辽宁省葫芦岛市2011年中考数学试题及答案
初中毕业升学考试(辽宁葫芦岛卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(辽宁葫芦岛卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】4的相反数是()A.4 B.﹣4 C. D.【答案】B.【解析】试题分析:根据相反数的定义可得4的相反数是﹣4.故选B.考点:相反数.【题文】下列运算正确的是()A.﹣a(a﹣b)=﹣a2﹣abB.(2ab)2÷a2b=4abC.2ab•3a=6a2bD.(a﹣1)(1﹣a)=a2﹣1【答案】C.【解析】试题分析:选项 A,原式利用单项式乘以多项式法则计算得到结果,即原式=﹣a2+ab,错误;选项B,原式先计算乘方运算,再计算除法运算得到结果,即原式=4a2b2÷a2b=4b,错误;选项C,原式利用单项式乘以单项式法则计算得到结果,即原式=6a2b,正确;选项D,原式变形后,利用完全平方公式化简得到结果,即原式=﹣(a﹣1)2=﹣a2+2a﹣1,错误,故选C.考点:整式的混合运算.【题文】下列图形既是轴对称图形又是中心对称图形的是()【答案】B.【解析】试题分析:根据轴对称图形和中心对称图形的概念可得选项A既是轴对称图形,不是中心对称图形;选项B 既是轴对称图形,又是中心对称图形;选项C不是轴对称图形,是中心对称图形;选项D只是轴对称图形评卷人得分,不是中心对称图形.故选B.考点:中心对称图形;轴对称图形.【题文】如图是由5个相同的小正方体构成的几何体,其左视图是()【答案】C.【解析】试题分析:如图是由5个相同的小正方体构成的几何体,观察图形可知,其左视图是.故选C.考点:简单组合体的三视图.【题文】九年级两名男同学在体育课上各练习10次立定跳远,平均成绩均为2.20米,要判断哪一名同学的成绩比较稳定,通常需要比较这两名同学立定跳远成绩的()A.方差 B.众数 C.平均数 D.中位数【答案】A.【解析】试题分析:方差是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.由于方差能反映数据的稳定性,需要比较这2名学生立定跳远成绩的方差.故选A .考点:统计量的选择.【题文】下列一元二次方程中有两个相等实数根的是()A.2x2﹣6x+1=0 B.3x2﹣x﹣5=0 C.x2+x=0 D.x2﹣4x+4=0【答案】D.【解析】试题分析:选项A,△=b2﹣4ac=(﹣6)2﹣4×2×1=28>0,即可得该方程有两个不相等的实数根;选项B△=b2﹣4ac=(﹣1)2﹣4×3×(﹣5)=61>0,即可得该方程有两个不相等的实数根;选项C,△=b2﹣4ac=12﹣4×1×0=1>0,即可得该方程有两个不相等的实数根;选项D,△=b2﹣4ac=(﹣4)2﹣4×1×4=0,即可得该方程有两个相等的实数根.故选D.考点:根的判别式.【题文】在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球5个,黄球4个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为,则袋中白球的个数为()A. 2B. 3C. 4D. 12【答案】B【解析】试题分析:首先设袋中白球的个数为x个,然后根据概率公式,可得,解得:x=3.经检验:x=3是原分式方程的解.∴袋中白球的个数为3个.故选:B.考点:概率公式.【题文】A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运40千克,A型机器人搬运1200千克所用时间与B型机器人搬运800千克所用时间相等.设B型机器人每小时搬运化工原料x千克,根据题意可列方程为()A. B.C. D.【答案】A.【解析】试题分析:设B型机器人每小时搬运化工原料x千克,则A型机器人每小时搬运化工原料(x+40)千克,由A型机器人搬运1200千克所用时间与B型机器人搬运800千克所用时间相等,可得方程=.故选A.考点:由实际问题抽象出分式方程.【题文】如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为()A.4 B.8 C.2 D.4【答案】D.【解析】试题分析:在RT△ABF中,∠AFB=90°,AD=DB,DF=4,利用直角三角形斜边中线性质可得AB=2DF=8,再由AD=DB,AE=EC,可得DE∥BC,∠ADE=∠ABF=30°,所以AF=AB=4,由勾股定理可得BF=4.故选D.考点:三角形中位线定理;直角三角形斜边上的中线.【题文】甲、乙两车从A城出发前往B城,在整个行驶过程中,汽车离开A城的距离y(km)与行驶时间t (h)的函数图象如图所示,下列说法正确的有()①甲车的速度为50km/h②乙车用了3h到达B城③甲车出发4h时,乙车追上甲车④乙车出发后经过1h或3h两车相距50km.A.1个 B.2个 C.3个 D.4个【答案】D.【解析】试题分析:①甲车的速度为=50km/h,故本选项正确;②乙车到达B城用的时间为:5﹣2=3h,故本选项正确;③甲车出发4h,所走路程是:50×4=200km,甲车出发4h时,乙走的路程是:×2=200km,则乙车追上甲车,故本选项正确;④当乙车出发1h时,两车相距:50×3﹣100=50km,当乙车出发3h时,两车相距:100×3﹣50×5=50km,故本选项正确;故选D.考点:一次函数的应用.【题文】在“2016丝绸之路”国际投资贸易洽谈会上,我省销售的产品和合作项目签约金额为730000000元,将730000000用科学记数法表示为.【答案】7.3×108.【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.所以730000000=7.3×108.考点:科学记数法.【题文】分解因式:a3﹣4a=.【答案】a(a+2)(a﹣2)【解析】试题分析:原式提取a,再利用平方差公式分解即可.即原式=a(a2﹣4)=a(a+2)(a﹣2).考点:分解因式.【题文】某广告公司全体员工年薪的具体情况如表:年薪/万元25151064人数11332则该公司全体员工年薪的中位数是________万元【答案】8.【解析】试题分析:由表格可得共有1+1+3+3+2=10个人,根据中位数的定义可知中位数是第5和第6个数的平均数,所以中位数是(10+6)÷2=8万元.考点:中位数.【题文】如图,一只蚂蚁在正方形ABCD区域内爬行,点O是对角线的交点,∠MON=90°,OM,ON分别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为.【答案】.【解析】试题分析:∵四边形ABCD为正方形,点O是对角线的交点,∴∠MBO=∠NCO=45°,OB=OC,∠BOC=90°,∵∠MON=90°,∴∠MOB+∠BON=90°,∠BON+∠NOC=90°,∴∠MOB=∠NOC.在△MOB和△NOC中,有,∴△MOB≌△NOC(ASA).同理可得:△AOM≌△BON.∴S阴影=S△BOC=S正方形ABCD.∴蚂蚁停留在阴影区域的概率P==.考点:几何概率.【题文】如图,A,B,C,D是⊙O上的四个点,∠C=110°,则∠BOD=度.【答案】140.【解l试题分析:过D作DE⊥AC于E,∵四边形ABCO是矩形,B(4,3),∴OC=AB=3,OA=BC=4,∠CCOA=90°,∵AD平分∠OAC,∴OD=DE,由勾股定理得:OA2=AD2﹣OD2,AE2=AD2﹣DE2,∴OA=AE=4,由勾股定理得:AC=5,在Rt△DEC中,DE2+EC2=CD2,即OD2+(5﹣4)2=(3﹣OD)2,解得:OD=,所以D的坐标为(0,).考点:矩形的性质;坐标与图形性质.【题文】如图,在△AOB中,∠AOB=90°,点A的坐标为(2,1),BO=2,反比例函数y=的图象经过点B,则k的值为.【答案】﹣8.