轴对称典型题(最全)
轴对称练习题(含答案)

轴对称练习题(含答案)一.选择题1.下列图形中,是轴对称图形的是()A.B.C.D.2.如图,在△ABC中,D,E是BC边上两点,且满足AB=BE,AC=CD,若∠B=α,∠C=β,则∠DAE的度数为()A.B.C.D.3.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13 B.16 C.8 D.104.点A(4,﹣2)关于x轴的对称点的坐标为()A.( 4,2 )B.(﹣4,2)C.(﹣4,﹣2)D.(﹣2,4)5.已知一个等腰三角形一内角的度数为80°,则这个等腰三角形顶角的度数为()A.100°B.80°C.50°或80°D.20°或80°6.若等腰△ABC中有一个内角为40°,则这个等腰三角形的一个底角的度数为()A.40°B.100°C.40°或100°D.40°或70°7.在△ABC中,∠A=30°,∠B=70°,直线将△ABC分成两个三角形,如果其中一个三角形是等腰三角形,这样的直线有()条.A.5 B.7 C.9 D.108.如图,Rt△ACB中,∠ACB=90°,∠A=60°,CD、CE分别是△ABC的高和中线,下列说法错误的是()A.AD=ABB.S△CEB =S△ACEC.AC、BC的垂直平分线都经过ED.图中只有一个等腰三角形9.如图,a∥b,△ABC的顶点A在直线a上,AC=BC,∠1=50°,∠2=20°,则∠C的度数为()A.70°B.30°C.40°D.55°10.对于问题:如图1,已知∠AOB,只用直尺和圆规判断∠AOB是否为直角?小意同学的方法如图2:在OA、OB上分别取C、D,以点C为圆心,CD长为半径画弧,交OB的反向延长线于点E,若测量得OE=OD,则∠AOB=90°.则小意同学判断的依据是()A.等角对等边B.线段中垂线上的点到线段两段距离相等C.垂线段最短D.等腰三角形“三线合一”11.如图,在△ABC中,∠CDE=64°,∠A=28°,DE垂直平分BC;则∠ABD=()A.100°B.128°C.108°D.98°12.如图,AB∥CD,点E在AD上,且CD=DE,∠C=75°,则∠A的大小为()A.35°B.30°C.28°D.26°二.填空题13.在平面直角坐标系中,点M(a,b)与点N(3,﹣1)关于x轴对称,则b a的值是.14.已知一个等腰三角形腰上的高与底边的夹角为37°,则这个等腰三角形的顶角等于度.15.如图,在△ABC中,AB=AC,∠A=120°,AB的垂直平分线交BC于M,交AB于E,AC 的垂直平分线交BC于N,交AC于F,若MN=2,则NF=.16.如图,BC的垂直平分线分别交AB、BC于点D和点E,连接CD,AC=DC,∠B=25°,则∠ACD的度数是.三.解答题17.如图,△ABC中,AE=BE,∠AED=∠ABC.(1)求证:BD平分∠ABC;(2)若AB=CB,∠AED=4∠EAD,求∠C的度数.18.如图,AD⊥BC于D,且DC=AB+BD,若∠C=26°,求∠BAC的度数.19.已知:方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)请以y轴为对称轴,画出与△ABC对称的△A1B1C1,并直接写出点A1、B1、C1的坐标;(2)△ABC的面积是;(3)点P(a+1,b﹣1)与点C关于x轴对称,则a=,b=.20.如图,已知AB =A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4…. (1)若∠A 4=9°,则∠BAA 4的度数为 ; (2)若∠BAA 4=α,则∠B n ﹣1A n A n ﹣1的度数为 ; (3)过A 做AC ∥A 3B 2,若∠BAC =100°,求∠B 3A 4A 3的度数.参考答案一.选择题1.解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.解:∵BE=BA,∴∠BAE=∠BEA,∴α=180°﹣2∠BAE,①∵CD=CA,∴∠CAD=∠CDA,∴β=180°﹣2∠CAD,②①+②得:α+β=360°﹣2(∠BAE+∠CAD)∴α+β=360°﹣2[(∠BAD+∠DAE)+(∠DAE+∠CAE)] =360°﹣2[(∠BAD+∠DAE+∠CAD)+∠DAE]=360°﹣2(∠BAC+∠DAE),∵∠BAC=180°﹣(α+β),∴α+β=360°﹣2[180°﹣(α+β)+∠DAE]∴α+β=2∠DAE,∴∠DAE=(α+β),故选:A.3.解:∵△ABC是等腰三角形,底边BC=5,周长为21,∴AC=AB=8,又∵DE是AB的垂直平分线,∴AE=BE,∴△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB=13,∴△BEC的周长为13.故选:A.4.解:点A(4,﹣2)关于x轴的对称点为(4,2).故选:A.5.解:(1)若等腰三角形一个底角为80°,顶角为180°﹣80°﹣80°=20°;(2)等腰三角形的顶角为80°.因此这个等腰三角形的顶角的度数为20°或80°.故选:D.6.解:当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故选:D.7.解:如图:∴最多画9条,故选:C.8.解:∵∠ACB=90°,AD⊥AB,∠A=60°,∴∠ACD=∠B=30°,∴AC=,AD=AC,∴AD=AB;故A正确;∵CE是△ABC的中线,∴S△BCE =S△ACE,故B正确,∵CE=AE=BE=AB,∴AC、BC的垂直平分线都经过E,故C正确;∴△ACE和△BCE是等腰三角形,故D错误;故选:D.9.解:延长AB交直线b于E,∵a∥b,∴∠3=∠1=50°,∴∠ABC=∠2+∠3=20°+50°=70°,∵CA=CB,∴∠BAC=∠ABC=70°,∴∠C=180°﹣70°﹣70°=40°,故选:C.10.解:由作图可知,CE=CD,∵OE=OD,∴CO⊥ED(等腰三角形的三线合一),∴∠AOB=90°.故选:D.11.解:∵DE垂直平分BC,∴BD=DC,∴∠BDE=∠CDE=64°,∴∠ADB=180°﹣64°﹣64°=52°,∵∠A=28°,∴∠ABD=180°﹣28°﹣52°=100°.故选:A.12.解:∵CD=DE,∴∠DEC=∠C=75°,∴∠D=180°﹣∠C﹣∠DEC=180°﹣75°﹣75°=30°,∵AB∥CD,∴∠A=∠D=30°;故选:B.二.填空题(共4小题)13.解:∵点M(a,b)与点N(3,﹣1)关于x轴对称,∴a=3,b=1,∴b a=1,故答案为:1.14.