王燕时间序列分析第五章SAS程序

合集下载

时间序列分析讲义(下)

时间序列分析讲义(下)
事实上,通过IDENGTIFY语句,还可以实现序列 模型的识别,这个在下一章详细介绍。
时间序列分析讲义(下)
例2.2
data example2_2; input fred@@; year=intnx('year','1jan1970'd,_n_-1); format year year4.; cards; 97 154 137.7 149 164 157 188 204 179 210 202 218 209 204 211 206 214 217 210 217 219 211 233 316 221 239 215 228 219 239 224 234 227 298 332 245 357 301 389 ; proc arima data= example2_2; identify var=fred; run;
时间序列分析讲义(下)
第一章 SAS-时间序列数据
1.1 创建数据数据
1、数据直接录入
格式1
Data 数据集名; input 变量名1 变量名2 ;
cards; 数据
; run;
格式2
Data 数据集名; input 变量名1 变量名2@@;
cards; 数据
; run;
时间序列分析讲义(下)
例1-1 录入数据 3.41 3.45 3.42 3.53 3.45 方法1 data example1_1;input price;
时间序列分析讲义(下)
可以在数据库WORK看见数据集example1_4:
时间序列分析讲义(下)
时间序列分析讲义(下)
时间序列分析讲义(下)
3、缺失值插值
data example1_5;input price@@; t=intnx('month','1jan2005'd,_n_-1); format t date.;cards; 3.41 3.45 . 3.53 3.45 ; proc expand data=example1_5 out=example1_6;id t; proc print data=example1_5 ; proc print data=example1_6;run;

时间序列数据中的干预分析模型及SAS实现

时间序列数据中的干预分析模型及SAS实现

设 平 稳后 的单 变量 序列 满足 下 述模 型 : = OB以

个 月 的预测 。完成 上述 三个 模 型结 果 ,选 取 AIC 最 小 的模 型进 行 白噪声 检验 ,同时可利 用 gplot程序作 残 差
又设 干预 事件 的影 响为 z= ,,『为 干预 变 量 ,等 于 序 列 图 ,观 察残 差 的特性 。
生成 阶梯 函数 x,利 用 GPLOT 作 出 序 列 图 。再 利 用
随之 采用 自相 关 图检 验法 来 检 ntify语 句对 模 型进 行 初 步 识 别 ,观 样本 自相 关 系数散 点 图 ,自相关 系数 缓慢 趋 于零 ,表 明
(3)模 型 的判 断
cross选项 事 先指定 。
模 型 的拟合 采用 AIC统计 量 进 行 评 价 ,依 据 AIC 最 小原 则 ,选 出最 优 ARIMA模 型 。加 人 干 预 变 量 后
实例 分 析
通 过 比较模 型参 数 的 t值 和 P值 评价 最终 模 型 。 4.SAS软件 的实 现
滥用 抗 生素将 会使 人类 为对 抗疾 病付 出越 来越 高 的代
input Y @ @ :
价 。2012年 8月 1日,我 国正 式 开 始 实 施 《抗 菌 药 物
form at date m onyy.;
临床应用管理办法》,对抗生 素临床使 用做 了严格规
date=INTNX( month , 0lJAN10 d,_N一一1); X=(date> = 01JUN11 d):
sym boll i=spline V =dot C = red:
2013年 5月 ,数 据 见表 1。使 用上 述 SAS程 序 进 行 分

SAS时序分析程序说明

SAS时序分析程序说明

Method的类型
• METHOD=ML estimates
• METHOD=ULS estimates • METHOD=YW • METHOD=ITYW estimates
specifies maximum likelihood
specifies unconditional least-squares specifies Yule-Walker estimates specifies iterative Yule-Walker
例句
Identify var=cpi(1) nlag=18 stationarity=(adf=3);
– 对cpi的一阶差分序列进行识别,输出延迟18阶 的基本统计,自相关信息和白噪声检验信息 – 对cpi的一阶差分序列进行滞后阶数分别等于 0,1,2,3的adf检验
Identify var=cpi(1) nlag=18 stationarity=(pp=2);
IDENTIFY语句
• 单变量序列样本自相关,逆自相关和偏自 相关属性,平稳性识别,白噪声识别,单 位根检验结果输出 • 多变量序列响应变量和解释变量的选择及 互相关属性输出 • 命令格式 • IDENTIFY VAR=相应变量名 可选择命令;
例句
Identify var=x;
– 对x变量进行识别,输出均值,标准差等描述性统计量 – 输出自相关,逆自相关和偏自相关系数及图(平稳性检验和参数 定阶基础) – 输出白噪声检验结果
• Stationarity=();
– 单位根检验(df,adf或pp检验,其中df检验等于adf(1)检验)
• Crosscorr=(一个或多个输入变量名)
– 指定输入变量(可以是原序列也可以是差分序列),单个输入变 量可以不加括号,多个输入变量要加括号

