vector error correction model ,VEC)就是非结构化的多方程模型。

向量自回归(VAR)是基于数据的统计性质建立模型,VAR 模型把系统中每一个内生变量作为系统中所有内生变量的滞后值的函数来构造模型,从而将单变量自回归模型推广到由多元时间序列变量组成的“向量”自回归模型。

VAR 模型是处理多个相关经济指标的分析与预测最容易操作的模型之一,并且在一定的条件下,多元MA 和ARMA 模型也可转化成VAR 模型,因此近年来VAR 模型受到越来越多的经济工作者的重视。

VAR(p ) 模型的数学表达式是t=1,2,…..,T其中:yt 是 k 维内生变量列向量,xt 是d 维外生变量列向量,p 是滞后阶数,T 是样本个数。

k ´k 维矩阵F 1,…, Fp 和k ´d 维矩阵H 是待估计的系数矩阵。

et 是 k 维扰动列向量,它们相互之间可以同期相关,但不与自己的滞后值相关且不与等式右边的变量相关,假设 S 是et 的协方差矩阵,是一个(k ´k )的正定矩阵。

注意,由于任何序列相关都可以通过增加更多的yt 的滞后而被11t t p t p t t --=+⋅⋅⋅+++y Φy Φy Hx ε消除,所以扰动项序列不相关的假设并不要求非常严格。

以1952一1991年对数的中国进、出口贸易总额序列为例介绍VAR 模型分析,其中包括;① VAR 模型估计;②VAR 模型滞后期的选择;③ VAR 模型平隐性检验;④VAR 模型预侧;⑤协整性检验VAR 模型佑计 数据εεεεLni(进口贸易总额), ,Lne的时间序列见图。