解:如图(1)顶角是钝角时,∵等腰三角形腰上的高与底边的夹角为37°,∴∠OCB=37°,∵OC⊥OB,∴∠ABC=90°﹣37°=53°,∴∠BAC=180°﹣53°﹣53°=74°,即△ABC为锐角三角形,顶角是钝角这种情况不成立;(2)顶角是锐角时,∠B=90°﹣37°=53°,∠A=180°﹣2×53°=74°.因此,顶角为74°.故答案为:74.15.解:∵在△ABC中,AB=AC,∠A=120°,∴∠C=∠B=(180°﹣∠A)=30°,连接AN,AM,∵AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,∴BM=AM,CN=AN,∴∠MAB=∠B=30°,∠C=∠NAC=30°,∴∠AMN=∠B+∠MAB=60°,∠ANM=∠C+∠NAC=60°,∴AM=AN,∴△AMN是等边三角形,∵MN=2,∴AN=2=CN,在Rt△NFC中,∠C=30°,∠NFC=90°,CN=2,∴NF=CN=1,故答案为:1.16.解:∵BC的垂直平分线分别交AB、BC于点D和点E,∴CD=BD,∵∠B=25°,∴∠DCB=∠B=25°.∵∠ADC是△BCD的外角,∴∠ADC=∠B+∠DCB=25°+25°=50°.∵AC=DC,∴∠CAD=∠ADC=50°,∴∠ACD=180°﹣∠CAD﹣∠ADC=180°﹣50°﹣50°=80°.故答案为:80°.三.解答题(共4小题)17.(1)证明:∵∠AED=∠ABC,∠AED=∠ABE+∠EAB,∠ABC=∠ABE+∠DBC,∵AE=BE,∴∠EAB=∠ABE,∴∠DBC=∠ABE,∴BD平分∠ABC;(2)设∠EAD=x,则∠AED=4x,∵∠AED=∠ABE+∠EAB,∠EAB=∠ABE,BD平分∠ABC,∴∠BAE=2x,∠ABC=4x,∴∠BAC=3x,∵AB=CB,∴∠BAC=∠C,∴∠C=3x,∵∠ABC+∠BAC+∠C﹣180°,∴4x+3x+3x=180°,解得,x=18°,∴∠C=3x=54°,即∠C的度数是54°.18.解:截取DE=BD,连接AE,如右图所示,∵DC=AB+BD,BD=DE,∴AB=CE,∵AD⊥BE,∴∠ADB=∠ADE=90°,在△ADB和△ADE中,,∴△ADB≌△ADE(SAS),∴AB=AE,∠B=∠AED,∴AE=CE,∴∠EAC=∠C,∵∠C=26°,∠AED=∠EAC+∠C,∴∠AED=52°,∴∠B=52°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣52°﹣26°=102°,即∠BAC的度数是102°.19.解:(1)如图所示,△A1B1C1即为所求;A 1(﹣1,﹣4)、B1(﹣5,﹣4)、C1(﹣4,﹣1);(2)△ABC的面积是×4×3=6,故答案为:6;(3)∵点P(a+1,b﹣1)与点C(4,﹣1)关于x轴对称,∴a+1=4、b﹣1=1,解得:a=3、b=2,故答案为:3、2.20.解:(1)∵AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4….,∴∠B 2A 3A 2=2∠A 4=18°, ∴∠B 1A 2A 1=2∠B 2A 3A 2=36°, ∴∠BAA 4=∠BA 1A =2∠B 1A 2A 1=72°;(2)∵AB =A 1B ,∴∠BAA 4=BA 1A =α, ∵A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4…. ∴∠B 1A 2A 1=∠BA 1A =α; 同理可得,∠B 2A 3A 2=α,∠B 3A 4A 3=α, 以此类推,∠B n ﹣1A n A n ﹣1=,故答案为:72°,; (3)设∠B 3A 4A 3=x °, ∵A 3B 3=A 3A 4,∴∠A 3B 3A 4=∠A 4,∴∠B 2A 3A 2=2x °,同理,∠BAA 4=8x °, ∵AC ∥A 3B 2,∴∠A 4AC =∠A 4,∴8x +2x =100,∴x =10,∴∠B 3A 4A 3的度数为10°.。
轴对称练习题(含答案)

轴对称练习题13.1.1轴对称1.下列图形中,是轴对称图形的是()2.下列轴对称图形中,对称轴条数是四条的图形是()3.如图,△ABC和△A′B′C′关于直线l对称,下列结论中正确的有()①△ABC≌△A′B′C′;②∠BAC=∠B′A′C′;③直线l垂直平分CC′;④直线BC和B′C′的交点不一定在直线l上.A.4个B.3个C.2个D.1个第3题图第4题图4.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B的度数为() A.25° B.45° C.30° D.20°5.如图,△ABC关于直线MN对称的三角形的顶点分别为A′,B′,C′,其中∠A=90°,A=8cm,A′B′=6cm.(1)求AB,A′C′的长;(2)求△A′B′C′的面积.13.1.2线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.如图,在△ABC中,AB的垂直平分线交AC于点P,P A=5,则线段PB的长度为() A.3 B.4 C.5 D.6第1题图第2题图2.如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB3.如图,在△ABC中,D为BC上一点,且BC=BD+AD,则点D在线段________的垂直平分线上.第3题图第4题图4.如图,在Rt△ABC中,斜边AB的垂直平分线交边AC于点D,交边AB于点E,且∠CBD =∠ABD,则∠A=________°.5.如图,在△ABC中,AB的垂直平分线交AB于E,交BC于D,连接AD.若AC=4cm,△ADC的周长为11cm,求BC的长.第2课时 线段垂直平分线的有关作图1.如图,已知线段AB ,分别以点A ,点B 为圆心,以大于12AB 的长为半径画弧,两弧交于点C 和点D ,作直线CD ,在CD 上取两点P ,M ,连接P A ,PB ,MA ,MB ,则下列结论一定正确的是( ) A .P A =MA B .MA =PE C .PE =BE D .P A =PB2.已知图中的图形都是轴对称图形,请你画出它们全部的对称轴.3.已知下列两个图形关于直线l 成轴对称.(1)画出它们的对称轴直线l ; (2)填空:两个图形成轴对称,确定它们的对称轴有两种常用方法,经过两对对称点所连线段的________画直线;或者画出一对对称点所连线段的____________.4.如图,在某条河l 的同侧有两个村庄A 、B ,现要在河道上建一个水泵站,这个水泵站建在什么位置,能使两个村庄到水泵站的距离相等?13.2画轴对称图形第1课时画轴对称图形1.