第5章 时间序列分析
统计基础知识第五章时间序列分析习题及答案

第五章时间序列分析一、单项选择题1.构成时间数列的两个基本要素是( C )(2012年1月)A.主词和宾词B.变量和次数C.现象所属的时间及其统计指标数值D.时间和次数2.某地区历年出生人口数是一个( B )(2011年10月)A.时期数列 B.时点数列C.分配数列D.平均数数列3.某商场销售洗衣机,2008年共销售6000台,年底库存50台,这两个指标是( C ) (2010年10)A.时期指标B.时点指标C.前者是时期指标,后者是时点指标D.前者是时点指标,后者是时期指标4.累计增长量( A ) (2010年10)A.等于逐期增长量之和B.等于逐期增长量之积C.等于逐期增长量之差D.与逐期增长量没有关系5.某企业银行存款余额4月初为80万元,5月初为150万元,6月初为210万元,7月初为160万元,则该企业第二季度的平均存款余额为( C )(2009年10)万元万元万元万元6.下列指标中属于时点指标的是( A ) (2009年10)A.商品库存量B.商品销售量C.平均每人销售额D.商品销售额7.时间数列中,各项指标数值可以相加的是( A ) (2009年10)A.时期数列B.相对数时间数列C.平均数时间数列D.时点数列8.时期数列中各项指标数值( A )(2009年1月)A.可以相加B.不可以相加C.绝大部分可以相加D.绝大部分不可以相加10.某校学生人数2005年比2004年增长了8%,2006年比2005年增长了15%,2007年比2006年增长了18%,则2004-2007年学生人数共增长了( D )(2008年10月)%+15%+18%%×15%×18%C.(108%+115%+118%)-1 %×115%×118%-1二、多项选择题1.将不同时期的发展水平加以平均而得到的平均数称为( ABD )(2012年1月)A.序时平均数B.动态平均数C.静态平均数D.平均发展水平E.一般平均数2.定基发展速度和环比发展速度的关系是( BD )(2011年10月)A.相邻两个环比发展速度之商等于相应的定基发展速度B.环比发展速度的连乘积等于定基发展速度C.定基发展速度的连乘积等于环比发展速度D.相邻两个定基发展速度之商等于相应的环比发展速度E.以上都对3.常用的测定与分析长期趋势的方法有( ABC ) (2011年1月)A.时距扩大法B.移动平均法C.最小平方法D.几何平均法E.首末折半法4.时点数列的特点有( BCD ) (2010年10)A.数列中各个指标数值可以相加B.数列中各个指标数值不具有可加性C.指标数值是通过一次登记取得的D.指标数值的大小与时期长短没有直接的联系E.指标数值是通过连续不断的登记取得的5.增长1%的绝对值等于( AC )(2010年1)A.增加一个百分点所增加的绝对量B.增加一个百分点所增加的相对量C.前期水平除以100D.后期水平乘以1%E.环比增长量除以100再除以环比发展速度6.计算平均发展速度常用的方法有( AC )(2009年10)A.几何平均法(水平法)B.调和平均法C.方程式法(累计法)D.简单算术平均法E.加权算术平均法7.增长速度( ADE )(2009年1月)A.等于增长量与基期水平之比B.逐期增长量与报告期水平之比C.累计增长量与前一期水平之比D.等于发展速度-1E.包括环比增长速度和定基增长速度8.序时平均数是( CE )(2008年10月)A.反映总体各单位标志值的一般水平B.根据同一时期标志总量和单位总量计算C.说明某一现象的数值在不同时间上的一般水平D.由变量数列计算E.由动态数列计算三、判断题1.职工人数、产量、产值、商品库存额、工资总额指标都属于时点指标。
统计学第5章 时间序列(第二版)1

• •
时期序列:现象在一段时期内总量的排序 时点序列:现象在某一时点上总量的排序
2. 相对数时间序列
一系列相对数指标按时间顺序排列而成
3.平均数时间序列 一系列平均数指标按时间顺序排列而成
统计学(第6章) 主讲:王光玲,济南大学经济学院
表5- 1
年 份 国内生产总值 (亿元)
国内生产总值等时间序列
i 1
i
1.绝对数序列的序时平均数
(时点序列计算方法)
②间断时点序列:间隔在一天以上的时点序列 a.间隔不等的间断时点序列
Y1 Y2 Y3 Y4 Yn-1 Yn
T1
T2
T3
Tn-1
※间隔不相等 时,采用加权序时平均法