时间序列分析中的协整模型构建与检验

时间序列分析中的协整模型构建与检验

时间序列分析中的协整模型构建与检验时间序列分析是一种常用的统计方法,可用于揭示随时间变化的数据的模式和趋势。

而协整模型是时间序列分析中的一种重要工具,它用于分析两个或多个变量之间的长期关系。

本文将探讨协整模型的构建与检验方法,并介绍其在实际应用中的意义。

一、协整模型的构建方法在介绍协整模型的构建方法之前,我们需要先了解一个重要概念——平稳性。

对于一个时间序列,如果其均值、方差和自协方差不随时间变化而变化,我们就称其为平稳时间序列。

在构建协整模型时,我们需要确保所选择的变量都是平稳的。

协整模型的构建步骤如下:1.选择合适的变量:在实际应用中,我们首先需要选择一组有关联的变量,这些变量之间具有一定的相关性。

2.进行单位根检验:单位根检验是确定所选择的变量是否平稳的一种常用方法。

常见的单位根检验方法有ADF检验、PP检验等。

3.若变量不平稳,则进行差分处理:如果单位根检验的结果表明所选择的变量不是平稳的,我们可以对其进行差分处理,即对变量的一阶差分进行分析。

差分后的序列通常会变得平稳。

4.构建协整模型:在变量平稳之后,我们可以使用最小二乘法来估计协整模型的参数。

协整模型通常采用向量自回归模型(VAR)来描述变量之间的长期关系。

二、协整模型的检验方法构建协整模型后,我们需要对其进行检验,以验证模型是否具有统计意义。

常用的协整模型检验方法包括:1.残差序列的平稳性检验:我们首先需要分析协整模型的残差序列。

如果残差序列是平稳的,说明协整模型中的变量可以较好地解释其之间的关系。

2.格兰杰因果检验:格兰杰因果检验用于确定协整关系的方向,即变量之间的因果关系。

在协整模型中,如果变量X的残差序列对变量Y的残差序列具有显著的因果影响,则可以说X是Y的因变量。

3.阶梯回归检验:此方法用于确定模型中的协整向量个数。

在协整模型中,协整向量是变量之间长期关系的表示。

通过阶梯回归检验,我们可以确定协整模型中具有统计意义的协整向量个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作回归时 ut-k 的系数。称之为偏相关是因为它度量了k 期 间距的相关而不考虑 k -1 期的相关。
13
我们还可以应用所估计回归方程残差序列的自相关 和偏自相关系数,以及Ljung-Box Q-统计量来检验序列 相关。Q-统计量的表达式为:
QLB T T 2
j 1
p
r j2 Tj
由于通常假设随机扰动项都服从均值为 0,同方差 的正态分布,则序列相关性也可以表示为:
E (ut ut s ) 0 s 0 , t 1 , 2 , , T (5.1.4)
特别的,如果仅存在
E (ut ut 1 ) 0
题。
t 1 , 2 , , T
(5.1.5)
称为一阶序列相关,这是一种最为常见的序列相关问
(5.1.2)
如果扰动项序列 ut 表现为:
cov( u t , u t s ) 0
s 0 , t 1 , 2 , , T
(5.1.3)
即对于不同的样本点,随机扰动项之间不再是完全相互独立的, 而 是 存 在 某 种 相 关 性 , 则 认 为 出 现 了 序 列 相 关 性 (serial correlation)。 4
通常会计算出不同滞后阶数的 Q- 统计量、自相关系数
和偏自相关系数。如果,各阶 Q- 统计量都没有超过由 设定的显著性水平决定的临界值,则接受原假设,即
不存在序列相关,并且此时,各阶的自相关和偏自相
关系数都接近于0。
15
反之,如果,在某一滞后阶数 p,Q-统计量超过设定
的显著性水平的临界值,则拒绝原假设,说明残差序列存 在 p 阶自相关。由于Q-统计量的 P 值要根据自由度 p 来
k ,k
r1 r k 1 r k j 1 k 1, j k j 1 k 1 k 1, j rk j j 1
k k 是在 k 阶滞后时的自相关系数估计值。
k , j k 1, j k ,k k 1,k j
1
在时间序列模型的发展过程中,一个重要的特征是 对统计均衡关系做某种形式的假设,其中一种非常特殊 的假设就是平稳性的假设。通常一个平稳时间序列能够 有效地用其均值、方差和自相关函数加以描述。本章首
先通过讨论回归方程扰动项通常会存在的序列相关性问
题,介绍如何应用时间序列数据的建模方法,修正扰动 项序列的自相关性。进一步讨论时间序列的自回归移动 平均模型(ARMA模型),并且讨论它们的具体形式、 估计及识别方法。
5
如果回归方程的扰动项存在序列相关,那么应用 最小二乘法得到的参数估计量的方差将被高估或者低 估。因此,检验参数显著性水平的 t 统计量将不再可信。
可以将序列相关可能引起的后果归纳为:
① 在线性估计中OLS估计量不再是有效的;
② 使用OLS公式计算出的标准差不正确;
③ 回归得到的参数估计量的显著性水平的检验不 再可信。
致随机误差项的序列相关。所以在这种情况下,要把显
著的变量引入到解释变量中。
7
EViews提供了以下3种检测序列相关的方法。 1.D_W统计量检验 Durbin-Watson 统计量(简称D_W统计量)用于检 验一阶序列相关,还可估算回归模型邻近残差的线性联
系。对于扰动项 ut 建立一阶自回归方程:
10
2 . 相关图和Q -统计量
1. 自相关系数 我们还可以应用所估计回归方程残差序列的自相关系数 和偏自相关系数来检验序列相关。时间序列 ut 滞后 k 阶的 自相关系数由下式估计
rk
其中