已知直线AB和△DEF,作△DEF关于直线AB的轴对称图形,将作图步骤补充完整(如图所示).(1)分别过点D,E,F作直线AB的垂线,垂足分别是点________;(2)分别延长DM,EP,FN至________,使________=________,________=________,________=________;(3)顺次连接________,________,________,得△DEF关于直线AB的对称图形△GHI. 2.如图,请画出已知图形关于直线MN对称的部分.3.如图,以AB为对称轴,画出已知△CDE的轴对称图形.第2课时用坐标表示轴对称1.在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标是()A.(2,3) B.(2,-3)C.(-2,-3) D.(3,-2)2.在平面直角坐标系中,点P(-3,4)关于y轴的对称点的坐标为()A.(4,-3) B.(3,-4)C.(3,4) D.(-3,-4)3.平面内点A(-2,2)和点B(-2,-2)的对称轴是()A.x轴B.y轴C.直线y=4 D.直线x=-24.已知△ABC在直角坐标系中的位置如图所示,若△A′B′C′与△ABC关于y轴对称,则点A的对称点A′的坐标是()A.(-3,2) B.(3,2)C.(-3,-2) D.(3,-2)第4题图第5题图5.如图,点A关于x轴的对称点的坐标是________.6.已知点M(a,1)和点N(-2,b)关于y轴对称,则a=________,b=________.7.如图,在平面直角坐标系中有三点A(-1,5),B(-1,0),C(-4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)△A1B1C1的面积是________.轴对称13.1.1轴对称1.A 2.A 3.B 4.B5.解:(1)∵AB与A′B′是对应线段,∴AB=A′B′=6cm.又∵AC与A′C′是对应线段,∴A′C′=AC=8cm.(2)∵∠A′与∠A是对应角,∴∠A′=∠A=90°,∴S△A′B′C′=A′B′·A′C′÷2=24(cm2).13.1.2线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.C 2.C 3.AC 4.305.解:∵AB的垂直平分线交AB于E,交BC于D,∴AD=BD.∵△ADC的周长为11cm,∴AC+CD+AD=AC+CD+BD=AC+BC=11cm.∵AC=4cm,∴BC=7cm.第2课时线段垂直平分线的有关作图1.D2.解:如图所示.3.解:(1)图略.(2)中点垂直平分线4.解:连接AB,作线段AB的垂直平分线MN交直线l于点P,则点P即为所求位置.图略.13.2画轴对称图形第1课时画轴对称图形1.(1)M,P,N(2)G,H,I GM DM HP EP IN FN(3)GH HI IG2.解:如图所示.3.解:如图所示.第2课时用坐标表示轴对称1.C 2.C 3.A 4.B 5.(-5,-3) 6.217.解:(1)如图.(2)A1(1,5),B1(1,0),C1(4,3).(3)7.5。
典型的轴对称图形练习习题(带答案

精心整理一、选择题1.下列命题中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看着是以它的垂2)3对称,B.顶. 4与BE 相交于点P,则∠APE的度数是()A.45°B.55°C.60°D.75°5.等腰梯形两底长为4cm和10cm,面积为21cm2,则这个梯形较小的底角是()度.A.45°B.30°C.60°D.90°6.已知点P在线段AB的中垂线上,点Q在线段AB的中垂线外,则A.D.7.CD8PC(A.4B.3C.2D.19.∠AOB的平分线上一点P到OA的距离为5,Q是OB上任一点,则()A.PQ>5B.PQ≥5C.PQ<5D.PQ≤510.等腰三角形的周长为15cm,其中一边长为3cm.则该等腰三角形的底长为()A.3cm或5cm B.3cm或7cm C.3cm D.5cm111213CD=4,1415AB=6,的周1610且有一底角为60°,则它的两底长分别为____________.17.若D为△ABC的边BC上一点,且AD=BD,AB=AC=CD,则∠BAC=____________.18.△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若∠BAC=115°,则∠EAF=___________.三.解答题19.如图:已知∠AOB和C、D两点,求作两边20C,2122AC于E、23ABP=结论.参考答案第一章 轴对称图形 1.A 2.B 3.C 4.C 5.A 6.D 7.C 8.C 9.B 10.C1116.4、6 19202123=AQ ,。
轴对称图形基础10题(含答案)

轴对称图形1.下列标志中,可以看作是轴对称图形的是()A. B. C. D.2.下列图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()A. B.C. D.4.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.5.下列图形中,既是中心对称,又是轴对称的是()A. B. C. D.6.在下列图案中,既是轴对称又是中心对称图形的是()A. B. C. D.7.下列说法中错误的是()A. 两个成轴对称的图形对应点连线被对称轴垂直平分B. 关于某直线对称的两个图形形状、大小完全相同C. 面积相等的两个四边形对称D. 轴对称指的是两个图形沿着某一条直线对折后能完全重合8.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.9.如图,在正方形网格上的一个△ .(其中点均在网格上)(1)作△ABC关于直线MN的轴对称图形△;(2)以点为一个顶点作一个与△ 全等的△ (规定点与点对应,另两顶点都在图中网格交点处).(3)在上画出点,使得最小.10.已知:如图所示,(1)作出△ABC关于y轴对称的△A'B'C',并写出△A'B'C'三个顶点的坐标.(2)直接写出△ABC的面积为____________.(3)在x轴上找一点P,使PA+PC的和最小.(不写作法,但保留作图痕迹)答案和解析1.【答案】C2.【答案】B3.【答案】B4.【答案】B5.【答案】C6.【答案】C7.【答案】C8.【答案】A9.【答案】解:(1)如右图所示,△A B C 即为所求;(2)如右图所示,△EPF即为所求;(3)如右图所示,线段AC 于MN的交点Q即为所求.10.【答案】解:(1)如图所示,由图可以知道,A'(-1,2) ,B'(-3,1) ,C'(-4,3);(2) S△ABC=2×3- ×2×1- ×2×1- ×1×3=6-1-1-1.5=2.5(3)如图,点P即为所求点.。