【解析】试题分析:过点A作AC⊥x轴,过点B作BD⊥x轴,垂足分别为C、D,则∠OCA=∠BDO=90°,∴∠DBO+∠BOD=90°,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∴∠DBO=∠AOC,∴△DBO∽△COA,∴,∵点A的坐标为(2,1),∴AC=1,OC=2,∴由勾股定理得AO=,∴,即BD=4,DO=2,∴B(﹣2,4),∵反比例函数y=的图象经过点B,∴k的值为﹣2×4=﹣8.考点:反比例函数图象上点的坐标特征;相似三角形的判定与性质.【题文】如图,点A1(2,2)在直线y=x上,过点A1作A1B1∥y轴交直线y=x于点B1,以点A1为直角顶点,A1B1为直角边在A1B1的右侧作等腰直角△A1B1C1,再过点C1作A2B2∥y轴,分别交直线y=x和y=x 于A2,B2两点,以点A2为直角顶点,A2B2为直角边在A2B2的右侧作等腰直角△A2B2C2…,按此规律进行下去,则等腰直角△AnBnCn的面积为.(用含正整数n的代数式表示)【答案】.【解析】试题分析:∵点A1(2,2),A1B1∥y轴交直线y=x于点B1,∴B1(2,1)∴A1B1=2﹣1=1,即△A1B1C1面积=×12=;∵A1C1=A1B1=1,∴A2(3,3),又∵A2B2∥y轴,交直线y=x于点B2,∴B2(3,),∴A2B2=3﹣=,即△A2B2C2面积=×()2=;以此类推,A3B3=,即△A3B3C3面积=×()2=;A4B4=,即△A4B4C4面积=×()2=;…∴AnBn=()n﹣1,即△AnBnCn的面积=×[()n﹣1]2=.考点:一次函数图象上点的坐标特征;等腰直角三角形.【题文】先化简:(2x﹣)÷,然后从0,1,﹣2中选择一个适当的数作为x的值代入求值.【答案】原式=,当x=﹣2时,原式=.【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.试题解析:原式===,当x=﹣2时,原式==.考点:分式的化简求值.【题文】某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.为提前了解学生的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.【答案】(1)本次调查的学生共有50人,在扇形统计图中,m的值是30%;(2)图见解析;(3).【解析】试题分析:(1)用选舞蹈课的人数除以它占本次调查的学生总人数的百分率,求出本次调查的学生人数;然后用选乐器课的人数除以本次调查的学生总人数,求出在扇形统计图中m的值;(2)用本次调查的学生总人数乘参加绘画课、书法课的人数占总人数的百分率,求出参加绘画课、书法课的人数;然后根据参加绘画课、书法课的人数,将条形统计图补充完整即可;(3)判断出在被调查的学生中,选修书法的有3名男同学,2名女同学,然后应用列表法,写出所抽取的2名同学恰好是1名男同学和1名女同学的概率即可.试题解析:(1)20÷40%=50(人)15÷50=30%答:本次调查的学生共有50人,在扇形统计图中,m的值是30%.(2)50×20%=10(人)50×10%=5(人).(3)∵5﹣2=3(名),∴选修书法的5名同学中,有3名男同学,2名女同学,男男男女女男/(男,男)(男,男)(男,女)(男,女)男(男,男)/(男,男)(男,女)(男,女)男(男,男)(男,男)/(男,女)(男,女)女(女,男)(女,男)(女,男)/(女,女)女(女,男)(女,男)(女,男)(女,女)/所有等可能的情况有20种,所抽取的2名同学恰好是1名男同学和1名女同学的情况有12种,则P(一男一女)==答:所抽取的2名同学恰好是1名男同学和1名女同学的概率是.考点:列表法与树状图法;扇形统计图;条形统计图.【题文】在纪念中国抗日战争胜利70周年之际,某公司决定组织员工观看抗日战争题材的影片,门票有甲乙两种,甲种票比乙种票每张贵6元;买甲种票10张,乙种票15张共用去660元.(1)求甲、乙两种门票每张各多少元?(2)如果公司准备购买35张门票且购票费用不超过1000元,那么最多可购买多少张甲种票?【答案】(1)甲、乙两种门票每张各30元、24元;(2)最多可购买26张甲种票.【解析】试题分析:(1)设乙种门票每张x元,则甲种门票每张(x+6)元,根据“买甲种票10张,乙种票15张共用去660元”列方程即可求解;(2)设可购买y张甲种票,则购买(35﹣y)张乙种票,根据购票费用不超过1000元列出不等式即可求解.试题解析:(1)设乙种门票每张x元,则甲种门票每张(x+6)元,根据题意得10(x+6)+15x=660,解得x=24.答:甲、乙两种门票每张各30元、24元;(2)设可购买y张甲种票,则购买(35﹣y)张乙种票,根据题意得30y+24(35﹣y)≤1000,解得y≤26.答:最多可购买26张甲种票.考点:一元一次不等式的应用;一元一次方程的应用.【题文】在一次课外实践活动中,同学们要测量某公园人工湖两侧A,B两个凉亭之间的距离.如图,现测得∠ABC=30°,∠CBA=15°,AC=200米,请计算A,B两个凉亭之间的距离(结果精确到1米)(参考数据:≈1.414,≈1.732)【答案】A、B两个凉亭之间的距离约为283米.【解析】试题分析:过点A作AD⊥BC,交BC延长线于点D,根据∠ABC=30°、∠CBA=15°求得∠CAD=45°,RT△ACD中由AC=200米知AD=ACcos∠CAD,再根据AB=可得答案.试题解析:过点A作AD⊥BC,交BC延长线于点D,∵∠B=30°,∴∠BAD=60°,又∵∠BAC=15°,∴∠CAD=45°,在RT△ACD中,∵AC=200米,∴AD=ACcos∠CAD=200×=100(米),∴AB===200≈283(米),答:A、B两个凉亭之间的距离约为283米.考点:解直角三角形的应用.【题文】如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交线段BC,AC于点D,E,过点D作DF⊥AC,垂足为F,线段FD,AB的延长线相交于点G.(1)求证:DF是⊙O的切线;(2)若CF=1,DF=,求图中阴影部分的面积.【答案】(1)详见解析;(2)【解析】试题分析:(1)连接AD、OD,由AB为直径可得出点D为BC的中点,由此得出OD为△BAC的中位线,再根据中位线的性质即可得出OD⊥DF,从而证出DF是⊙O的切线;(2)CF=1,DF=,通过解直角三角形得出CD=2、∠C=60°,从而得出△ABC为等边三角形,再利用分割图形求面积法即可得出阴影部分的面积.试题解析:(1)证明:连接AD、OD,如图所示.∵AB为直径,∴∠ADB=90°,∴AD⊥BC,∵AC=AB,∴点D为线段BC的中点.∵点O为AB的中点,∴OD为△BAC的中位线,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线.(2)解:在Rt△CFD中,CF=1,DF=,∴tan∠C==,CD=2,∴∠C=60°,∵AC=AB,∴△ABC为等边三角形,∴AB=4.∵OD∥AC,∴∠DOG=∠BAC=60°,∴DG=OD•tan∠DOG=2,∴S阴影=S△ODG﹣S扇形OBD=DG•OD﹣πOB2=2﹣π.考点:切线的判定;等腰三角形的性质;扇形面积的计算.【题文】(14分) 某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?【答案】(1)y=﹣2x+80;(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.【解析】试题分析:(1)设y=kx+b,根据题意,利用待定系数法确定出y与x的函数关系式即可;(2)根据题意结合销量×每本的利润=150,进而求出答案;(3)根据题意结合销量×每本的利润=w,进而利用二次函数增减性求出答案.