实验三 薄壁圆筒弯扭组合主应力测定
薄壁圆管弯扭组合变形应变测定实验

图2
图3
图4
图5
1
四.实验内容及方法
1.指定点的主应力大小和方向的测定 受弯扭组合变形作用的薄壁圆管其表面各点处于平面应力状态,用应变花测出三个方
向的线应变, 然后运用应变-应力换算关系求出主应力的大小和方向。由于本实验用的是 45 应变花,若测得应变ε-45、ε0、ε45,则主应力大小的计算公式为
(N)
读数应变
∆P
(N)
弯矩
M
εMd
(με)
∆εMd
(με)
扭矩
Mn
εnd
∆εnd
(με)
(με)
剪力 Q
εQd
(με)
∆εQd
(με)
Δε d均 (με)
应力 σ
( ) MN m2
σM
τn
τQ
4
七.思考题
1.测定由弯矩、剪力、扭矩所引起的应变,还有哪些接线方法,请画出测量电桥的接
法。
2.本实验中能否用二轴 45 应变花替代三轴 45 应变花来确定主应力的大小和方向?
为什么?
表3
被测点
主应力
A
B
C
D
( ) σ MN
1
m2
( ) σ MN
3
m2
φ0 (度)
表1 读数应变
载荷 P ∆P
(N) (N)
应变仪测量通道上,重复步骤 3、4、5。
8.将薄壁圆管上A、C两点-45 、45 方向的应变片按图 5(c)全桥测量接线方法接至
应变仪测量通道上,重复步骤 3、4、5。
六.实验结果的处理
1.计算 A、B、C、D 四点的主应力大小和方向。
2.计算Ⅰ-Ⅰ截面上分别由弯矩、剪力、扭矩所引起的应力。
薄壁圆筒弯扭组合主应力测定

实验三薄壁圆筒弯扭组合主应力测定一、试验目的1.测定薄壁圆筒弯扭组合变形时指定点的主应力和主方向,并与理论计算值比较。
2.学习用应变花测定构件某点主应力和主方向的方法。
二、设备和仪器1、多功能力学实验台2、YE2538A 程控静态应变仪三、试样薄壁圆筒(见图)左端固定,籍固定在圆筒右端的水平杆加载。
在截面I-I 处粘贴有应变片m、n、a、b、c、d、e 和f,在截面II-II 处粘贴有应变片g 和h,其中应变片m 和n 粘贴于圆筒最高点和最低点,其方位均沿圆柱面母线。
其余各应变片粘贴的位置如图11-1a 和图11-1b 所示,它们的方位均与圆周线成45°或-45°角,展开图如图(11-1c)所示。
圆筒用不锈钢1Cr18Ni9Ti 制造,材料弹性模量E = 202 Gpa ,泊松比μ=0.28 ,圆筒外径D=40mm,内径d=36.40mm。
在图中的k 是三轴应变花,它的三个敏感栅与圆筒母线的夹角分别是0°、60°和120°(见图)。
四、实验原理据平面应变分析理论知,若某点任意三个方向的线应变已知,就能计算出该点的主应变和主方向,从而计算出主应力。
因此测量某点的主应力和主方向时,必须在测点布置三枚应变片。
通常将三个敏感栅粘贴在同一基底上,称为应变花。
常用的应变花有两种:一种是三敏感栅轴线互成120°角(如图13-1 所示),称等角应变花。
另一种是两敏感栅轴线互相垂直,另一敏感栅轴线在它们的分角线上,称直角应变花。
我们采用的是前者。
由应变分析和应力分析理论知,测得ε0 o、ε60 o 和ε120 o 后,可按下列公式计算主应力和主方向:五、实验步骤1.将弯扭组合实验装置旋转到位(有锥销定位)并固定,将加载用附件安装好。
2.力传感器接线、设置参数。
载荷限值设置350N3.将应变花的三个敏感栅分别接入所选通道(通常0°、60°、120°三敏感栅依次选1、2、3 通道),按多点1/4 桥公共补偿法接线。
薄壁圆筒在弯曲和扭转组合变形下的主应力测试实验