初二数学上册:画轴对称图形经典例题(含答案)

初二数学上册:画轴对称图形经典例题(含答案)一、单选题1.下列剪纸图案中,能通过轴对称变换得到的有(C)2.下列说法错误的是(B)A.关于某直线对称的两个图形一定能完全重合B.全等的两个三角形一定关于某直线对称C.轴对称图形的对称轴至少有一条D.线段是轴对称图形3.如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后将落入的球袋是(B)A.1号袋B.2号袋C.3号袋D.4号袋4.如图所示,在3×3的正方形网格中已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的办法有(C)A.3种B.4种C.5种D.6种解析:试题分析:如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1处,3处,7处,6处,5处,选择的位置共有5处故选C.考点:利用轴对称设计图案点评:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.在如上图由5个小正方形组成的图形中,再补上一个小正方形,使它成为轴对称图形,你有几种不同的方法(C)A.2种B.3种C.4种D.5种6.小强将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个小正方形,然后把纸片展开,得到的图形应是(B)7.如图,直线l1与直线l2相交,∠α=60°,点P在∠α内(不在l1,l2上)。
小明用下面的方法作P的对称点:先以l1为对称轴作点P 关于l1的对称点P1,再以l2为对称轴作P1关于l2的对称点P2,然后再以l1为对称轴作P2关于l1的对称点P3,以l2为对称轴作P3关于l2的对称点P4,……,如此继续,得到一系列点P1,P2,P3,…,。
若与P重合,则n的最小值是(B)A.5B.6C.7D.8二、填空题8.轴对称变换不改图形的形状和大小解析:试题分析:根据轴对称图形的性质即可得到结果。
轴对称经典测试题(含答案)

一、填空题(每题2分,共32分)1.线段轴是对称图形,它有_______条对称轴,正三角形的对称轴有条.2.下面是我们熟悉的四个交通标志图形,请从几何图形的性质考虑,哪一个..与其他三个..不同请指出这个图形,并说明理由.答:这个图形是:(写出序号即可),理由是.3.等腰△ABC中,若∠A=30°,则∠B=________.4.△ABC中,AD⊥BC于D,且BD=CD,若AB=3,则AC=__ __.5.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若CD=4,则点D到AB的距离是__________.6.判断下列图形(如图所示)是不是轴对称图形.7.等腰△ABC中,AB=AC=10,∠A=30°,则腰AB上的高等于___________.8.如图,△ABC中,AD垂直平分边BC,且△ABC的周长为24,则AB+BD = ;又若∠CAB=60°,则∠CAD = .9.如图,△ABC中,EF垂直平分AB,GH垂直平分AC,设EF与GH相交于O,则点O与边BC的关系如何请用一句话表示:.如图:等腰梯形ABCD中,AD∥BC,AB=6,AD=5,BC=8,且AB∥____________.11.请在下面这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形.12.等腰梯形的腰长为2,上、下底之和为10且有一底角为60°,则它的两底长分别为B E CDAABC DBHFAECGO第8题图第9题图第10题图____________.13.等腰三角形的周长是25 cm,一腰上的中线将周长分为3∶2两部分,则此三角形的底边长为__ ___.14.如图,三角形1与_____成轴对称图形,整个图形中共有_____条对称轴.15.如图,将长方形ABCD沿对角线BD折叠,使点C恰好落在如图C1的位置,若∠DBC=30º,则∠ABC1=________.16.如图是小明制作的风筝,为了平衡制成了轴对称图形,已知OC是对称轴,∠A=35º,∠BCO=30º,那么∠AOB=____ ___.二、解答题(共68分)17.(5分)已知点M)5,3(ba-,N)32,9(ba+关于x轴对称,求a b的值.18.(5分)已知AB=AC,BD=DC,AE平分∠FAC,问:AE与AD是否垂直为什么19.(5分)如图,已知:△ABC中,BC<AC,AB边上的垂直平分线DE交AB于D,交AC 于E,AC=9 cm,△BCE的周长为15 cm,求BC的长.第14题图第15题图第16题图ABC DEF20.(5分)如图所示,已知△ABC和直线MN.求作:△A′B′C′,使△A′B′C′和△ABC关于直线MN对称.(不要求写作法,只保留作图痕迹)21.(5分)如图,A、B两村在一条小河的的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹..BA .22.(5分)如图,在ABC中,AB=AC,A=92,延长AB到D,使BD=BC,连结DC.求D的度数,ACD的度数.A23.(5分)有一本书折了其中一页的一角,如图:测得AD =30cm,BE =20cm ,∠BEG =60°,求折痕EF 的长.24.(8分)如图所示,在△ABC 中,CD 是AB 上的中线,且DA =DB =DC .(1)已知∠A =︒30,求∠ACB 的度数; (2)已知∠A =︒40,求∠ACB 的度数; (3)已知∠A =︒x ,求∠ACB 的度数; (4)请你根据解题结果归纳出一个结论.25.(6分)如图所示,在等边三角形ABC 中,∠B 、∠C 的平分线交于点O ,OB 和OC 的垂直平分线交BC 于E 、F ,试用你所学的知识说明BE =EF =FC 的道理.26.(7分)已知AB =AC ,D 是AB 上一点,DE ⊥BC 于E ,ED 的延长线交CA 的延长线于F ,试说明△ADF 是等腰三角形的理由.A DBCABOEFCAF27.(7分)等边△ABC 中,点P 在△ABC 内,点Q在△ABC 外,且∠ABP =∠ACQ ,BP =CQ ,问△APQ 是什么形状的三角形试说明你的结论.28.(5分)如图①是一张画有小方格的等腰直角三角形纸片,将图①按箭头方向折叠成图②,再将图②按箭头方向折叠成图③.(1)请把上述两次折叠的折痕用实线画在图④中.(2)在折叠后的图形③中,沿直线l 剪掉标有A 的部分,把剩余部分展开,将所得到的图形在图⑤中用阴影表示出来.轴对称单元测试答案(二)一、填空题ACBPQ1.2,3 2.④,不是轴对称图形3.75度或30度4.3 5.4 6.(1)(3)(6)是轴对称图形,(2)(4)(5)不是轴对称图形7.5 8.12 9.点O到BC两端的距离相等10.1511.正反写的4和6 12.4,6 13.353cm或5cm 14.2、4,2 15.30度16.130度二、解答题18.垂直19.BC=6cm 20.略21.略22.22度,66度23.20cm 24.(1)90度;(2)90度;(3)90度;(4)三角形中,一边上的中线等于这边的一半,那么这边所对的角等于90度25.略26.略27.是等边三角形28.略-。