试题解析:(1)设y=kx+b,把(22,36)与(24,32)代入得:,解得:,则y=﹣2x+80;(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,根据题意得:(x﹣20)y=150,则(x﹣20)(﹣2x+80)=150,整理得:x2﹣60x+875=0,(x﹣25)(x﹣35)=0,解得:x1=25,x2=35(不合题意舍去),答:每本纪念册的销售单价是25元;(3)由题意可得:w=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,此时当x=30时,w最大,又∵售价不低于20元且不高于28元,∴x<30时,y随x的增大而增大,即当x=28时,w最大=﹣2(28﹣30)2+200=192(元),答:该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.考点:二次函数的应用;一元二次方程的应用.【题文】如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)请直接写出线段AF,AE的数量关系;(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.【答案】(1)AF=AE;(2)AF=AE,证明详见解析;(3)结论不变,AF=AE,理由详见解析.【解析】试题分析:(1)如图①中,结论:AF=AE,只要证明△AEF是等腰直角三角形即可.(2)如图②中,结论:AF=AE,连接EF,DF交BC于K,先证明△EKF≌△EDA再证明△AEF是等腰直角三角形即可.(3)如图③中,结论不变,AF=AE,连接EF,延长FD交AC于K,先证明△EDF≌△ECA,再证明△AEF是等腰直角三角形即可.试题解析:(1)如图①中,结论:AF=AE.理由:∵四边形ABFD是平行四边形,∴AB=DF,∵AB=AC,∴AC=DF,∵DE=EC,∴AE=EF,∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形,∴AF=AE.(2)如图②中,结论:AF=AE.理由:连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴EKF=180°﹣∠DKE=135°,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE,∵∠DKC=∠C,∴DK=DC,∵DF=AB=AC,∴KF=AD,在△EKF和△EDA中,,∴△EKF≌△EDA,∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.(3)如图③中,结论不变,AF=AE.理由:连接EF,延长FD交AC于K.∵∠EDF=180°﹣∠KDC﹣∠EDC=135°﹣∠KDC,∠ACE=(90°﹣∠KDC)+∠DCE=135°﹣∠KDC,∴∠EDF=∠ACE,∵DF=AB,AB=AC,∴DF=AC在△EDF和△ECA中,,∴△EDF≌△ECA,∴EF=EA,∠FED=∠AEC,∴∠FEA=∠DEC=90°,∴△AEF是等腰直角三角形,∴AF=AE.考点:四边形综合题.【题文】如图,抛物线y=﹣x2+bx+c与x轴交于点A,点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在平面内,以线段MN为对角线作正方形MPNQ,请直接写出点Q的坐标.【答案】(1)y=﹣x2+2x+6,D(2,8);(2)点F的坐标为(﹣1,)或(﹣3,﹣);(3)点Q的坐标为(2,﹣1)或(2,﹣﹣1).【解析】试题分析:(1)由点B、C的坐标利用待定系数法即可求出抛物线的解析式,再利用配方法将抛物线解析式变形成顶点式即可得出结论;(2)设线段BF与y轴交点为点F′,设点F′的坐标为(0,m),由相似三角形的判定及性质可得出点F′的坐标,根据点B、F′的坐标利用待定系数法可求出直线BF的解析式,联立直线BF和抛物线的解析式成方程组,解方程组即可求出点F的坐标;(3)设对角线MN、PQ交于点O ′,如图2所示.根据抛物线的对称性结合正方形的性质可得出点P、Q的位置,设出点Q的坐标为(2,2n),由正方形的性质可得出点M的坐标为(2﹣n,n).由点M在抛物线图象上,即可得出关于n的一元二次方程,解方程可求出n值,代入点Q的坐标即可得出结论.试题解析:(1)将点B(6,0)、C(0,6)代入y=﹣x2+bx+c中,得:,解得:,∴抛物线的解析式为y=﹣x2+2x+6.∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴点D的坐标为(2,8).(2)设线段BF与y轴交点为点F′,设点F′的坐标为(0,m),如图1所示.∵∠F′BO=∠FBA=∠BDE,∠F′OB=∠BED=90°,∴△F′BO∽△BDE,∴.∵点B(6,0),点D(2,8),∴点E(2,0),BE=6﹣4=4,DE=8﹣0=8,OB=6,∴OF′=•OB=3,∴点F′(0,3)或(0,﹣3).设直线BF的解析式为y=kx±3,则有0=l(3)设对角线MN、PQ交于点O′,如图2所示.∵点M、N关于抛物线对称轴对称,且四边形MPNQ为正方形,∴点P为抛物线对称轴与x轴的交点,点Q在抛物线对称轴上,设点Q的坐标为(2,2n),则点M的坐标为(2﹣n,n).∵点M在抛物线y=﹣x2+2x+6的图象上,∴n=﹣(2-n)2+2(2﹣n)+6,即n2+2n﹣16=0,解得:n1=﹣1,n2=﹣﹣1.∴点Q的坐标为(2,﹣1)或(2,﹣﹣1).考点:二次函数综合题.。
2011年辽宁中考试题汇总

2011年辽宁中考试题汇总下载地址快速导航:鞍山本溪朝阳大连丹东阜新葫芦岛盘锦沈阳铁岭抚顺淮安营口卷辽阳鞍山卷2011年中考试题及答案:语文2011年中考试题及答案:数学2011年中考试题及答案:英语2011年中考试题及答案:物理2011年中考试题及答案:化学本溪卷2011年中考试题及答案:语文2011年中考试题及答案:数学2011年中考试题及答案:英语2011年中考试题及答案:物理2011年中考试题及答案:化学朝阳卷2011年中考试题及答案:语文2011年中考试题及答案:数学2011年中考试题及答案:英语2011年中考试题及答案:化学2011年中考试题及答案:物理大连卷2011年中考试题及答案:语文2011年中考试题及答案:物理2011年中考试题及答案:英语2011年中考试题及答案:化学2011年中考试题及答案:数学丹东卷2011年中考试题及答案:语文2011年中考试题及答案:数学2011年中考试题及答案:英语2011年中考试题及答案:物理2011年中考试题及答案:化学阜新卷2011年中考试题及答案:语文2011年中考试题及答案:数学2011年中考试题及答案:英语2011年中考试题及答案:化学2011年中考试题及答案:物理葫芦岛卷2011年中考试题及答案:语文2011年中考试题及答案:数学2011年中考试题及答案:英语2011年中考试题及答案:物理2011年中考试题及答案:化学盘锦卷2011年中考试题及答案:语文2011年中考试题及答案:英语2011年中考试题及答案:物理2011年中考试题及答案:化学2011年中考试题及答案:数学沈阳卷2011年中考试题及答案:语文2011年中考试题及答案:数学2011年中考试题及答案:英语2011年中考试题及答案:化学2011年中考试题及答案:物理铁岭抚顺卷2011年中考试题及答案:语文2011年中考试题及答案:数学2011年中考试题及答案:物理2011年中考试题及答案:英语2011年中考试题及答案:化学营口卷2011年中考试题及答案:语文2011年中考试题及答案:数学2011年中考试题及答案:英语2011年中考试题及答案:物理2011年中考试题及答案:化学锦州卷2011年中考试题及答案:语文2011年中考试题及答案:英语2011年中考试题及答案:物理2011年中考试题及答案:化学2011年中考试题及答案:数学辽阳卷2011年中考试题及答案:语文2011年中考试题及答案:英语2011年中考试题及答案:物理2011年中考试题及答案:化学2011年中考试题及答案:数学2011中考试题汇总初中强化提高班免费试听|网络1对1答疑北京市(解析版) 天津市重庆市上海市辽宁省江苏省浙江省安徽省福建省广东省江西省山东省湖南省湖北省四川省陕西省山西省新疆广西内蒙古课程推荐年级人大附中同步课堂初高中强化提高班初中竞赛SmartClass课程初一语文英语语文数学英语初中数学联赛数学生物初二数学英语语文数学英语物理数学生物物理初三语文数学英语物理化学数学物理化学。