薄壁圆筒在弯曲和扭转组合变形下的主应力测试实验
实验目的: (1)了解在弯曲和扭转组合变形情况下的测试方法
(2)测定薄壁圆筒试件在弯曲和扭转组合受力情况下,试件表面某
点的正应力,并与理论值比较。
实验仪器: XL3418材料力学多功能试验台;测力仪;静力电阻应变仪。
实验原理: 薄壁圆筒受弯曲和扭转组合作用,使圆筒的m 点处于平面应力状态如图1所示。
在m 点单元体上有弯矩引起来的正应力x σ,和由扭矩引起来的剪应力n τ。
主应力是一对拉应力1σ和一对压应力3σ。
理论值计算:
132x σσσ=±
022n
x
tg τασ-=
x z M
W σ= 4
3132z D d W D π⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ M P L =∆⋅
n T
T
W τ= 43116T D d W D π⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦
T P a =∆⋅
实验值计算:
°
°
145453()2(1)E εεσσμ-+=- °°°°°45-450045-45()2(2)
tg εεαεεε-=
--
图1 圆筒m 点的应力状况。
薄壁圆筒弯扭组合实验中弯曲切应力的测量

\: : :
j
~
初始 荷载
每 缴 荷 裁
5 N 0
20 0 N
图 1 b 截面 示意 图 ()
图 2 应变 花布 置及编 号
最终荷载(等级加载) 4
80 5 N
①课题来源 : 深圳 大 学 实 验 室 与 设 备 管 理 研 究 基 金 资 金 助 项 目 。
中国科 教创新 导刊 C i d c t n In v t n H r l hn E u a i n o a l e ad a o o
为 了 更 好 地 培 养 工 科 专 业 学 生 的 实 践 能 力 与 创 新 精 神 , 校 对 实 验 教 学 内 我 容 进 行 了 改 革 , 幅 度 的 增 加 了 “ 索 大 探
性 、 计 性 和 综 合 性 ” 验 项 目在 实 验 教 设 实
1 薄壁 圆筒弯 扭组合 实验设备
分 别 代 表 与 扭 矩 对 应 当载 荷 增 量 =2 0 时 , ( 4 计 0N 按 式 ) 算 出 的 岛 =1 . e , 按 等 量 逐 级 加 载 方 8 # 而 2 法在 实验 装置上测 得一组实验 数据如表 2
所示 。 实 验 数 据 的 线 性 关 系 很 好 平 均 增 量 为
3 实验 误差分析
经 过 仔 细 分 析 研 究 , 们 认 为 造 成 实 我 验 较 大 误 差 的 原 因 是 应 变 计 技 术 原 因 所
图 1( 圆筒弯 扭组 合 实验 装置 图 a) 表 1 实验参 数
圆筒 内径 3 .rm 56 a
圆 筒外 径
臂 度
4 mm 4l
其 中心 位 置 的影 响和 敏 感 棚 横 向效 应 的 影
3-7 薄壁圆筒受内压、弯、扭组合载荷时

图 1-8 应变花
图 3-22 应变花
轴线互成 120°角(如图 3-22 所示),称等角应变花。另一种是两敏感栅轴线互相垂直,
另一敏感栅轴线在它们的分角线上,称 45 度应变花。我们采用的是前者。由应变分析和应
力分析理论知,测得 0 、 60 和 120 后,可按以下公式计算主应力和主方向。
主应力
圆筒用不锈钢 1Cr18Ni9Ti 制造,材料弹性模量 E 202GPa ,泊松比 0.28 ,圆筒
外径 D=40mm,内径 d=36.40mm。
支架 放气栓 注油接头
k
h
270
260
250
ⅡⅠ am
240
fb
300
gd e
nc
Ⅱ
Ⅰ 水平线
水平线
(a)
Ⅱ-Ⅱ
Ⅰ-Ⅰ
a
mb 45o
F
h
gf
eo
45
12
E(0 60 120 3(1 )
)
2E 3(1 )
(0 60 )2 (60 120 )2 ( 120 0 )2
(3-29)
主方向
tan
20
3( 60 120 ) 2 0 60 120
(3-30)
五、实验要求与数据处理
内力素测定。
各内力和内压应分别测定。将事先拟定的接桥方案交老师检查,以检查正确与否及方
aPT
aT aFS
a
a
aM =aP N
+
aM
aPT
a
薄壁圆管弯扭组合变形测定实验报告数据