轴对称典型题(最全)

轴对称填空选择一、填空题1..角是轴对称图形,其对称轴是.2..点M(-2,1 )关于x 轴对称点N 的坐标是.3..如图,在△ABC 中,AB=AC=14 cm,边AB 的中垂线交AC 于D,且△BCD 的周长为24cm,则BC= .4.下列数中,成轴对称图形的有个5..等腰△ABC 中,AB=AC=10 ,∠A=30 °,则腰AB 上的高等于.6 .一个等腰三角形的一个外角等于110 °,则这个三角形的三个内角分别是.7 .一辆汽车牌在水中的倒影为,则该车牌照号码为.8 .仔细观察下图的图案,并按规律在横线上画出合适的图形.9. (1 )等腰三角形的一个内角等于130 °,则其余两个角分别为;(2)等腰三角形的一个内角等于70 °,则其余两个角分别为.10. 如图14 -112 所示,△ABC 是等边三角形,∠ 1= ∠2= ∠3,则∠BEC 的度数为11 .如图所示,在△ABC 中,∠C=90 °,DE 垂直平分AB ,交AB 于E ,交BC 于D,∠1=B 1∠2,则∠B= 2E D A C12. 如图14-111 所示,在△ABC 中,AB=AC ,BD 是角平分线,若∠BDC=69 °,则∠A 等于13 、如图,在△ABC 中,∠C=90 °,AB 的垂直平分线交BC 于D,若∠B=20 °,则∠DAC=14 、等腰三角形的周长是25 cm, 一腰上的中线将周长分为3∶2 两部分,则此三角形的底边长为_.15 .点(2,5)关于直线x=1 的对称点的坐标为.16 .已知点A(x,-4 )与点B(3 ,y)关于y 轴对称,那么x+y 的值为.17. 如图14 -116 所示,∠A=15 °,AB=BC=CD=DE=EF ,则∠DEF= .18. 如图14 -117 所示,在△ABC 中,∠C=90 °,A D 平分∠BAC ,交BC 于点D ,CD=3 ,BD=5 ,则点D 到AB 的距离为.19. 如图14 -118 所示,在△ABC 中,AB=AC ,∠A=60 °,BE ⊥AC 于E ,延长BC 到D ,使CD=CE ,连接DE,若△ABC的周长是24 ,BE= a,则△BDE 的周长是.20 .已知:点P 为∠AOB 内一点,分别作出P 点关于OA、OB 的对称点P1,P2,连接P1P2 交OA 于M,交OB 于N,P1P2=15 ,则△PMN 的周长为.P1BMPO N AP221 .如图,Rt △ABC ,∠C =90 °,∠B=30 °,BC =8 ,D 为AB 中点,P 为BC 上一动点,连接AP 、DP, 则AP +DP 的最小值是22 .如图,点B、D、F 在AN 上,C 、E 在AM 上,且AB =BC =CD =ED =EF, ∠A =20 o,则∠FEB =度.二、选择题1. 等腰三角形的一边等于5,一边等于12 ,则它的周长为( )A.22B.29C.22 或29D.172. 如图14-110 所示,图中不是轴对称图形的是( )3. 已知点 A (-2 ,1)与点 B 关于直线x=1 成轴对称,则点 B 的坐标为()A.(4 ,1)B.(4 ,-1)C. (-4,1)D. (-4 ,-1)4 .如图所示,将一张正方形纸片经过两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是().5..下列轴对称图形中,对称轴条数最少的是()A.等腰直角三角形B.正方形C.等边三角形D.长方形6..已知点P(-2,1),那么点P 关于x 轴对称的点P 的坐标是()A.(-2 ,1) B .(-2,-1)C.(-1 ,2) D .(2 , 1 )7..桌面上有A 、B 两球,若要将 B 球射向桌面任意一边,使一次反弹后击中 A 球,则如图所示8 个点中,可以瞄准的点有()个.A. 1 B. 2C.4 D .6P8 、.下列几何图形中,是轴对称图形且对称轴的条数大于 1 的有( )⑴ 长方形; ⑵正方形; ⑶圆; ⑷三角形; ⑸线段; ⑹射线; ⑺直线 .A. 3 个B. 4 个C. 5 个D. 6 个9 .下列命题中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看着是以它的垂直平分线为对称轴的A轴对称图形 . 正确的说法有( )个A . 1 个B . 2 个C . 3 个D . 4 个EBCD10 .如图:等边三角形 ABC 中, BD = CE , AD 与 BE 相交于点 P ,则∠APE 的度数是 () A .45 °B . 55 °C . 60 °D . 75°11. 等腰梯形两底长为 4cm 和 10cm ,面积为 21cm 2 ,则 这个梯形较小的底角是( )度.A . 45°B . 30°C . 60°D . 90 °12 .下列图形中:①角,②正方形,③梯形,④圆,⑤菱形,⑥平行四边形,其中是轴对称图形的有()A 、2 个B 、3 个C 、4 个D 、 5 个︰13 .小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是()A 、21: 10B 、10:21C 、10 : 51D 、 12: 0114 .如图所示,共有等腰三角形()A 、5 个B 、4 个C 、3 个D 、2 个A D 72E723636BC15 .先将正方形纸片对折 ,折痕为 MN ,再把 B 点折叠在折痕 MN 上,折痕为 AE ,点 B 在 MN 上的DMA对应点为 H ,沿 AH 和 DH 剪下 ,这样剪得的三角形中( )A.AH DH AD B .AH DH ADC.AH AD DH D .AH DH AD16 .平面内点A(-1,2) 和点B(-1,6) 的对称轴是()CA、x 轴B、y 轴C、直线y=4D、直线x=-1A A D E B17.如图,在△ABC 中,∠ACB= 100 °,AC=AE ,BC=BD ,则∠DCE 的度数为()A.20 ° B .25 °C.30 °D.40 °EDB C18.