辽宁省葫芦岛市中考数学试卷及答案

辽宁省葫芦岛市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内.每小题2 分,共20 分)1.在下列各组根式中,是同类二次根式的是()2.在平面直角坐标系中,点P(-1,1)关于x 轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限3.已知⊙O 1和⊙O 2的半径分别为1 和5,圆心距为3,则两圆的位置关系是()A.相交B.内含C.内切D.外切4.在下面四种正多边形中,用同一种图形不能平面镶嵌的是()5.已知2 是关于x 的方程的一个根,则2a- 1的值是()A.3 B.4 C.5 D.66.关于x 的方程有两个不相等的实数根,则k 的取值范围是()A.k>-1 B.k≥-1 C.k>1 D.k≥07.如图,在同心圆中,两圆半径分别为2、1,∠AOB=120°,则阴影部分的面积为()A.4π B.2π C.D.π8.已知一次函数y=kx+b 的图象经过第一、二、四象限,则反比例函数的图象在A.第一、二象限B.第三、四象限()C.第一、三象限D.第二、四象限9.已知圆锥的侧面展开图的面积是15π cm 2,母线长是5cm,则圆锥的底面半径为()A.3/2cm B.3cm C.4cm D.6cm10.如图,射线l 甲、l 乙分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的函数关系,则他们行进的速度关系是()A.甲比乙快B.乙比甲快C.甲、乙同速D.不一定二、填空题(每小题2 分,共20 分)11.在函数中,自变量x 的取值范围是_______________ .12.若方程的两根分别为13.一组数据9,5,7,8,6,8 的众数和中位数依次是_______________ .14.如图,AB 是⊙O 的直径,弦CD⊥AB,E 为垂足,若AB=9,BE=1,则CD=________.15.如果一个正多边形的内角和是900°,则这个多边形是正______边形.16.已知圆的直径为13cm,圆心到直线l 的距离为6cm,那么直线l 和这个圆的公共点的个数是____________.17.用换元法解方程,若设,则原方程可化成关于y 的整式方程为__________.18.如图,在△ABC 中,∠C=90°,AB=10,AC=8,以AC 为直径作圆与斜边交于点P,则BP 的长为__________ .19.如图,施工工地的水平地面上,有三根外径都是1 米的水泥管,两两相切地堆放在一起,则其最高点到地面的距离是__________.20.在半径为1 的⊙O 中,弦AB、AC 分别是3和2 ,则∠BAC的度数为__________.三、(第21 题6 分,第22 题6 分,第23 题10 分,共22 分)21.当x=2,y=3 时,求代数式的值.22.如图,已知:AB.求作:(1)确定AB 的圆心O.(2)过点A 且与⊙O 相切的直线.(注:作图要求利用直尺和圆规,不写作法,但要求保留作图痕迹)23.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900 名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100 分)进行统计.请你根据下面尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)在该问题中的样本容量是多少?答:_____________________________________________ .(4)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(不要求说明理由)答:_____________________________________________ .(5)若成绩在90 分以上(不含90 分)为优秀,则该校成绩优秀的约为多少人?答:_____________________________________________ .四、(10 分)24.如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带.该建筑物顶端宽度AD 和高度DC 都可直接测得,从A、D、C 三点可看到塔顶端H.可供使用的测量工具有皮尺、测倾器.(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG 的方案.具体要求如下:①测量数据尽可能少;②在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D 间距离,用m 表示;如果测D、C 间距离,用n 表示;如果测角,用α、β、γ 表示).(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示,测倾器高度忽略不计).五、(10 分)25.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程.下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t (月)之间的关系(即前t 个月的利润总和s 与t 之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30 万元;(3)求第8 个月公司所获利润是多少万元?六、(12 分)26.某博物馆每周都吸引大量中外游客前来参观.如果游客过多,对馆中的珍贵文物会产生不利影响.但同时考虑到文物的修缮和保存费用问题,还要保证一定的门票收入.因此,博物馆采取了涨浮门票价格的方法来控制参观人数.在该方法实施过程中发现:每周参观人数与票价之间存在着如图所示的一次函数关系.在这样的情况下,如果确保每周 4 万元的门票收入,那么每周应限定参观人数是多少?门票价格应是多少元?七、(12 分)27.(1)如图(a),已知直线AB 过圆心O,交⊙O 于A、B,直线AF 交⊙O 于F (不与B 重合),直线l 交⊙O 于C、D,交AB 于E,且与AF 垂直,垂足为G,连结AC、AD.求证:①∠BAD=∠CAG;②AC·AD=AE·AF.(2)在问题(1)中,当直线l 向上平行移动,与⊙O 相切时,其他条件不变.①请你在图(b)中画出变化后的图形,并对照图(a),标记字母;②问题(1)中的两个结论是否成立?如果成立,请给出证明八、(14 分)28.已知:如图,⊙D 交y 轴于A、B,交x 轴于C,过点C 的直线:与y 轴交于P.(1)求证:PC 是⊙D 的切线;(2)判断在直线PC 上是否存在点E,使得S △ EOP=4S △ CDO,若存在,求出点E 的坐标;若不存在,请说明理由;(3)当直线PC 绕点P 转动时,与劣弧交于点F(不与A、C 重合),连结OF,设PF=m,OF=n,求m、n 之间满足的函数关系式,并写出自变量n 的取值范围.。
辽宁葫芦岛市中考数学试题(附含答案解析)