ARMA模型及SAS求解

ARMA模型及SAS求解

第6讲 时间序列分析教材:应用时间序列分析课件(中国人民大学 王燕),SAS 如何解及下载例程。

时间序列分析(Time series analysis)是一种动态数据处理的统计方法。

该方法基于随机过程理论和数理统计学方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题。

时间序列是把反映现象发展水平的统计指标数值,按照时间先后顺序排列起来所形成的一组统计数字序列。

时间序列又称动态数列或时间数列。

时间序列分析就是利用这组数列,应用数理统计方法加以处理,以预测未来事物的发展。

时间序列分析是定量预测方法之一,它的基本原理:一是承认事物发展的延续性。

应用过去数据,就能推测事物的发展趋势。

二是考虑到事物发展的随机性。

任何事物发展都可能受偶然因素影响,为此要利用统计分析中加权平均法对历史数据进行处理。

该方法简单易行,便于掌握,但准确性差,一般只适用于短期预测。

时间序列预测一般反映三种实际变化规律:趋势变化、周期性变化、随机性变化。

时间序列分析是根据系统观测得到的时间序列数据,通过曲线拟合和参数估计来建立数学模型的理论和方法。

时间序列分析常用在国民经济宏观控制、区域综合发展规划、企业经营管理、市场潜量预测、气象预报、水文预报、地震前兆预报、农作物病虫灾害预报、环境污染控制、生态平衡、天文学和海洋学等方面。

时间序列分析主要用途:①系统描述。

根据对系统进行观测得到的时间序列数据,用曲线拟合方法对系统进行客观的描述。

②系统分析。

当观测值取自两个以上变量时,可用一个时间序列中的变化去说明另一个时间序列中的变化,从而深入了解给定时间序列产生的机理。

③预测未来。

一般用ARMA 模型拟合时间序列,预测该时间序列未来值。

④决策和控制。

根据时间序列模型可调整输入变量使系统发展过程保持在目标值上,即预测到过程要偏离目标时便可进行必要的控制。

基本步骤:①用观测、调查、统计、抽样等方法取得被观测系统时间序列动态数据。

②根据动态数据作相关图,进行相关分析,求自相关函数。

时间的序列第五章作业的

时间的序列第五章作业的

第五章SAS作业问题1:1867-1938年英国绵羊数量如下所示:2203 2360 2254 2165 2024 2078 2214 2292 2207 2119 2119 2137 2132 1955 1785 1747 1818 1909 1958 1892 1919 1853 1868 1991 2111 2119 1991 1859 1856 1924 1892 1916 1968 1928 1898 1850 1841 1824 1823 1843 1880 1968 2029 1996 1933 1805 1713 1726 1752 1795 1717 1648 1512 1338 1383 1344 1384 1484 1597 1686 1707 1640 1611 1632 1775 1850 1809 1653 1648 1665 1627 17911、选择恰当模型,拟合该序列的发展;2、利用拟合模型预测1938-1945年英国绵羊的数量;3、按照书本相应例题的格式完成问题,并附上SAS程序。