如图,△ABC 中,AB AC , A 30 ,DE 垂直平分AC ,则BCD 的度数为()CD A.80 B.75 C.65 D.45A E B19 、如图,△ABC 中,∠C = 90 °,AC = BC,AD 是∠BAC 的平分线,DE ⊥AB 于E ,若AC = 10cm ,则△DBE 的周长等于( )A .10cm B.8cm C .6cm D .9cm20 、已知等腰三角形的两边a,b,满足2a 3b 5 +(2 a+3b-13) 2=0 ,则此等腰三角形的周长为( )A.7 或8B.6 或10C.6 或7D.7 或1021 、小宇同学在一次手工制作活动中,先把一张矩形纸片按图 1 的方式进行折叠,使折痕的左侧部分比右侧部分短1cm ;展开后按图 2 的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm ,再展开后,在纸上形成的两条折痕之间的距离是cm .22 .在下列说法中,正确的是()A、如果两个三角形全等,则它们必是关于直线成轴对称的图形B、如果两个三角形关于某直线成轴对称,那么它们是全等三角形C、等腰三角形是关于底边中线成轴对称的图形D、一条线段是关于经过该线段中点的直线成轴对称的图形23 .若一个图形上所有点的纵坐标不变,横坐标乘以- 1 ,则所得图形与原图形的关系为()A、关于x 轴成轴对称图形B、关于y 轴成轴对称图形C、关于原点成中心对称图形D、无法确定24 如图,已知线段AB 的端点 B 在直线l 上(AB 与l 不垂A直)请在直线l 上另找一点C,使△ABC 是等腰三角形,这l样的点能找( )BA 2 个B 3 个C 4 个D 5 个B25 .如图 B 、C 、D 在一直线上,ΔABC 、ΔADE 是等边三角形,若CE =15cm ,CPCD =6cm ,则AC =,∠ECD =.O AD26 .如图:已知∠AOP= ∠BOP=15 °,PC ∥OA ,PD ⊥OA ,若PC=4 ,PD= ()A .4 B.3 C.2 D.127 .∠AOB 的平分线上一点P 到OA 的距离为5 ,Q 是OB 上任一点,则()A .PQ >5B .PQ≥5C .PQ <5 D.PQ ≤528 .等腰三角形的周长为15cm ,其中一边长为3cm .则该等腰三角形的底长为()A .3cm 或5cm B.3cm 或7cm C .3cm D.5cm29 .如图,在Rt △ABC 中,∠ACB =90 °,∠BAC 的平分线交BC 于D. 过C 点作CG ⊥AB 于G ,交AD 于E. 过D 点作DF ⊥AB 于F. 下列结论:①∠CED =∠CDE ;②SAEC ︰SAEGAC ︰AG ;③∠ADF =2∠ECD ;④SCEDS DFB ;⑤CE =DF. 其中正确结论的序号是【】A.①③④B.①②⑤C.③④⑤D.①③⑤30 .如图,C 为线段AE 上一动点(不与点A、E 重合),在AE 同侧分别作等边三角形ABC 和等边三角形CDE ,AD 与BE 交于点O,AD 与BC 交于点P,BE 与CD 交于点Q,连接PQ .以下六个结论:① AD =BE; ②PQ ∥AE; ③AP =BQ; ④DE =DP; ⑤∠AOB =60°;⑥CO 平分∠AOE. 其中不正确的有【】个A.0 B.1 C .2 D .3三、解答题1 、在网格中作出关于直线m 的相应对称图作出△PNM 关于直线n 的对称图形2 、如图,在所给网格图(每小格均为边长是 1 的正方形)中完成下列各题:(1 )画出格点△ABC (顶点均在格点上)关于直线DE 对称的△A 1B1C1;(2) 在DE 上画出点P,使PB1PC 最小;(3 )在DE 上画出点Q,使QA QC 最小。
专题 轴对称十大重难题型(期末真题精选)(解析版)

专题03 轴对称十大重难题型一.轴对称图形的存在性之格点类(钥匙---对称轴)1.如图,在2×2的方格纸中有一个以格点为顶点的△ABC,则与△ABC成轴对称且以格点为顶点三角形共有()A.3个B.4个C.5个D.6个试题分析:解答此题首先找到△ABC的对称轴,EH、GC、AD,BF等都可以是它的对称轴,然后依据对称找出相应的三角形即可.答案详解:解:与△ABC成轴对称且以格点为顶点三角形有△ABG、△CDF、△AEF、△DBH,△BCG共5个,所以选:C.2.如图,在3×3的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC 成轴对称且也以格点为顶点的三角形,这样的三角形共有5个.试题分析:根据轴对称图形的定义与判断可知.答案详解:解:与△ABC成轴对称且也以格点为顶点的三角形有5个,分别为△ABD,△BCE,△GHF,△EMN,△AMQ,共有5个.所以答案是:5.二.轴对称的性质3.如图,把一张长方形纸片ABCD的一角沿AE折叠,点D的对应点D′落在∠BAC的内部,若∠CAE=2∠BAD′,且∠CAD′=n,则∠DAE的度数为n5+36°(用含n的式子表示).试题分析:由矩形的性质和折叠的性质即可得出答案.答案详解:解:如图,设∠BAD ′=x ,则∠CAE =2x ,由翻折变换的性质可知,∠DAE =∠EAD ′=2x +n ,∵∠DAB =90°,∴4x +2n +x =90°,∴x =15(90°﹣2n ),∴∠DAE =2×15(90°﹣2n )+n =n 5+36°. 所以答案是:n 5+36°. 4.如图,点P 为∠AOB 内部任意一点,点P 与点P 1关于OA 对称,点P 与点P 2关于OB 对称,OP =8,∠AOB =45°,则△OP 1P 2的面积为 32 .试题分析:根据轴对称的性质,可得OP 1、OP 2的长度等于OP 的长,∠P 1OP 2的度数等于∠AOB 的度数的两倍,再根据直角三角形的面积计算公式解答即可.答案详解:解:∵点P 1和点P 关于OA 对称,点P 2和点P 关于OB 对称,∴OP 1=OP =OP 2=8,且∠P 1OP 2=2∠AOB =90°.∴△P 1OP 2是直角三角形,∴△OP 1P 2的面积为12×8×8=32, 所以答案是:32.三.尺规作图:轴对称,角平分,垂直平分线5.已知直线l 及其两侧两点A 、B ,如图.(1)在直线l上求一点P,使P A=PB;(2)在直线l上求一点Q,使l平分∠AQB.(以上两小题保留作图痕迹,标出必要的字母,不要求写作法)试题分析:(1)作线段AB的垂直平分线与l的交点即为所求;(2)作点A关于l的对称点A′,连接BA′并延长交l于点Q,点Q即为所求.答案详解:解:6.已知:如图,∠AOB及M、N两点.请你在∠AOB内部找一点P,使它到角的两边和到点M、N 的距离分别相等(保留作图痕迹).试题分析:点P是∠AOB的平分线与线段MN的中垂线的交点.答案详解:解:点P就是所求的点.(2分)如果能正确画出角平分线和中垂线的给满分7.