2018年葫芦岛市初中毕业生学业考试数学试卷※考试时间120分钟满分150分考生注意:请在答题卡各题目规定答题区域作答,答在本卷上无效第一部分选择题(共30分)一、选择题(本题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 如果温度上升10℃,记作+10℃,那么温度下降5℃记作()A. +10℃B. -10℃C. +5℃D. -5℃2. 下列几何体中俯视图为矩形的是()3. 下列运算正确的是()A. -2x²+3x²=5x²B. x²·x³=x5C. 223()x=86xD. (x-1)²=x²+14. 下列调查中,调查方式选择最合适的是()A. 调查“乌金塘水库”的水质情况,采用抽样调查B. 调查一批飞机零件的合格情况,采用抽样调查C. 检查一批进口灌装饮料的防腐剂含量,采用全面调查D. 企业招聘人员,对应聘人员进行面试,采用抽样调查5.若分式211xx-+的值为0,则x的值为()A. 0B. 1C. -1D. ±16. 在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A. 众数是90分B. 中位数是95分C. 平均数是95分D.方差是157. 如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15°B.55°C.65°D.75°8. 如图,直线y=kx+b(k≠0)经过点A(-2,4),则不等式kx+b>4的解集为()A. x>-2B. x<-2C. x>4D. x<49. 如图,AB是⊙O的直径,C,D是⊙O上AB两侧的点,若∠D=30°,则tan∠ABC的值为()B. 3C. 3D. 3A. 1210. 如图,在□ABCD中,AB=6,BC=10,AB⊥AC,点P从点B出发,沿着B→A→C的路径运动,同时点Q从点A出发沿着A→C→D 的路径以相同的速度运动,当点P到达点C时点Q随之停止运动,设点P的运动路程为x,y=PQ²,下列图象中大致放映y与x之间的函数关系的是()第二部分 非选择题(共120分)二、填空题(本题共8小题,每小题3分,共24分)11. 分解因式:2a ³-8a= . 12. 据旅游业数据显示,2018年上半年我国出境旅游超过129000 000人次,将数据129000 000用科学数法表示为 .13. 在看上去无差别的卡片,正面分别写有“兴城首山”、“龙回头”、“觉华岛”、“葫芦山庄”四个景区的名称,将它们背面朝上,从中随机抽取一张卡片正面写有“葫芦山庄”的概率是 .14. 如图,在菱形OABC 中,点B 在x 轴上,点A 的坐标为(2,3),则点C 的坐标为 .15.如图,某景区的两个景点A ,B 处于同一水平面上,一架无人机在空中沿MN 方向水平飞行,进行航拍作业,MN 与AB 在同一铅直平面内,当无人机飞行至C 处时,测得景点A 的俯角为45°,景点B 的俯角为30°,此时C 到地面的距离CD 为100米,则两景点A ,B 间的距离为 米(结果保留根号)16. 如图,OP 平分∠MON ,A 是边OM 上一点,以点A 为圆心,大于点A 到ON 的距离为半径作弧,交ON 于B ,C ,再分别以B ,C 为圆心,大于12BC 的长为半径作弧,两弧交于点D ,作直线AD 分别交OP ,ON 于点E ,F.若∠MON=60°,EF=1,则OA= .17. 如图,在矩形ABCD 中,点E 是CD 的中点,将△BCE 沿BE 折叠后得到△BEF 且点F 在矩形ABCD 的内部,将BF 延长交AD 于点G ,若17DG GA ,则AD AB= . 18. 如图,∠MON=30°,点B 1在边OM 上,且OB 1=2,经过点B 1作B 1A 1⊥ON 于点A 1,以A 1B 1边在A 1B 1右侧作等边三角形A 1B 1C 1;过点C 1作OM 的垂线分别交OM ,ON 于点B 2,A 2.以A 2B 2为边在A 2B 2右侧作等边三角形A 2B 2C 2;过点C 2作OM 的垂线分别交OM ,ON 于点B 3,A 3.以A 3B 3为边在A 3B 3右侧作等边三角形A 3B 3C 3;…;按此规律进行下去,则△A n B n+1C n 的面积为 (用含有正整数n 的代数式表示).三、解答题(第19题10分,第20题12分,共22分)19. 先化简,再求值:222()1211a a a aa a a a--÷--++,其中a=13-+2sin30°.20. “机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果氛围四种:A. 非常了解. B.比较了解. C.基本了解.D. 不太了解.实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.请结合图中所给的信息解答下列问题:(1)本次共调查名学生;扇形统计图中C所对应的扇形圆心角度数为;(2)补全条形统计图;(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名同学同事被选中的概率.四、解答题(第21题12分,第22题12分,共24分)21. 某爱心企业在政府的支持下投入资金,准备修建一批室外简易的足球场和篮球场,供市民免费使用.修建1个足球场和1个篮球场共需8.5万,修建2个足球场和4个篮球场共需27万.(1)求修建一个足球场和一个篮球场各需多少万元?(2)该企业预计修建这样的足球场和篮球场共20个,投入资金不超过90万元,求至少可以修建多少个足球场?(a≠0)的图象在第二象限交于点A(m,22. 如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=ax2),与x轴交于点C(-1,0),过点A作AB⊥x轴于点B,△ABC的面积是3.(1)求一次函数和反比例函数的解析式;(2)若直线AC交y轴于点D,求△BCD的面积.五、解答题(满分12分)23. 如图,AB是⊙O的直径弧AC=弧BC,E是OB的中点,连接CE并延长到点F,使EF=CE,连接AF交⊙O于点D,连接BD,BF.(1)求证:直线BF是⊙O的切线;(2)若OB=2,求BD的长.六、解答题(满分12分)24. 某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元,试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如下表所示,其中,3≤x≤5.5,另外每天还需支付其它各种费用80元.销售单价x(元) 3.5 5.5销售量y(袋)280 120((2)如果每天或160元的利润,销售单价为多少元?(3)设每天的利润为w元,当销售单价定为多少元时,每天的利润最大?最大利润是多少?七、解答题(满分12分)25. 在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A、O、C重合),过点A,点C作直线BP的垂线,垂足分别为E,F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由;(3)若|CF-AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长.八、解答题(满分14分)26. 如图,抛物线y=ax²+4x+c(a≠0)经过点A(-1,0),点E(4,5),与y轴交于点B,连接AB.(1)求抛物线的解析式;(2)将△ABO绕点O旋转,点B的对应点为F.①当点F落在直线AE上时,求点B的对应点F的坐标和△ABF的面积;②当点F到直线AE的距离为2时,过点F作直线AE的平行线与抛物线相交,请直接写出交点的坐标.。
辽宁省葫芦岛市中考数学试卷