一季 度初 二季 度初
90天
三季 度初
90天
次年一 季度初
180天
Y 1
Y2
Y 3
T1 T2 ... Tn 1
1.绝对数序列的序时平均数
(时点序列计算方法)
b.间隔相等的间断时点序列
Y1 Y2 Y3 Yn-1 Yn
T1
T2
Tn-1
间隔相等(T1 = T2= …= Tn-1)
b.间隔相等的间断时点序列
※间隔相等 时,采用简单序时平均法
一季 度初 二季 度初 三季 度初 四季 度初 次年一 季度初
4
表5- 1
年 份 国内生产总值 (亿元)
国内生产总值等时间序列
年末总人口 (万人)
城镇居民家庭人均 可支配收入(元) 城镇居民家庭恩 格尔系数(%)
1996 71176.6 122389 1997 78973.0 123626 1998 84402.3 124761 1999 89677.1 125786 2000 99214.6 126743 2001 109655.2 127627 2002 120332.7 128453 2003 135822.8 129227 129988 2004 159878.3 130756 2005 183867.9 统计学(第6章) 131448 2006 2/26/2019 210871.0
统计学第5章 时间序列(第二版)1

a.间隔不等的间断时点序列
Y1 Y2
Y3 Y4
T1
T2
T3
Yn-1
Yn
Tn-1
※间隔不相等 时,采用加权序时平均法
一季 度初
二季 度初
三季 度初
次年一 季度初
Y1 90天
Y2 90天
Y3
180天
Y4
Y1 Y2
Y2 Y3
Y3 Y4
37.7
2005
183867.9
130756
10493.0
36.7
2006 2019/5/1421087统1计.0学(第6章13)1448 主讲:王1光17玲5,9.济5 南大学经济学3院5.8 5
引导案例——实践中的统计学
国内生产总值、年末总人口、城镇居民家庭人均 可支配收入、城镇居民家庭恩格尔系数等统计数 字,和以往我们介绍的统计综合指标有所不同, 都是按时间顺序定期进行观测(每日、每月、每 季度或每年)和记录的。
人数 1200
1240
1220
1230
Y 12008 12405 1220111230 6 1220(人)
8 5 11 6
n
Y
Y1T1 Y2T2 YnTn T1 T2 Tn
YiTi
i 1 n Ti
i 1
1.绝对数序列的序时平均数
【例4】设某种股票2010年各统计时点的收盘价如表 5-2所示,计算该股票2010年的月平均价格
表5-2 某种股票2010年各统计时点的收盘价
统计时点 1月1日 3月1日 7月1日 10月1日 12月31日
初计量经济学之时间序列分析

初计量经济学之时间序列分析1. 引言时间序列分析是计量经济学中的一个重要领域,研究的是时间序列数据的性质、模式和预测方法。
时间序列数据是按照时间顺序排列的一系列观测值,包括经济指标、股票价格、气象数据等。
时间序列分析可以帮助我们理解和预测经济现象的发展趋势,为政府和企业决策提供科学依据。
本文将介绍时间序列分析的基本概念、方法和应用。
首先,我们将介绍时间序列分析的基本步骤和基本假设。
然后,我们将介绍时间序列模型的常用类型,包括自回归模型(AR)、滑动平均模型(MA)和自回归滑动平均模型(ARMA)。
最后,我们将介绍时间序列的应用领域,包括经济预测、金融风险管理和气象预测。
2. 时间序列分析的基本步骤时间序列分析的基本步骤包括数据的收集和准备、数据的探索性分析、模型的选择和估计、模型的诊断和预测。
下面将对每个步骤进行详细介绍。
2.1 数据的收集和准备数据的收集和准备是时间序列分析的第一步。
我们需要收集时间序列数据,并进行数据清洗和预处理。
数据清洗包括删除缺失值、处理异常值和去除趋势。
数据预处理包括对数据进行平滑处理、差分和变换。
2.2 数据的探索性分析数据的探索性分析是时间序列分析的第二步。
我们需要对时间序列数据进行可视化和统计分析,以了解数据的基本性质和模式。
可视化方法包括绘制时间序列图、自相关图和偏自相关图。
统计分析方法包括计算统计指标、分析趋势、季节性和周期性。
2.3 模型的选择和估计模型的选择和估计是时间序列分析的第三步。
我们需要选择合适的时间序列模型,并进行参数估计。
常用的时间序列模型包括自回归模型(AR)、滑动平均模型(MA)、自回归滑动平均模型(ARMA)和季节性模型。