线段的垂直平分线的性质1:线段垂直平分线上的点与这条线段两个端点的距离相等.如图,△ABC中,AB=AC=16cm,(1)作线段AB的垂直平分线DE,交AB于点E,交AC于点D(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接BD,如果BC=10cm,则△BCD的周长为26cm.试题分析:根据线段的垂直平分线的性质(线段垂直平分线上的点与线段两个端点的距离相等)求解即可求得答案;(1)利用线段垂直平分线的作法进而得出即可;(2)由线段的垂直平分线的性质可得:AD=BD,从而将△BCD的周长转化为:AD+CD+BC,即AC+BC=16+10=26cm.答案详解:解:线段垂直平分线上的点与这条线段两个端点的距离相等,所以答案是:两个端点;相等;(1)如图所示,(2)连接BD,∵DE是AB的垂直平分线,∴AD =BD ,∵△BCD 的周长=BD +DC +BC ,∴△BCD 的周长=AD +DC +BC ,即AC +BC =16+10=26cm .所以答案是:26.8.如图,在正方形网格中,△ABC 的三个顶点分别在正方形网格的格点上,△A ′B ′C ′和△ABC 关于直线l 成轴对称,其中A ′点的对应为A 点.(1)请画出△A ′B ′C ′,并标出相应的字母;(2)若网格中最小正方形的边长为1,求△A ′B ′C ′的面积.试题分析:(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用三角形面积求法得出答案.答案详解:解:(1)如图所示:△A ′B ′C ′,即为所求;(2)△A ′B ′C ′的面积为:12×2×4=4.9.如图,△ABC 的三个顶点在边长为1的正方形网格中,已知A (﹣1,﹣1),B (4,﹣1),C (3,1).(1)画出△ABC 及关于y 轴对称的△A 1B 1C 1;(2)请直接写出以AB 为边且与△ABC 全等的三角形的第三个顶点(不与C 重合)的坐标.试题分析:(1)根据网格结构找出点A、B、C关于y轴的对称点A′、B′、C′的位置,然后顺次连接即可;(2)利用轴对称性确定出另一个点,然后根据平面直角坐标系写出坐标即可.答案详解:解:(1)△A1B1C1如图所示;(2)如图,第三个点的坐标为(0,1)或(0,﹣3)或(3,﹣3).四.坐标的轴对称10.已知点P(a,3),Q(﹣2,b)关于x轴对称,则a+b的值为()A.1B.−1C.5D.﹣5试题分析:关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数得出a,b的值,进而得出a+b的值.答案详解:解:∵点P(a,3),Q(﹣2,b)关于x轴对称,∴a=﹣2,b=﹣3,∴a+b=﹣2﹣3=﹣5.所以选:D.11.已知点P1(﹣1,﹣2)和P2(a,b﹣1)关于y轴对称,则(a+b)2021的值为()A.0B.﹣1C.1D.(﹣3)2021试题分析:根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出a、b的值,然后代入计算即可得解.答案详解:解:∵P1(﹣1,﹣2)和P2(a,b﹣1)关于y轴对称,∴a=1,b﹣1=﹣2,解得a=1,b=﹣1,∴a+b=0,∴(a+b)2021=02021=0.所以选:A.12.若点M与点N关于x轴对称,点M和点P关于y轴对称,点P的坐标为(2,﹣3),那么点N 的坐标为()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)试题分析:作出相关对称后可得点P与点N关于原点对称,那么依据点P的坐标为(2,﹣3),可得点N的坐标.答案详解:解:∵点M与点N关于x轴对称,点M和点P关于y轴对称,∴点N与点P关于原点对称,又∵点P的坐标为(2,﹣3),∴点N的坐标为(﹣2,3),所以选:D.13.已知点A(a﹣5,1﹣2a),解答下列问题:(1)若点A到x轴和y轴的距离相等,求点A的坐标;(2)若点A向右平移若干个单位后,与点B(﹣2,﹣3)关于x轴对称,求点A的坐标.试题分析:(1)直接利用点A在第一象限或第三象限或点A在第二象限或第四象限,分别得出答案;(2)直接利用平移的性质结合关于x轴对称点的性质得出答案.答案详解:解:(1)若点A在第一象限或第三象限,则a﹣5=1﹣2a,解得:a=2,则a﹣5=1﹣2a=﹣3,∴点A 的坐标为(﹣3,﹣3),若点A 在第二象限或第四象限,则a ﹣5+1﹣2a =0,解得a =﹣4,则a ﹣5=﹣9,1﹣2a =9,∴点A 的坐标为(﹣9,9),综上所述,点A 的坐标为(﹣3,﹣3)或(﹣9,9);(2)∵若点A 向右平移若干个单位,其纵坐标不变为(1﹣2a ),又∵点A 向右平移若干个单位后与点B (﹣2,﹣3)关于x 轴对称,∴1﹣2a +(﹣3)=0,a =﹣1,a ﹣5=﹣1﹣5=﹣6,1﹣2a =1﹣2×(﹣1)=3,即点A 的坐标为(﹣6,3).14.已知有序数对(a ,b )及常数k ,我们称有序数对(ka +b ,a ﹣b )为有序数对(a ,b )的“k 阶结伴数对”.如(3,2)的“1阶结伴数”对为(1×3+2,3﹣2)即(5,1).若有序数对(a ,b )(b ≠0)与它的“k 阶结伴数对”关于y 轴对称,则此时k 的值为( )A .﹣2B .−32C .0D .−12 试题分析:根据新定义可得:有序数对(a ,b )(b ≠0)的“k 阶结伴数对”是(ka +b ,a ﹣b ),并根据y 轴对称:横坐标互为相反数,纵坐标相等,可列方程组,从而可解答.答案详解:解:∵有序数对(a ,b )(b ≠0)的“k 阶结伴数对”是(ka +b ,a ﹣b ),∴{a −b =b a +ka +b =0, 解得:k =−32.所以选:B . 五.格点等腰三角形15.如图,在4×3的正方形网格中,点A 、B 分别在格点上,在图中确定格点C ,则以A 、B 、C 为顶点的等腰三角形有 3 个.试题分析:首先由勾股定理可求得AB的长,然后分别从AB=BC,AB=AC,AC=BC去分析求解即可求得答案.答案详解:解:如图,则符合要求的有:C1,C2,C3共3个点;所以答案是:3.16.如图所示的正方形网格中,网格线的交点称为格点.已知点A、B是两格点,若点C也是图中的格点,则使得△ABC是以AB为腰的等腰三角形时,点C的个数是()A.1B.2C.3D.4试题分析:根据AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,答案详解:解:如图,以AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.所以选:D.17.