薄壁圆管弯扭组合变形测定实验报告数据薄壁圆管弯扭组合变形测定实验被广泛应用于管件的研究与开发。
组合变形可以有效的预测管件组合连接的性能、寿命以及机械特性,是非常重要的。
本文针对薄壁圆管弯扭组合变形的测定实验进行了报告,主要详细介绍了实际测试参数以及激活试验的步骤与测试数据,并且对测试结果进行了分析。
首先,说明实际进行测试的薄壁圆管弯扭组合参数,主要包括外径为20mm、壁厚为2mm的圆管,外面覆盖紧固件。
紧固件包括M20×2.5螺旋紧固件和M20×3.5普通螺栓。
实验中弯曲圆管以一定的频率和扭曲力使其变形,以模拟实际服役过程中的变形。
接着,介绍实验的步骤与测试数据。
测试开始前,圆管的径向和轴向变形记录在表1中。
实验共分为两个步骤:步骤一进行弯曲变形,步骤二进行扭曲变形。
在弯曲变形的实验中,测试频率为1.5Hz,载荷范围为0.4~0.6N,变形量从0~5度逐步增加,每次增加1度,循环7次,变形量从5~-5度,每次减少1度,循环7次,最终累计变形量为50度,每次变形变形量都得到记录,详细记录见表2。
在扭曲变形的实验中,测试频率为1.5Hz,载荷范围为0.4~0.6N,变形量从0~45度逐步增加,每次增加5度,循环9次,变形量从45~-45度,每次减少5度,循环9次,最终累计变形量为90度,每次变形变形量都得到记录,详细记录见表3。
最后,对薄壁圆管弯扭组合变形测试结果进行分析。
分析以薄壁圆管变形量和比重曲率为主要指标,记录在表4中,可以看出薄壁圆管变形量在弯曲测试中最大值到达了19度,在扭曲测试中最大值到达了39度;而比重曲率也随之变化,其最大值达到了0.000632。
根据结果,可以得出薄壁圆管在变形受力过程中,曲率变化是连续的,变形量变化也是有序的,比重曲率也有一定的变化,说明管件在变形受力过程中,能够得到较好的适应性,管件的结构强度也可以较好的满足实际应用的需求。
总的来说,本文对薄壁圆管弯扭组合变形测定实验进行了报告,在实验中,使用了M20×2.5螺旋紧固件和M20×3.5普通螺栓,变形量最大达到了19度和39度,比重曲率最大达到了0.000632。
主应力的测量