T
t k 1
ut u ut k u T 2 t 1 ut u
(5.2.26)
ln( inv t ) 1 rt 1 2 ln( gnpt ) u t
t = 1, 2, , T
17
应用最小二乘法得到的估计方程如下:
ˆt ln( inv t ) 0.016rt 1 0.734 ln( gnpt ) u
t =(-1.32) (154.25) R2=0.80 D.W.=0.94
2
由于传统的时间序列模型只能描述平稳时间序
列的变化规律,而大多数经济时间序列都是非平稳
的,因此,由20世纪80年代初Granger提出的协整概 念,引发了非平稳时间序列建模从理论到实践的飞 速发展。本章还介绍了非平稳时间序列的单位根检 验方法、ARIMA模型的建模方法、协整理论的基本
思想及误差修正模型。
u 是序列的样本均值,这是相距 k 期值的相关系数。 称 rk 为时间序列 ut 的自相关系数,自相关系数可以部分的 刻画一个随机过程的性质。它告诉我们在序列 ut 的邻近数
据之间存在多大程度的相关性。
11
2.偏自相关系数
偏自相关系数是指在给定ut-1,ut-2,…,ut-k-1的条件下,
ut 与ut-k 之间的条件相关性。其相关程度用偏自相关系数k,k 度量。在 k 阶滞后下估计偏自相关系数的计算公式如下
渐进的 2(p) 分布。
21
在给定的显著性水平下,如果这两个统计量小于设
定显著性水平下的临界值,说明序列在设定的显著性水 平下不存在序列相关;反之,如果这两个统计量大于设 定显著性水平下的临界值,则说明序列存在序列相关性。
在EView软件中的操作方法:
选择View/Residual Tests/Serial correlation LM Test, 一 般 地 对 高 阶 的 , 含 有 ARMA 误 差 项 的 情 况 执 行 Breush-Godfrey LM。在滞后定义对话框,输入要检验 序列的最高阶数。
这是偏自相关系数的一致估计。
(5.2.28)
12
要得到k,k的更确切的估计,需要进行回归
u t 0 1u t 1 k 1u t k 1 k ,k u t k t
t = 1, 2, , T (5.2.29)
因此,滞后 k 阶的偏自相关系数是当 ut 对 ut-1,…,ut-k
3
§5.1 序列相关及其检验 §5.1.1 序列相关及其产生的后果
对于线性回归模型
y t 0 1 x1t 2 x 2t k x kt u t
(5.1.1)
随机扰动项之间不相关,即无序列相关的基本假设为
cov( ut , ut s ) 0
s 0 , t 1 , 2 , , T
差不存在序列相关,在各阶滞后的自相关和偏自相关值都 接近于零。所有的Q-统计量不显著,并且有大的 P 值。
16
例5.1: 利用相关图检验残差序列的相关性
考虑美国的一个投资方程。美国的GNP和国内私人总 投资INV是单位为10亿美元的名义值,价格指数P为GNP的 平减指数(1972=100),利息率R为半年期商业票据利息。 回归方程所采用的变量都是实际GNP和实际投资;它们是 通过将名义变量除以价格指数得到的,分别用小写字母gnp, inv表示。实际利息率的近似值 r 则是通过贴现率R减去价 格指数变化率 p 得到的。样本区间:1963年~1984年,建 立如下线性回归方程:
6
§5.1.2
序列相关的检验方法
EViews提供了检测序列相关和估计方法的工具。但
首先必须排除虚假序列相关。虚假序列相关是指模型的
序列相关是由于省略了显著的解释变量而引起的。例如, 在生产函数模型中,如果省略了资本这个重要的解释变 量,资本对产出的影响就被归入随机误差项。由于资本 在时间上的连续性,以及对产出影响的连续性,必然导
p 为预先定义好的整数;备选假设是:存在 p 阶自相关。
检验统计量由如下辅助回归计算。
20
(1)估计回归方程,并求出残差et
ˆ ˆ x ˆ x ˆ x et yt 0 1 1t 2 2t k kt
(2)检验统计量可以基于如下回归得到
(5.1.8)
et X t 1et 1 p et p vt
ut ut 1 t
(5.1.6)
D_W统计量检验的原假设: = 0,备选假设是 0。
8
D.W .
2 ˆ ˆ ( u u ) t t 1 t 2 2 ˆ u t t 1 T
T
ˆ) 2(1
如果序列不相关,D.W.值在2附近。 如果存在正序列相关,D.W.值将小于2。 如果存在负序列相关,D.W.值将在2~4之间。 正序列相关最为普遍,根据经验,对于有大于50个观测 值和较少解释变量的方程, D.W. 值小于 1.5 的情况,说明残 差序列存在强的正一阶序列相关。
(5.1.9)
这是对原始回归因子Xt 和直到 p 阶的滞后残差的回归。 LM检验通常给出两个统计量:F 统计量和 T×R2 统计量。
F统计量是对式(5.1.9)所有滞后残差联合显著性的一种检
验。T×R2统计量是LM检验统计量,是观测值个数 T 乘以 回归方程(5.1.9)的 R2。一般情况下,T×R2统计量服从
22
例5.1(续)
序列相关LM检验
LM统计量显 示,在5%的显 著性水平拒绝原 假设,回归方程 的残差序列存在 序列相关性。因 此,回归方程的
估计结果不再有
效,必须采取相 应的方式修正残 差的自相关性。
23
例5.2: 含滞后因变量的回归方程扰动项序列相关的检验 考虑美国消费CS 和GDP及前期消费之间的关系,数据
第五章 时间序列模型
关于标准回归技术及其预测和检验我们已经在
前面的章节讨论过了,本章着重于时间序列模型的估 计和定义,这些分析均是基于单方程回归方法,第 9 章我们还会讨论时间序列的向量自回归模型。 这一部分属于动态计量经济学的范畴。通常是运 用时间序列的过去值、当期值及滞后扰动项的加权和 建立模型,来“解释”时间序列的变化规律。
相关文档
最新文档