2.4 模型的诊断和预测模型的诊断和预测是时间序列分析的最后一步。
我们需要对模型进行诊断,检验模型的拟合程度和残差的平稳性、独立性和正态性。
然后,我们可以使用模型进行未来值的预测。
3. 时间序列模型时间序列模型是描述和预测时间序列数据的数学模型。
第五章 时间序列练习题

第五章时间序列分析一、单项选择1. 时间序列是()。
a、将一系列统计指标按时间先后顺序排列起来b、将一系列不同指标数值按时间先后顺序排列起来c、将某一统计指标在不同时间的数值按时间先后顺序排列起来d、将一系列相同指标按时间先后顺序排列起来2. 时间序列中,每个指标数值可以相加的是()。
a、相对数时间序列b、时期序列c、平均数时间序列d、时间序列3. 时期数列中的每一指标数值是()。
a、定期统计一次b、连续不断统计而取得c、每隔一定时间统计一次d、每隔一月统计一次4. 在时点序列中()。
a、各指标数值之间的距离称作“间隔”b、各指标数值所属的时期长短称作“间隔”c、最初水平与最末水平之差称作“间隔”d、最初水平和最末水平之间的距离称作“间隔”5. 下列数列中哪一个属于动态序列()。
a、学生按成绩分组形成的数列b、工业企业按地区分组形成的数列c、职工人数按时间顺序先后排列形成的数列d、职工按工资水平高低顺序排列形成的数列6. 10年内每年年末国家黄金储备是()。
a、发展速度b、增长速度c、时期数列d、时点数列7. 对时间序列进行动态分析的基础数据是()。
a、发展水平b、平均发展水平c、发展速度d、平均发展速度8. 由时期序列计算平均数应按()计算。
a、算术平均法b、调和平均法c、几何平均法d、“首末折半法”9. 由日期间隔相等的间断时点序列计算平均数应按( )计算。
a、算术平均法b、调和平均法c、几何平均法d、“首末折半法”10. 由日期间隔不等的间断时点序列计算平均数应按()。
a、简单算术平均法b、加权算术平均法c、几何平均法d、“首末折半法”11. 时间序列中的平均发展速度是()。
a、各时期环比发展速度的调和平均数b、各时期环比发展速度的平均数c、各时期定基发展速度的序时平均数d、各时期环比发展速度的几何平均数12. 应用几何平均法计算平均发展速度主要是因为()。
a、几何平均计算简便b、各期环比发展速度之积等于总速度c、各期环比发展速度之和等于总速度d、是因为它和社会现象平均速度形成的客观过程一致13. 平均增长速度是()。
第五章 时间序列

是一种无规律可循的偶然性的变 动,包括严格的随机变动和不规 则的突发性影响很大的变动两种 类型。比如股票的价格波动。
前三种都是可以解释的变 动,只有不规则变动是无法解 释的。
传统的时间序列分析的主 要内容就是将这些成分从时间 序列中分离出来,然后将它们 之间的关系用一定的数学关系 式予以表达,并进行分析。
1. 长期趋势(T)
现象在较长时期内受某种根 本性因素作用而形成的总的 变动趋势。比如GDP总量长 期看来具有上升趋势。
2. 季节变动(S)
现象在一年内随着季节的变化 而重复出现的有规律的周期性 变动。比如通常商业上有“销 售淡季”和“销售旺季”。
3. 周期性(C)
现象以若干年为周期所呈现出的围 绕长期趋势的一种波浪形态的有规 律的变动。比如我们常说的经济周 期,5年或者10年一个循环。
• 时期序列的主要特点有: ① 时期序列中各个观察值可以相加,相加后的观察 值表示现象在更长时期内发展过程的总量。 ② 时期序列中每个指标数值的大小与时期的长短有 直接联系,即具有时间长度。 ③ 时期序列中的指标数值一般采用连续登记办法获 得。
2.时点序列
• 当时间序列中所包含的总量指标都是反映社会经 济现象在某一瞬间上所达到的水平时,这种总量 指标时间序列即为时点序列。在时点序列中,相 邻两个时点指标之间的距离为“间隔”。
相对指标时间序列中各个指标数值都是相对数,其计算基础不同,不能直接相加。在编制相对指 标时间序列时,要注意百分号的表示及其在表中的位置和作用。
(三)平均指标时间序列
将同一平均指标的数值按其发生的时间先后顺序排列而成的数列叫做平均指数时间序列。它反映 社会经济现象一般水平的变化过程和发展趋势。
平均指标时间序列中每个指标数值都是平均数,不能相加,相加起来没有经济意义
统计学原理第5章:时间序列分析

a a
n 118729 129034 132616 132410 124000 5