解:(1)时序图显示,序列具有长期趋势,对序列进行1阶差分▽Xt=Xt-Xt-1,观察差分后序列▽Xt的时序图。

时序图显示长期趋势信息基本被差分运算提取充分,考察差分后序列的自相关图和偏自相关图。

自相关图显示延迟3阶后自相关系数基本在2倍标准差范围内,因此认为该序列为平稳序列。

自相关图表现出拖尾现象,偏自相关图表现出3阶结尾现象,且自相关图中2阶自相关系数在2倍标准差范围内,所以考虑构造疏系数模型AR(1,3)。

残差自相关检验结果显示延迟6期后P值都大于0.05,因此认为残差为白噪声序列,即拟合模型显著有效。

参数估计结果显示两参数P值都小于0.05,都显著有效。

则拟合的AR(1,3)模型为▽Xt=0.32196▽Xt-1 –0.37616▽Xt-3 + εt(2)利用拟合模型对1938-1945年英国绵羊的数量进行预测结果如上图所示,预测图为(3)SAS程序为data a;input x@@;dif1=dif(x);t=1867+_n_-1;format time year4.;cards;2203 2360 2254 2165 2024 2078 2214 2292 2207 2119 211921372132 1955 1785 1747 1818 1909 1958 1892 1919 1853 186819912111 2119 1991 1859 1856 1924 1892 1916 1968 1928 1898 18501841 1824 1823 1843 1880 1968 2029 1996 1933 1805 1713 17261752 1795 1717 1648 1512 1338 1383 1344 1384 1484 1597 16861707 1640 1611 1632 1775 1850 1809 1653 1648 1665 1627 1791;run;proc gplot data=a;plot x*t dif1*t;symbol c=black i=join v=dot;proc arima;identify var=x(1) ;estimate p=(13) noint;forecast lead=7id=t out=out;proc gplot data=out;plot x*t=1 forecast*t=2 l95*t=3 u95*t=3/overlay;symbol1c=black i=none v=star;symbol2 c =red i =join v =none; symbol3 c =green i =join v =none; run ;问题2,使用Auto-Regressive 模型分析例5.9序列。

王燕-应用时间序列分析

王燕-应用时间序列分析


宽平稳

平稳时间序列的统计定义

满足如下条件的序列称为严平稳序列
正整数m, t1 , t 2 , , t m T, 正整数, 有
Ft1 ,t 2 t m ( x1 , x 2 , , x m ) Ft1 ,t 2 t m ( x1 , x 2 , , x m )

推荐软件——SAS


第二章
时间序列的预处理
本章结构

平稳性检验 纯随机性检验
2.1平稳性检验

特征统计量 平稳时间序列的定义 平稳时间序列的统计性质 平稳时间序列的意义 平稳性的检验
概率分布

概率分布的意义

随机变量族的统计特性完全由它们的联合分布函数 或联合密度函数决定

G.U.Yule

1927年,AR模型 1931年,MA模型,ARMA模型

G.T.Walker

核心阶段

G.E.P.Box和 G.M.Jenkins


1970年,出版《Time Series Analysis Forecasting and Control》 提出ARIMA模型(Box—Jenkins 模型) Box—Jenkins模型实际上是主要运用于单变 量、同方差场合的线性模型
描述性时序分析案例

德国业余天文学家施瓦尔发现太阳黑子的活动具有11年左右的周期
统计时序分析

频域分析方法 时域分析方法

频域分析方法

原理

假设任何一种无趋势的时间序列都可以分解成若干不同频率 的周期波动 早期的频域分析方法借助富里埃分析从频率的角度揭示时间 序列的规律 后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个函 数 20世纪60年代,引入最大熵谱估计理论,进入现代谱分析阶 段 非常有用的动态数据分析方法,但是由于分析方法复杂,结 果抽象,有一定的使用局限性

SAS

SAS

SAS统计软件在《时间序列分析》课程中辅助教学的探讨作者:肖莉来源:《科技创新导报》2011年第02期摘要:本文从SAS统计软件辅助教学的优越性、应注意的问题和结合实际案例这三方面探讨了SAS软件在《时间序列分析》课程中辅助教学的应用。

关键词:时间序列分析 SAS统计软件辅助教学中图分类号:G434 文献标识码:A 文章编号:1674-098X(2011)01(b)-0164-01《时间序列分析》是一门针对动态数据进行建模、预测,方法明确,内容丰富,实际应用性很强的一门统计学课程,在金融经济、气象水文、信号处理、机械振动等众多领域有着广泛的应用,并且在近20年中随着计算机技术的进步得到了迅猛的发展,该门课程的教学在整个统计学专业教学中是非常重要的。