辽宁省葫芦岛市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)的倒数是()A . -3B . 3C .D .2. (2分)在下列实数中,无理数是()A .B . πC .D .3. (2分)(2019·恩施) 如图,在△ABC中,点D,E,F分别是AB,AC,BC的中点,已知∠ADE=65°,则∠CFE的度数为()A . 60°B . 65°C . 70°D . 75°4. (2分)下列运算正确的是()A . a3+a3=a6B . (a+2)(a﹣2)=a2﹣2C . (﹣a3)2=a6D . a12÷a2=a65. (2分)下列调查中,适宜采用普查方式的是()A . 了解一批圆珠笔的寿命B . 了解全国九年级学生身高的现状C . 考察人们保护海洋的意识D . 检查一枚用于发射卫星的运载火箭的各零部件6. (2分)(2020·百色模拟) 如图是由4个完全一样的小正方体组成的几何体,这个几何体的主视图是()A .B .C .D .7. (2分)下列图形中,不是轴对称图形的是()A .B .C .D .8. (2分) (2020九上·路桥期末) 将二次函数y=2x2-4x+4的图象向左平移2个单位,再向下平移1个单位后所得图象的函数解析式为()A . y=2(x+1)2+1B . y=2(x+1)2+3C . y=2(x-3)2+1D . y=-2(x-3)2+39. (2分)(2017·桥西模拟) 如图,在△ABC中,AD平分∠BAC,按如下步骤作图:步骤1:分别以点A,D为圆心,以大于 AD的长为半径,在AD两侧作弧,两弧交于点M,N;步骤2:连接MN,分别交AB,AC于点E,F;步骤3:连接DE,DF.下列叙述不一定成立的是()A . 线段DE是△ABC的中位线B . 四边形AFDE是菱形C . MN垂直平分线段ADD . =10. (2分)给出下列命题:①反比例函数的图象经过一、三象限,且y随x的增大而减小;②对角线相等且有一个内角是直角的四边形是矩形;③我国古代三国时期的数学家赵爽,创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明(右图);④相等的弧所对的圆周角相等.其中正确的是()A . ③④B . ①②③C . ②④D . ①②③④二、填空题 (共6题;共6分)11. (1分) (2019九上·呼兰期末) 用科学记数法表示2400000000为________.12. (1分)(2016·龙湾模拟) 方程 = 的解是________.13. (1分)(2017·鞍山模拟) 点P(m﹣1,2m+1)在第一象限,则m的取值范围是________.14. (1分)某市初中毕业女生体育中招考试项目有四项,其中“立定跳远”、“1000米跑”、“篮球运球”为必测项目,另一项从“掷实心球”、“一分钟跳绳”中选一项测试.则甲、乙、丙三位女生从“掷实心球”或“一分钟跳绳”中选择一个考试项目的概率是________.15. (1分) (2017九上·萧山月考) 在平面直角坐标系中,已知点A ,点B ,点C是y 轴上的一个动点,当∠BCA=30°时,点C的坐标为________.16. (1分)(2016·重庆B) 如图,在正方形ABCD中,AB=6,点E在边CD上,DE= DC,连接AE,将△ADE 沿AE翻折,点D落在点F处,点O是对角线BD的中点,连接OF并延长OF交CD于点G,连接BF,BG,则△BFG 的周长是________.三、解答题 (共9题;共101分)17. (10分)(2017·东营) 计算题(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3 |+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷ + ﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.18. (12分)”切实减轻学生课业负担”是我市作业改革的一项重要举措.某中学为了解本校学生平均每天的课外作业时间,随机抽取部分学生进行问卷调查,并将调查结果分为A、B、C、D四个等级,A:1小时以内;B:1小时﹣﹣1.5小时;C:1.5小时﹣﹣2小时;D:2小时以上.根据调查结果绘制了如图所示的两种不完整的统计图,请根据图中信息解答下列问题:(1)该校共调查了________ 学生.(2)请将条形统计图补充完整.(3)表示等级A的扇形圆心角α的度数是________ .(4)在此次调查问卷中,甲、乙两班各有2人平均每天课外作业量都是2小时以上,从这4人中人选2人去参加座谈,用列表或画树状图的方法求选出的2人来自不同班级的概率.19. (7分) (2016九上·和平期中) 某公司今年销售一种产品,1月份获得利润20万元.由于产品畅销.禾悯逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率.设这个增长率为x(1)填空:(用含x的代数式表示)①2月份的利润为:________②3月份的利润为:________(2)列出方程,并求出问题的解.20. (6分) (2017八下·徐州期末) 如图,已知直线a∥b,a、b之间的距离为4cm.A、B是直线a上的两个定点,C、D是直线b上的两个动点(点C在点D的左侧),且AB=CD=10cm,连接AC、BD、BC,将△ABC沿BC翻折得△A1BC.(1)当A1、D两点重合时,AC=________cm;(2)当A1、D两点不重合时,①连接A1D,求证:A1D∥BC;②若以点A1、C、B、D为顶点的四边形是矩形,求AC的长.21. (15分)(2017·枣阳模拟) 如图,等边△ABO在平面直角坐标系中,点A的坐标为(4,0),函数y= (x>0,k是常数)的图象经过AB边的中点D,交OB边于点E.(1)求直线OB的函数解析式;(2)求k的值;(3)若函数y= 的图象与△DEB没有交点,请直接写出m的取值范围.22. (15分) (2020九上·中山期末) 如图,在△ABC中,AB=AC,∠A=30°,AB=10,以AB为直径的⊙O交BC于点D交AC于点E,连接DE,过点B作BP平行于DE,交⊙O于点P,连接CP、OP。
2011年中考数学试题及解析171套试题试卷_121

湖北省黄石市2011年初中毕业生学业考试一、仔细选一选(每小题3分,共30分)的值为( )A.2B. -2C. 2±D. 不存在2.黄石市2011年6月份某日一天的温差为11℃,最高气温为t ℃,则最低气温可表示为( )A. (11+t)℃B. (11-t)℃C. (t-11)℃D. (-t-11)℃ 3.双曲线21k y x -=的图像经过第二、四象限,则k 的取值范围是( ) A.12k > B. 12k < C. 12k = D. 不存在4. 有如下图形:①函数1y x =+的图形;②函数1y x=的图像;③一段弧;④平行四边形,其中一定是轴对称图形的有( )A.1个B.2个C.3个D.4个 5.如图(1)所示的几何体的俯视图是( )6.2010年12月份,某市总工会组织该市各单位参加“迎新春长跑活动”,将报名的男运动员分成3组:青年组,中年组,老年组。
各组人数所占比例如图(2)所示,已知青年组有120人,则中年组与老年组人数分别是( )A.30,10B.60,20C.50,30D.60,107.将一个有45°角的三角板的直角顶点放在一张宽为3cm 的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图(3),则三角板的最大边的长为( ) A. 3cm B. 6cmC.cmD. cm8.平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n 个点最多可确定21条直线,则n 的值为( )A. 5B. 6C. 7D. 89.设一元二次方程(1)(2)(0)x x m m --=>的两根分别为,αβ,且αβ<,则,αβ满足( )A. 12αβ<<<B. 12αβ<<<C. 12αβ<<<D. 1α<且 2β>10.已知梯形ABCD 的四个顶点的坐标分别为(1,0)A -,(5,0)B ,(2,2)C ,(0,2)D ,直线2y kx =+将梯形分成面积相等的两部分,则k 的值为( ) A. 23-B.29-C. 47-D. 27- 二、认真填一填(每小题3分,共18分) 228x -A B CD 图(1) 中年人 30%老年人 10%青年人 60%30° 图(3) 图(2)12.为响应“红歌唱响中国”活动,某乡镇举行了一场“红歌”歌咏比赛,组委会规定:任何一名参赛选手的成绩x表(一)根据表(一)提供的信息得到n = .13.有甲、乙两张纸条,甲纸条的宽是乙纸条宽的2倍,如图(4)。
中考数学试卷真题葫芦岛