127357.8
②时点序列
若是连续时点序列: 计算方法与时期序列一样; 若是间断时点序列: 则必须先假设两个条件,分别是 假设上期期末水平等于本期期初水平; 假设现象在间隔期内数量变化是均匀的。 间隔期相等的时点序列 采用一般首尾折半法计算。 例如:数列 a i , i 0,1,2, n 有 n 1 个数据,计算 期内的平均水平 a n a n 1 a 0 a1 a1 a 2
(3)联系
环比发展速度的乘积等于相应的定基发展速度,
n n i 0 i 1 i 1
相邻两期的定基发展速度之商等于后期的环比发展速度
i i 1 i 0 0 i 1
(二)增减速度
1、定义:增长量与基期水平之比 2、反映内容:现象的增长程度 3、公式:增长速度
0.55
二、时间序列的速度分析指标
(一)发展速度 (二)增长速度 (三)平均发展水平
(四)平均增长速度
(一)发展速度
1、定义:现象两个不同发展水平的比值 2、反映内容:反映社会经济现象发展变化快慢相对程度 3、公式:v 报告期水平 100%
基期水平
(1)定基发展速度
是时间数列中报告期期发展水平与固定基期发展水平对比所 得到的相对数,说明某种社会经济现象在较长时期内总的发 展方向和速度,故亦称为总速度。 (2)环比发展速度 是时间数列中报告期发展水平与前期发展水平之比,说明某 种社会经济现象的逐期发展方向和速度。
c
a
b
均为时期或时点数列,一个时期数列一个时点数列,注意平均的时间长度 ,比如计算季度的月平均数,时点数据需要四个月的数据,而时期数据则 只需要三个月的数据。
人大版应用时间序列分析(第5版)习题答案

第一章习题答案略第二章习题答案2.1答案:(1)不平稳,有典型线性趋势(2)1-6阶自相关系数如下(3)典型的具有单调趋势的时间序列样本自相关图2.2答案:(1)不平稳(2)延迟1-24阶自相关系数(3)自相关图呈现典型的长期趋势与周期并存的特征2.3答案:(1)1-24阶自相关系数(2)平稳序列(3)非白噪声序列2.4计算该序列各阶延迟的Q统计量及相应P值。
由于延迟1-12阶Q统计量的P值均显著大于0.05,所以该序列为纯随机序列。
2.5答案(1)绘制时序图与自相关图(2)序列时序图显示出典型的周期特征,该序列非平稳(3)该序列为非白噪声序列2.6答案(1)如果是进行平稳性图识别,该序列自相关图呈现一定的趋势序列特征,可以视为非平稳非白噪声序列。
如果通过adf检验进行序列平稳性识别,该序列带漂移项的0阶滞后P值小于0.05,可以视为平稳非白噪声序列(2)差分后序列为平稳非白噪声序列2.7答案(1)时序图和自相关图显示该序列有趋势特征,所以图识别为非平稳序列。
(2)单位根检验显示带漂移项0阶延迟的P值小于0.05,所以基于adf检验可以认为该序列平稳(3)如果使用adf检验结果,认为该序列平稳,则白噪声检验显示该序列为非白噪声序列如果使用图识别认为该序列非平稳,那么一阶差分后序列为平稳非白噪声序列2.8答案(1)时序图和自相关图都显示典型的趋势序列特征(2)单位根检验显示该序列可以认为是平稳序列(带漂移项一阶滞后P值小于0.05)(3)一阶差分后序列平稳第三章习题答案 3.10101()0110.7t E x φφ===--() 221112() 1.96110.7t Var x φ===--() 22213=0.70.49ρφ==()12122221110.490.7=0110.71ρρρφρρ-==-(4) 3.21111222211212(2)7=0.515111=0.30.515AR φφφρφφφρφρφφφ⎧⎧⎧=⎪=⎪⎪⎪--⇒⇒⎨⎨⎨⎪⎪⎪=+=+⎩⎩⎪⎩模型有:,2115φ=3.312012(1)(10.5)(10.3)0.80.15()01t t t t t tt B B x x x x E x εεφφφ----=⇔=-+==--,22121212()(1)(1)(1)10.15=(10.15)(10.80.15)(10.80.15)1.98t Var x φφφφφφ-=+--+-+--+++=()1122112312210.83=0.70110.150.80.70.150.410.80.410.150.70.22φρφρφρφρφρφρ==-+=+=⨯-==+=⨯-⨯=() 1112223340.70.15=0φρφφφ====-()3.41211110011AR c c c c c ⎧<-<<⎧⎪⇒⇒-<<⎨⎨<±<⎪⎩⎩() ()模型的平稳条件是 1121,21,2k k k c c k ρρρρ--⎧=⎪-⎨⎪=+≥⎩() 3.5证明:该序列的特征方程为:320c c λλλ--+=,解该特征方程得三个特征根:11λ=,2λ=3λ=无论c 取什么值,该方程都有一个特征根在单位圆上,所以该序列一定是非平稳序列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)所属的时间 (2)反映数量特征的数值