在《时间序列分析》课程教学实践中,无论是教师还是学生常常会遇到一个实际而又棘手的问题就是数据处理,由于数据处理量大、计算方法复杂,已超出了靠手工完成的能力,必须采用统计软件来完成。

目前有许多统计软件可以进行时间序列分析,其中最权威的软件是SAS(Statistical Analysis System),该软件具有完备的数据访问、数据管理、数据分析和数据呈现功能,内有三十多个专用模块,各模块既可独立又可相联。

此外,在SAS软件中有一个专门进行计量经济与时间序列分析的模块:SAS/ETS(Econometric&Time Series),并且由于SAS系统具有全球一流的数据仓库功能,因此在进行海量数据的时间序列分析时具有其他统计软件无可比拟的优势。

本文将对在《时间序列分析》课程中引入SAS软件辅助教学进行探讨。

1 使用SAS统计软件多媒体辅助教学的优越性1.1 利用SAS软件,能方便、快捷地绘制图形、建立模型和进行预测,使教学过程变得直观、形象在《时间序列分析》课程中,往往要根据时间序列数据进行绘图、建模、计算、预测,但在同一个课时内根本无法完成这样的教学任务,而采用SAS软件辅助教学后,则可使绘图、建模、计算、预测一气呵成。

王燕时间序列分析第五章SAS程序

王燕时间序列分析第五章SAS程序

第一题data yx_51;input x@@;difx=dif(x);t=1+_n_-1;cards;304 303 307 299 296 293 301 293 301 295 284 286 286 287 284 282 278 281 278 277 279 278 270 268 272 273 279 279 280 275 271 277 278 279 283 284 282 283 279 280 280 279 278 283 278 270 275 273 273 272 275 273 273 272 273 272 273 271 272 271273 277 274 274 272 280 282 292 295 295 294 290 291 288 288 290 293 288 289 291 293 293 290 288 287 289 292 288 288 285 282 286 286 287 284 283 286 282 287 286 287 292 292 294 291 288 289;proc gplot;plot x*t=1 difx*t=2;symbol1c=red v=circle i=join;symbol2c=yellow v=star i=join;run;proc arima;identify var=x(1);estimate p=1;run;结果如下时序图:一阶差分后时序图:difx-20-1010t102030405060708090100110通过原始数据的时序图可以明显看出,此序列非平稳,因而对序列进行一阶差分。

从一阶差分后的自相关图可以看出,一阶差分后的序列的自相关系数一直都比较小,始终控制在二倍标准差以内,可以认为一阶差分后的序列始终都在零轴附近波动,因而可以认为一阶差分后的序列为随机性很强的平稳序列,另外通过一阶差分后的时序图也可以看出,一阶差分后的序列平稳,且LB统计量对应的P值大于α=0.05,因而认为一阶差分后的序列为白噪声序列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一题
data yx_51;
input x@@;
difx=dif(x);
t=1+_n_-1;
cards;
304 303 307 299 296 293 301 293 301 295 284 286 286 287 284 282 278 281 278 277 279 278 270 268 272 273 279 279 280 275 271 277 278 279 283 284 282 283 279 280 280 279 278 283 278 270 275 273 273 272 275 273 273 272 273 272 273 271 272 271
273 277 274 274 272 280 282 292 295 295 294 290 291 288 288 290 293 288 289 291 293 293 290 288 287 289 292 288 288 285 282 286 286 287 284 283 286 282 287 286 287 292 292 294 291 288 289
;
proc gplot;
plot x*t=1 difx*t=2;
symbol1c=red v=circle i=join;
symbol2c=yellow v=star i=join;
run;
proc arima;
identify var=x(1);
estimate p=1;
run;
结果如下
时序图:
一阶差分后时序图:
通过原始数据的时序图可以明显看出,此序列非平稳,因而对序列进行一阶差分。

从一阶差分后的自相关图可以看出,一阶差分后的序列的自相关系数一直都比较小,始终控制在二倍标准差以内,可以认为一阶差分后的序列始终都在零轴附近波动,因而可以认为一阶差分后的序列为随机性很强的平稳序列,另外通过一阶差分后的时序图也可以看出,一阶差分后的序列平稳,且LB统计量对应
的P值大于α=0.05,因而认为一阶差分后的序列为白噪声序列。