中考数学试卷真题葫芦岛葫芦岛中考数学试卷真题一、选择题1. 已知函数 f(x) 的图像是一条抛物线,并且 f(1) = 2,f(3) = 6,f(5) = 10,则 f(x) 的解析式为:A. f(x) = x^2 + 1B. f(x) = 2x - 3C. f(x) = 2x^2 - 4x + 2D. f(x) = x^2 + 2x - 62. 若 a = 2/3,b = 3/4,c = 5/8,则 a×(b+c)的值为:A. 1/2B. 5/8C. 7/12D. 11/243. 一个三角形的内角之比为 2:3:4,其中最小的角为 x°,则最大的角为:A. 60°B. 90°C. 120°D. 150°4. 若一组数的平均数为30,如果其中最大的数减最小的数等于20,则这组数中的最大数为:A. 30B. 40C. 50D. 605. 甲数是乙数的 4/5,乙数是丙数的 3/4,若甲数为 12,则丙数是:A. 16B. 18C. 20D. 24二、填空题6. 将二进制数 1010 转换为十进制数,结果为____________。
7. 在一个平行四边形中,两个对角线之间的夹角是____________°。
8. 已知三角形中的一边长为 8cm,另两个角度分别为 40°和 50°,则此三角形的面积为 ____________cm²。
9. 已知方程 x^2 + kx + 12 = 0 的两个根的和为 6,且其中一个根为 3,则 k 的值为 ____________。
10. 若正方体的一个面积为 64cm²,则此正方体的体积为____________cm³。
三、解答题11. 已知两个角的和是 120°,且这两个角互补,则这两个角分别是多少度?12. 小明的生日是在周一,上个周末他参加了一次郊游活动。
辽宁葫芦岛中考数学试题及答案第7页-中考.doc

2015年辽宁葫芦岛中考数学试题及答案第7页-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
葫芦岛市2011年初中毕业生升学文化课考试 数 学 试 卷(时间:120分钟 满分:120分)一、 选择题(本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的答案的序号填入括号内)1. -12的倒数为( ).A. 2B. -2C. -12D. 122. 下列运算,正确的是( ).A. a ·2a =2aB. (a 3)2=a 6C. 3a -2a =1D. a -a 2a=-a 23. 如图,∠1的余角可能是( ).4. 据2011年5月29日中央电视台报道,“限塑令”实施以来,全国每年大约少用塑料袋24 000 000 000个以上,将24 000 000 000用科学记数法表示为( ).A. 24×109B. 2.4×109C. 2.4×1010D. 0.24×10115. 如图,直角坐标系中有四个点,其中的三点在同一反比例函数的图象上,则不在..这个图象上的点是( ).A. P 点B. Q 点C. R 点D. S 点6. 如图,等边△ABC 内接于⊙O ,则∠AOB 等于( ). A. 120° B. 130° C. 140° D. 150°7. 十名射箭运动员进行训练,每人射箭一次,成绩如下表:运动员ABCDEF G H I J 成绩(环)10 7 6 9 9 7106109则十名运动员射箭成绩的中位数(环)为( ).A. 9B. 8C. 6D. 10或98. 一矩形纸片按图中(1)、(2)所示的方式对折两次后,再按(3)中的虚线裁剪,则(4)中的纸片展开铺平后的图形是( ).9. 如图,在△ABC 中,∠C =90°,BC =6,D 、E 分别在AB 、AC 上,将△ABC 沿DE 折叠,使点A 落在点A ′处,若A ′为CE 的中点,则折痕DE 的长为( ).A. 12B. 2C. 3D. 410. 如图,在矩形中截取两个相同的圆作为圆柱的上下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长与宽分别为y 和x ,则y 与x 函数的图象大致是( ).(第10题)二、 填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上) 11. -1,0,-5,-92,34这五个数中,最小的数是________.12. 如图,在▱ABCD 中,BE ⊥AD 于点E ,若∠ABE =50°,则∠C =________.13. 分解因式:4a -a 3=________.14. 在实数范围内定义一种新运算“⊕”,其运算规则为:a ⊕b =-2a +3b .如:1⊕5=-2×1+3×5=13.则不等式x ⊕4<0的解集为________.15. 根据图所示的程序计算,若输入x 的值为64,则输出结果为________.16. 两个全等的梯形纸片如图(1)摆放,将梯形纸片ABCD沿上底AD方向向右平移得到图(2).已知AD=4,BC=8,若阴影部分的面积是四边形A′B′CD的面积的13,则图(2)中平移距离A′A=________.三、解答题(本大题共9个小题,共82分.解答应写出文字说明、证明过程或演算步骤)17. (本小题满分8分)计算:(-1)2 011+2tan60°+20-27+|1-3|.18. (本小题满分8分)如图,在4×5网格图中,其中每个小正方形边长均为1,梯形ABCD和五边形EFGHK 的顶点均为小正方形的顶点.(1)以B为位似中心,在网格图中....作四边形A′BC′D′,使四边形A′BC′D′和梯形ABCD位似,且位似比为2∶1;(2)求(1)中四边形A′BC′D′与五边形EFGHK重叠部分的周长.(结果保留根号)(第18题)19. (本小题满分8分)如图,有6个质地和大小均相同的球,每个球只标有一个数字,将标有3,4,5的三个球放入甲箱中,标有4,5,6的三个球放入乙箱中.(1)小宇从甲箱中随机模出一个球,求“摸出标有数字是3的球”的概率;(2)小宇从甲箱中、小静从乙箱中各自随机摸出一个球,若小宇所摸球上的数字比小静所摸球上的数字大1,则称小宇“略胜一筹”.请你用列表法(或画树状图)求小宇“略胜一筹”的概率.20. (本小题满分8分)某校要选举一名学生会主席,先对甲、乙、丙三名候选人进行了笔试和面试,成绩如下表;又进行了学生投票,每个学生都投了一张选票,且选票上只写了三名候选人中的一名,每张选票记0.5分.对选票进行统计后,绘有如图(1),图(2)尚不完整的统计图.笔试、面试成绩统计表甲乙丙笔试成绩(分)728690面试成绩(分)828587(1)乙的得票率是________,选票的总数为________;(2)补全图(2)的条形统计图;(3)求三名候选人笔试成绩的极差;(4)根据实际情况,学校将笔试、面试、学生投票三项得分按2∶4∶4的比例确定每人的最终成绩,高者当选,请通过计算说明,哪位候选人当选.得票率扇形统计图得票率条形统计图(1)(2)(第20题)某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.(1)甲、乙两队单独完成各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10 000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?【总费用=施工费+工程师食宿费】22. (本小题满分9分)如图(1)至图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,点B、C、E在同一条直线上.(1)已知:如图(1),AC=AB,AD=AE.求证:①CD=BE;②CD⊥BE.(2)如图(2),当AB=kAC,AE=kAD(k≠1)时,分别说出(1)中的两个..结论是否成立,若成立,请给予证明;若不成立,请说明理由.(第22题)甲、乙两列火车分别从A、B两城同时匀速驶出,甲车开往B城,乙车开往A城.由于墨迹遮盖,图中提供的只是两车距B城的路程s甲(千米)、s乙(千米)与行驶时间t(时)的函数图象的一部分.