3、记号: y0 , y1, y2 ,L , yt ,L , yn1, yn
4、时间序列的分析意义: 分析意义
分析过去
描述动态变化
认识规律
揭示变化规律
预测未来
未来的数量趋势
二、时间序列的类型
时间序列的类型
一、平均发展水平(序时平均数)
绝序 对时 数平 序均 列数
时期/ 连续时点
间断时点
y y1 y2 L L yn y
n
n
y
y1 y2 2
f1
y2 y3 2
f2 L
n1
L
yn1 yn 2
fn1
fi
i1
相对数或平均数序列 计算序时平均数
ya b
例5-2 根据下表资料计算企业1月份平均职工人数。
生产工人占 全部职工的 比重(%)
y=a/b
9月30日 350 428
81.78
10月31日 380 450
11月30日 400 440ຫໍສະໝຸດ 84.4490.91
该企业第四季度平均全部职工人数为:
b (428 450 450 440 440 443) 3
2
2
2
441.83(人)
12月31日 410 443
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 月份
(二)分解 1、乘法模型: Y = T·S·C·I
计量单位相同 的总量指标
是对原数列指标 增加或减少的百分比
2、加法模型: Y = T + S + C + I
计量单位相同 的总量指标
是对长期趋势所产生的偏差, (+)或(-)
二、发展速度
发展速度
环比发展速度:xt yt yt1 定基发展速度:x0t yt y0
三、增长速度
增长速度
环比:St
yt
yt1 yt 1
yt yt 1
1
定基:S0t
yt
y0 y0
yt y0
1
四、增长1%的绝对量 yt1 100
5.3 时间序列平均分析
一、平均发展水平 二、平均增减量 三、平均发展速度 四、平均增降速度
作业要求
• 选做1或2+3; • 以Group完成作业; • 利用EXCEL进行绘图及计算; • 用EXCEL或PPT展示结果,并进行讲解。
(2)计算同月(或季)平均数,即
1n y j n i1 yij
(3)计算总平均数,即
1 nm
y
nm
i 1
yij
j 1
(4)计算季节指数,即
Sj
yj y
(5)调整:计算调整系数
a m
m y j
j1 y
调整季节指数,即
S j
yj y
a
m
从而
Sj m (即1200%或400%)
j 1
(二)长期趋势剔除法
相对数 时间序列
绝对数 时间序列
平均数 时间序列
时期序列
时点序列
三、编制时间序列的基本原则
1、所属时间可比 2、总体范围可比 3、经济内容可比 4、计算口径可比 5、计算方法可比
5.2 时间序列动态分析
一、增减量 二、发展速度 三、增长速度 四、增降1%的绝对量
一、增减量
增减量
逐期增减量:t yt yt1 累计增减量: 0t yt y0
发展速度、平均增长速度 3. 时间序列长期趋势分析与预测——移动平均法、一次指数
平滑法、趋势模型法 4. 时间序列季节变动分析与预测——按期平均法、长期趋势
剔除法、趋势季节模型预测 5. 应用Excel对时间序列作实际分析和图形描绘
作业
1、在国家统计局网站上搜集2006年至2011年我国的月度社会消费品零售 总额(或工业增加值、某种工业产品产量、全社会客货运量、邮电业 务量 )。
1、适用场合:长期趋势比较明显。
2、步骤:
(1)利用移动平均或模型拟合计算时间序列趋势值Tij (第 i 年第 j 期);
(2)计算比值 yij yij / Tij ,剔除长期趋势; (3)对 yij 按各年同期对齐排列,计算同期平均数 yj ;
(4)计算调整系数,并计算季节指数,即
a
m
m
, S j yj a
y0 y1
yn2 yn1
y0
课堂练习:P184练习题6。