b
γ xy εx −εy
(3-2)
a
对于各向同性材料,主应变 ε 1 、 ε 3 和主应力
p
a = 250
D=55
d D
σ 1 、 σ 3 方向一致。应用广义胡克定律,即可确定主应力为:
b = 260
d=51
σ1 =
E (ε 1 + µε 3 ) 1− µ 2
σ3 =
E (ε 3 + µε 1 ) (3-3) 1− µ 2
0 0 0 0 0
0
(3-5)
将式(3-25)代入式(3-2) ,可得主应变和主方向为:
ε 1 ε − 45 + ε 45 2 (ε − 45 − ε 0 ) 2 + (ε 45 − ε 0 ) 2 ± = ε3 2 2
0 0 0 0 0 0
tan 2a o =
ε 45 − ε − 45 2ε 0 − ε − 45 − ε 45
弯扭组合变形的主应力测定
一、实验目的 (1)测定薄壁圆筒表面上一点的主应力。 (2)测定薄壁圆筒所受的弯矩和扭矩。 (3)掌握通过桥路的不同连接方案消扭测弯、消弯测扭的方法。 二、实验设备 (1)多功能组合实验台 (2)静态数字电阻应变仪 (3)游标卡尺和钢尺 三、实验原理和方法 1.测定主应力大小和方向 薄壁圆筒弯扭组合变形受力简图,截面为被测位置,由应力状态理论分析可知,薄壁圆筒表 面上的 A 、B 点处于平面应力状态。 若再被测位置 x 、y 平面内, 沿 x 、y 方向的线应变 ε x 、
T=
Eε n π ( D 4 − d 4 ) (1 + µ ) 16 D
(1)测量试件尺寸、加力臂的长度和测点距力臂的距离。 (2)将薄壁圆筒上的应变片按不同测试要求接入电阻应变仪组成不同的测量电桥,并调整 好所用仪器设备。完成以下两项参数的测定: ①主应力大小、方向测定:将 A 、 B 两点的应变片按半桥接线,并按公共温度补偿法组成 测量线路,进行半桥测量。 ②测定弯矩 M 、扭矩 T :根据上述接法组桥,或自行设计组桥方案。 (3)实验加载。用均匀慢速加载至初荷载 Fo ,记录各点应变仪的初读数,然后分级等增量 加载,每增加一级荷载,依次记录各点应变片的应变读数,直至最终荷载。每项实验至少重 复两次。 (4)完成一项测试后,重新组桥测试,重复步骤(2)和(3) 。 (5)完成全部实验后,卸除载荷,关闭电源,拆线整理仪器设备,清理现场。 注意: 注意:实验装置中, 实验装置中,圆筒的管壁很薄, 圆筒的管壁很薄,为避免损坏装置, 为避免损坏装置,注意切勿超载, 注意切勿超载,不能用力扳动圆 筒的自由端和力臂。 筒的自由端和力臂 。 五、实 验 结 果 处 理 (1)根据所测应变值计算主应力 σ 1 和 σ 3 及主应力方向 a o ,并与理论值进行比较,计算 相对误差。 (2)根据各种组桥方式测出的应变,计算出弯矩和扭矩。并与理论值比较,计算相对误差 值。 (3)分析误差产生的主要原因。 (4)按规定写出实验报告。
薄壁圆筒内力素及主应力测定实验

薄壁圆筒内力素及主应力测定实验摘要:关键词:桥、内力、弯矩、扭矩实验值与理论值存在误差的原因主要是由于实验过程中的累积误差及实际实验条件与理想环境不一致所致,另外应变花的布置位置和布置方向有偏差对实验结果也有一定的影响。
摘要:在实际测量过程中,电阻应变片的贴片位置、栅长大小以及横向效应均会对测量的精确度产生影响。
该文从以上3个方面对《材料力学》课程的电测综合性实验——圆筒的弯扭组合实验中,利用全桥接法测量弯曲切应变的误差原因进行了全面分析,指出测量误差主要是由于电阻应变花的敏感栅中心偏离中性轴所致。
关键词:弯扭组合;弯曲切应变;电阻应变花;测量误差。
电阻应变测量技术(简称电测法)是用电阻应变片测量构件表面的应变,根据应力与应变之间的关系,确定构件表面应力状态的一种实验应力分析方法,具有电阻应变片的尺寸小、重量轻、安装方便、一般不会干扰构件的应力状态、测量灵敏度与精度高等优点,是工程实验应力分析中应用最广泛和最有效的手段之一。
在教学过程中我们发现,主应力、与弯矩对应的正应变以及与扭矩对应的扭转切应变的测量结果均与理论值接近,误差很小,而与剪力对应的弯曲切应变的测量结果与理论值相比误差较大,高达58%左右。
圆筒的弯扭组合实验装置如图1所示,圆筒的外径D=40 am,内径d=34 mm,圆筒的材料为铝合金,其E=70 GPa,移=0.33。
I—I横截面处的外表面中性轴上的A、c点和上下边缘的B、D点作为测量点,在每个测量点粘贴1个450一3直角应变花。
圆筒在测量点位置的展开图以及各敏感栅的编号如图2所示,其中每个应变花中间的敏感栅沿圆筒的轴线方向。
为了观察实验数据的线性情况,实验采用等量逐级加载方式,载荷增量为△F=100N。
与剪力对应的弯曲切应变利用A、C两点的450和一450 4个敏感栅(即敏感栅1、3、7、9)组成如图3所示的全桥电路进行测量,该桥路可消除扭转切应变而仅保留弯曲切应变,且扩大了输出值,提高了实验的测量精度。