(1)乙车的速度为________千米/时;(2)分别求出s甲、s乙与t的函数关系式(不必写出t的取值范围);(3)求出两城之间的路程,及t为何值时两车相遇;(4)当两车相距300千米时,求t的值.(第23题)如图,有一直径MN=4的半圆形纸片,其圆心为点P,从初始位置Ⅰ开始,在无滑动的情况下沿数轴向右翻滚至位置Ⅴ,其中,位置Ⅰ中的MN平行于数轴,且半⊙P与数轴相切于原点O;位置Ⅱ和位置Ⅳ中的MN垂直于数轴;位置Ⅲ中的MN在数轴上;位置Ⅴ中的点N到数轴的距离为3,且半⊙P与数轴相切于点A.解答下列问题:(1)位置Ⅰ中的MN与数轴之间的距离为________;位置Ⅱ中的半⊙P与数轴的位置关系是________;(2)求位置Ⅲ中的圆心P在数轴上表示的数;(3)纸片半⊙P从位置Ⅲ翻滚到位置Ⅳ时,求点N所经过路径长及该纸片所扫过图形的面积;(4)求OA的长.[(2),(3),(4)中的结果保留π]如图,在直角坐标系中,点P 的坐标是(n,0)(n >0),抛物线y =-x 2+bx +c 经过原点O 和点P .已知正方形ABCD 的三个顶点为A (2,2),B (3,2),D (2,3).(1)求c ,b 并写出抛物线对称轴及y 的最大值(用含有n 的代数式表示); (2)求证:抛物线的顶点在函数y =x 2的图象上;(3)若抛物线与直线AD 交于点N ,求n 为何值时,△NPO 的面积为1; (4)若抛物线经过正方形区域ABCD (含边界),请直接..写出n 的取值范围. ⎣⎡⎦⎤参考公式:y =ax 2+bx +c (a ≠0)的顶点坐标是⎝⎛⎭⎫-b 2a,4ac -b 24a葫芦岛市2011年初中毕业生升学文化课考试1. B2. B3. C4. C5. D6. A7. A8. D9. B 10. A 11. -5 12. 40° 13. a (2+a )(2-a )14. x >6 15. -52 16. 317. 原式=-1+23+1-33+3-1(4分) =-1.(8分) 18. (1)如图:(第18题)(2)四边形A ′BC ′D ′与五边形EFGHK 重叠部分是EFGD ′,ED ′=FG =1, 在Rt △EDF 中,ED =DF =1,由勾股定理,求得EF = 2.∴ D ′G =EF = 2.(6分)∴ 四边形A ′BC ′D ′与五边形EFGHK 重叠部分的周长=ED ′+FG +D ′G +EF =1+1+2+2=2+2 2.(8分)19. (1)P (摸出标有数字是3的球)=13.(2分)(2)用下表列举摸球的所有可能结果:小静小宇 4 5 63 (3,4) (3,5) (3,6)4 (4,4) (4,5) (4,6)5 (5,4) (5,5) (5,6)从上表可知,一共有九种可能,其中小宇所摸球的数字比小静的大1的有一种,因此P (小宇“略胜一筹”)=19.(8分)【注:画树状图正确也相应给分】 20. (1)36% 400(2分) (2)如图.(3分) 得票率条形统计图(第20题)(3)90-72=18.(4分)(4)将笔试、面试、学生投票三项得分按2∶4∶4的比例确定每人的最终成绩为:甲的成绩:72×0.2+82×0.4+136×0.5×0.4=74.4(分),乙的成绩:86×0.2+85×0.4+144×0.5×0.4=80(分),丙的成绩:90×0.2+87×0.4+120×0.5×0.4=76.8(分),∵80>76.8>74.4,∴乙当选.(8分)21. (1)设甲队单独完成需x天,则乙队单独完成需1.5x天.根据题意,得120 x+1201.5x=1.(3分)解得x=200.经检验,x=200是原分式方程的解.答:甲队单独完成需200天,乙队单独完成需300天.(6分) (2)设甲队每天的施工费为y元. 根据题意,得200y+200×150×2≤300×10 000+300×150×2,解得y≤15 150.答:甲队每天施工费最多为15 150元.(9分)22. (1)如图(1),∵∠DAE=∠BAC=90°,∴∠CAD=∠BAE.在△ACD和△ABE中,AC=AB,AD=AE,∴△CAD≌△BAE.∴CD=BE.(3分)∴∠ACD=∠ABE.∵∠BAC=90°,∴∠ABE+∠ACB=90°.∴∠ACD+∠ACB=90°,即CD⊥BE.(5分)(第22题(1))(第22题(2))(2)如图(2),①不成立.(6分)理由如下:∵AB=kAC,AE=kAD,∴ACAB=ADAE=1k.又∠BAC=∠DAE,∴∠DAC=∠EAB. ∴△ACD∽△ABE.∴CDBE=ACAB,∠ACD=∠ABE.∵AB =kAC , ∴BE =kCD . ∵k ≠1, ∴ BE ≠CD .∴ ①不成立.(7分)②成立.(8分)由上可知,∠ACD =∠ABE .又 ∠BAC =90°,∴ ∠ABE +∠ACB =90°.∴ ∠ACD +∠ACB =90°.即 CD ⊥BE ,即②成立.(9分)23. (1)120(1分)(2)设s 甲与t 的函数关系为s 甲=k 1t +b ,∵ 图象过点(3,60)与(1,420),∴ ⎩⎪⎨⎪⎧ 3k 1+b =60,k 1+b =420, 解得⎩⎪⎨⎪⎧k 1=-180,b =600. ∴ s 甲与t 的函数关系式为s 甲=-180t +600.(4分)设s 乙与t 的函数关系式为s 乙=k 2t ,∵ 图象过点(1,120),∴ k 2=120.∴ s 乙与t 的函数关系式为s 乙=120t .(5分)(3)当t =0,s 甲=600,∴ 两城之间的路程为600千米.(6分)∵ s 甲=s 乙,即-180t +600=120t ,解得t =2.∴ 当t =2时,两车相遇.(8分)(4)当相遇前两车相距300千米时,s 甲-s 乙=300,即 -180t +600-120t =300,解得t =1.(9分)当相遇后两车相距300千米时,s 乙-s 甲=300,即 120t +180t -600=300.解得t =3.(10分)24. (1)2 相切(2分)(2)位置Ⅰ中ON 的长与数轴上线段ON 相等,∵ ON 的长为90π·2180=π,NP =2, ∴ 位置Ⅲ中的圆心P 在数轴上表示的数为π+2.(4分)(3)点N 所经过路径长为90π·4180=2π,(5分) S 半圆=180π·22360=2π,S 扇形=90π·42360=4π, 半⊙P 所扫过图形的面积为2π+4π=6π.(7分)(4)如图,作NC 垂直数轴于点C ,作PH ⊥NC 于点H ,连接P A ,则四边形PHCA 为矩形.(第24题)在Rt △NPH 中,PN =2,NH =NC -HC =NC -P A =1,于是sin ∠NPH =NH PN =12, ∴ ∠NPH =30°∴ ∠MP A =60°.从而MA 的长为60π·2180=2π3,于是OA 的长为 π+4+23π=53π+4.(10分) 25. (1)把x =0,y =0代入y =-x 2+bx +c ,得c =0.(1分)再把x =n ,y =0代入y =-x 2+bx ,得-n 2+bn =0.∵ n >0,∴ b =n .(3分)∴ y =-x 2+nx .由顶点坐标公式及a =-1<0,得抛物线对称轴为直线x =n 2,y 的最大值为n 24.(5分) (2)∵ 抛物线顶点为⎝⎛⎭⎫n 2,n 24, 把x =n 2代入y =x 2=n 24, ∴ 抛物线的顶点在函数y =x 2的图象上.(7分)(3)当x =2时,y =2n -4,∴ 点N 为(2,2n -4).当n =2时,P 、N 两点重合,△NPO 不存在.当n >2时,解12n (2n -4)=1,得n =1±2. ∵ n >2,∴ n =1+ 2.当0<n <2时,解12n (4-2n )=1,得n 1=n 2=1.(10分) ∴ n =1+2或n =1时,△NPO 的面积为1.(4)3≤n ≤4.(12分)注:分别把A (2,2),B (3,2),C (3,3),D (2,3)中的横、纵坐标代入抛物线解析式y =-x 2+nx ,得n =3;n =113;n =4;n =72.因此,n 的取值范围是3≤n ≤4。