5.4 时间序列趋势分析与预测
一、时间序列的影响因素和分解
二、长期趋势的测定
(一)移动平均法
重难点
(二)指数平滑法
(三)数学模型拟合法
一、时间序列的影响因素和分解
(一)影响因素
1、长期趋势 — T(A图) A
2、季节变动 — S (B图)
3、周期变动 — C (C图) B
(1)作出该时间序列的折线图,并判断其影响因素; (2)对时间序列进行动态分析和平均分析; (3)利用指数平滑方法对该序列进行预测; (4)建立趋势季节模型对该序列进行预测; (4)根据2011年的实际值和预测值计算MAPE,比较以上两种方法的预
测效果。 2、教材P183—184,2,5,6,7(1)(2); 3、 教材P185—186,11(1),12。
y a 386.67 87.52% b 441.83
课堂练习:P143例5-7,P183练习题2,5。
二、平均增减量
( yt yt 1 ) yn y0
n
n
三、平均发展速度
x n y1 y2 L yn1 yn n yn
y0 y1
yn2 yn1
y0
四、平均增减速度
n y1 y2 L yn1 yn 1 n yn 1
yˆt1
ytN 1 ytN 2 L N
L
yt1 yt
3、特点: (1)移动平均项数N越多,修匀效果越好,但丢失信息越多; (2)若序列存在季节或周期变动,则N取季节或周期的长度。
4、预测方法的评估: (1)均方误差( mean square error )
MSE
1 n
n t 1
( yt
yˆt )2
(3)原理: 使离差平方和达最小求 得a,b的值。 根据微分学极值原理得
y
yˆt a bt
(t, yt )
et yt yˆt
(t, yˆt )
G a
2 ( yt
a
bt)
0
G b
2t( yt
a
bt)
0
t
G(a, b)
( yt yˆt )2 ( yt a bt)2
解得
(2)平均绝对百分比误差(mean absolute percentage error)
MAPE 1 n yt yˆt n t1 yt
(二)一次指数平滑法 1、基本原理:
将各期预测值和观察值的加权平均数作为下一期 的预测值,得到一个新的序列。
yˆt1 yt (1 ) yˆt , 0 1
yj
j 1
二、趋势季节模型预测
1、趋势季节模型的建立:
y)t Tt St
2、适用场合:长期趋势和季节变动同时存在且较明显。 3、步骤:
(1)计算季节指数 St ,并分离季节成分,即 yt / St (2)根据剔除季节成分的序列 yt / St 建立趋势模型 Tt ;
本章小结
1. 时间序列动态分析——增减量、发展速度、增长速度 2. 时间序列平均分析——平均增减量、平均发展水平、平均
4、不规则变动 — I
系数
趋势
100 80 60 40 20 0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
1.4
1.2
1
0.8
0.6
0.4
0.2
0
1
2
3
4
5
6
7
8
9
10
11
12
月份
C
系数
1.30 1.25 1.20 1.15 1.10
5.5 季节变动的分析与预测
一、季节变动的测定 (一)按期(季或月)平均法 (二)长期趋势剔除法
二、趋势季节模型预测
重难点
一、季节变动的测定
(一)按期(季或月)平均法
1、适用场合:长期趋势不明显或不存在。
2、步骤:
(1)列表:将各年同月(或季)数值对齐排列;
y1 j , y2 j ,L , ynj , j 1, 2,L , m
b
ntyt t
nt2 (t)2
yt
a y bt
如果 t 0,则有(P164)
b
tyt t2
a
y
yt
n
练习: P185,10.
2、曲线趋势测定与预测
(1)二次抛物线:
yˆt
a bt
ct 2
适用场合:二级增长量大致相等。
(2)指数曲线: yˆt abt
适用场合:各期环比发展速度大致相等。
二、长期趋势的测定
(一)移动平均法 1、基本原理:
选择一定的时距项数N,采用逐项递移的方式, 对原序列递移的N项计算一系列序时平均数。
yt yt1 L L ytN1 , t 0,1, 2,L N
2、作用: 对原序列进行修匀,呈现序列发展总趋势; 或对平稳序列进行预测。
第 t+1 期 的预测值
81.78
10月31日 380 450
11月30日 400 440
84.44