由于一阶差分后的序列为平稳的白噪声序列,因而此时间序列拟合ARIMA (0,1,0)模型,即随机游走模型,模型为:
X t=x t-1+εt
所以下一期的预测值为289
第二题
data yx_52;
input x@@;
t=1949+_n_-1;
difx=dif(x);
cards;
5589.00 9983.00 11083.00 13217.00 16131.00 19288.00 19376.00 24605.00
27421.00 38109.00 54410.00 67219.00 44988.00 35261.00 36418.00 41786.00
49100.00 54951.00 43089.00 42095.00 53120.00 68132.00 76471.00 80873.00
83111.00 78772.00 88955.00 84066.00 95309.00 110119.00 111893.00 111279.00
107673.00 113495.00 118784.00 124074.00 130709.00 135635.00 140653.00 144948.00
151489.00 150681.00 152893.00 157627.00 162794.00 163216.00 165982.00 171024.00
172149.00 164309.00 167554.00 178581.00 193189.00 204956.00 224248.00 249017.00
269296.00 288224.00 314237.00 330354.00
;
proc gplot;
plot x*t=1 difx*t=2;
symbol1c=orange v=circle i=none;
symbol2c=blue v=star i=join;
proc arima;
identify var=x(1);
estimate q=1;
forecast lead=5id=t;
run;
从时序图可以看出,时间序列非平稳,且随着时间而呈现明显的上升趋势,因而对序列采用一阶差分:
通过原始数据的时序图可以明显看出,此序列非平稳,随着时间呈现上升趋势,因而对序列进行一阶差分。

从一阶差分后的自相关图可以看出,一阶差分后的序列的自相关系数一阶截尾,拟合ARIMA(0,1,1)模型,得到模型:
X t-X t-1=(1+0.48349B) εt
残差的检验显示,残差序列通过白噪声检验,参数显著性检验显示参数显著,说明模型拟合良好,对序列相关信息提取充分。

得到2009~2013年铁路货运量的预测结果如下:
第三题;
data yx_53;
input x@@;
difx=dif(dif12(x));
t=intnx('month','01jan1973'd,_n_-1);
format t date.;
cards;
9007.00 8106.00 8928.00 9137.00 10017.00 10826.00 11317.00 10744.00
9713.00 9938.00 9161.00 8927.00 7750.00 6981.00 8038.00 8422.00 8714.00 9512.00
10120.00 9823.00 8743.00 9129.00 8710.00 8680.00 8162.00 7306.00 8124.00
7870.00 9387.00 9556.00 10093.00 9620.00 8285.00 8433.00 8160.00 8034.00
7717.00 7461.00 7776.00 7925.00 8634.00 8945.00 10078.00 9179.00 8037.00
8488.00 7874.00 8647.00 7792.00 6957.00 7726.00 8106.00 8890.00 9299.00 10625.00
9302.00 8314.00 8850.00 8265.00 8796.00 7836.00 6892.00 7791.00 8129.00 9115.00
9434.00 10484.00 9827.00 9110.00 9070.00 8633.00 9240.00
;
proc gplot;
plot x*t=1 difx*t=2;
symbol1c=coral v=circle i=join;
symbol2c=blue v=star i=join;
run;
proc arima;
identify var=x(1,12);
estimate p=1q=(1)(12) ;
run;
从时序可以看出,序列呈现出周期性的变化趋势,且序列非平稳,因而对序列进行一阶12步差分。

一阶12步差分后的时序图显示,自相关系数在延迟12阶时显著大于2倍标准差范围,说明差分后的序列仍然含有显著的季节效应,因而考虑拟合乘积季节模型;
根据自相关系数在延迟1阶和延迟12阶时显著大于2倍标准差范围,偏自相关系数延迟1阶显著大于2倍标准差范围,考虑拟合ARIMA(1,1,1)×(0,1,1)12。

得到模型:
∇∇12x t=(1 − 0.87376 B)
(1 − 0.49078 B)
( 1 − 0.53808 B12)εt
残差的检验显示,残差序列通过白噪声检验,参数显著性检验显示参数显著,说明模型拟合良好,对序列相关信息提取充分。

相关文档
最新文档