如图是4×4的正方形网格,每个小正方形的顶点称为格点,且边长为1,点A,B均在格点上,在网格中建立平面直角坐标系.如果点C也在此4×4的正方形网格的格点上,且△ABC是等腰三角形,请写出一个满足条件的点C的坐标(﹣2,0),(﹣2,1),(﹣2,2),(2,2),(2,0),(1,0),(1,﹣1),(1,﹣2),;满足条件的点C一共有8个.试题分析:根据题意,画出图形,由等腰三角形的判定找出满足条件的C点,选择正确答案.答案详解:解:满足条件的点C的坐标为(﹣2,0),(﹣2,1),(﹣2,2),(2,2),(2,0),(1,0),(1,﹣1),(1,﹣2),满足条件的点C一共有8个,所以答案是:(﹣2,0),(﹣2,1),(﹣2,2),(2,2),(2,0),(1,0),(1,﹣1),(1,﹣2),8.六.规律类--坐标与图形的变化18.如图,已知正方形ABCD的对角线AC,BD相交于点M,顶点A、B、C的坐标分别为(1,3)、(1,1)、(3,1),规定“把正方形ABCD先沿x轴翻折,再向右平移1个单位”为一次变换,如此这样,连续经过2020次变换后,点M的坐标变为()A.(2022,2)B.(2022,﹣2)C.(2020,2)D.(2020,﹣2)试题分析:首先由正方形ABCD,顶点A(1,3),B(1,1),C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的坐标为:当n为奇数时为(2+n,﹣2),当n为偶数时为(2+n,2),继而求得把正方形ABCD连续经过2015次这样的变换得到正方形ABCD的对角线交点M的坐标.答案详解:解:∵正方形ABCD,顶点A(1,3),B(1,1),C(3,1),∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2+1,﹣2),即(3,﹣2),第2次变换后的点M的对应点的坐标为:(2+2,2),即(4,2),第3次变换后的点M的对应点的坐标为(2+3,﹣2),即(5,﹣2),第n次变换后的点M的对应点的坐标为:当n为奇数时为(2+n,﹣2),当n为偶数时为(2+n,2),∴连续经过2020次变换后,正方形ABCD的对角线交点M的坐标变为(2022,2).所以选:A.19.如图,将边长为1的正方形OABC沿x轴正方向连续翻转2020次,点A依次落在点A1、A2、A3、A4…A2020的位置上,则点A2020的坐标为()A.(2019,0)B.(2019,1)C.(2020,0)D.(2020,1)试题分析:探究规律,利用规律即可解决问题.答案详解:解:由题意A1(0,1),A2(2,1),A3(3,0),A4(3,0),A5(4,1),A6(5,1),A7(6,0),A8(7,0),A9(8,1),…每4个一循环,∵2020÷4=505则2020个应该在x轴,坐标应该是(2019,0),所以选:A.20.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(1,2),则经过第2021次变换后点A的对应点的坐标为()A.(1,﹣2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)试题分析:观察图形可知每四次对称为一个循环组依次循环,用2021除以4,然后根据商和余数的情况确定出变换后的点A所在的象限,然后解答即可.答案详解:解:点A第一次关于y轴对称后在第二象限,点A第二次关于x轴对称后在第三象限,点A第三次关于y轴对称后在第四象限,点A第四次关于x轴对称后在第一象限,即点A回到原始位置,所以,每四次对称为一个循环组依次循环,∵2021÷4=505余1,∴经过第2021次变换后所得的A点与第一次变换的位置相同,在第二象限,坐标为(﹣1,2).所以选:C.七.等腰三角形判定与性质21.如图,在△ABC中,∠ABC的角平分线和∠ACB相邻的外角平分线CD交于点D,过点D作DE∥BC交AB于E,交AC于G,若EG=2,且GC=6,则BE长为8.试题分析:根据角平分线+平行可以证明等腰三角形,所以可得EB=ED,GC=GD,从而求出DE的长,最后求出BE的长.答案详解:解:∵BD平分∠ABC,∴∠ABD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠ABD=∠EDB,∴EB=ED,∵CD平分∠ACF,∴∠ACD=∠DCF,∵DE∥BC,∴∠EDC=∠DCF,∴∠EDC=∠ACD,∴GC=GD=6,∵EG=2,∴ED=EG+GD=2+6=8,∴BE=ED=8,所以答案是:8.22.如图,△ABC中,∠A=∠ACB,CP平分∠ACB,BD,CD分别是△ABC的两外角的平分线,下列结论中:①CP⊥CD;②∠P=12∠A;③BC=CD;④∠D=90°−12∠A;⑤PD∥AC.其中正确的结论是①②④⑤(直接填写序号).试题分析:根据角平分线的定义得到∠PCB=12∠ACB,∠BCD=12∠BCF,根据垂直的定义得到CP⊥CD;故①正确;延长CB,根据角平分线的定义和三角形外角的性质得到∠P=12∠A,故②正确;根据平行线的判定定理得到AB∥CD,推出△ABC是等边三角形,而△ABC中,∠A=∠ACB,于是得到假设不成立,故③错误;根据角平分线的定义得到∠EBD=∠DBC,∠BCD=∠DCF,推出∠ABC=180°﹣2∠DBC,∠ACB=180°﹣2∠DCB,求得∠D=90°−12∠A,故④正确;根据三角形的外角的性质得到∠EBC=∠A+∠ACB,∠A=∠ACB,求得∠EBD=∠A,于是得到PD∥AC.故⑤正确.答案详解:解:∵CP平分∠ACB,CD平分∠BCF,∴∠PCB=12∠ACB,∠BCD=12∠BCF,∵∠ACB+∠BCF=180°,∴∠PCD=∠PCB+∠BCD=12∠ACB+12∠BCF=12(∠ACB+∠BCF)=90°,∴CP⊥CD;故①正确;延长CB,∵BD平分∠CBE,∠CBE=∠ABH,∴BP平分∠ABH,∴∠PBH=∠BCP+∠P,∵∠A+2∠PCB=2∠PBH,∴∠A+2∠PCB=2∠BCP+2∠P,∴∠A=2∠P,即:∠P=12∠A,故②正确;假设BC=CD,∴∠CBD=∠D,∵∠EBD=∠CBD,∴∠EBD=∠D,∴AB∥CD,∴∠DCF=∠A,∵∠ACB=∠A,CD平分∠BCF,∴∠ACB=∠BCD=∠DCF,∴∠A=∠ACB=60°,∴△ABC是等边三角形,而△ABC中,∠A=∠ACB,∴△ABC是等腰三角形,∴假设不成立,故③错误;∵BD、CD分别是△ABC的两个外角∠EBC、∠FCB的平分线,∴∠EBD=∠DBC,∠BCD=∠DCF,∴∠DBC+∠DCB+∠D=180°,∴∠A+∠ABC+∠ACB=180°,而∠ABC=180°﹣2∠DBC,∠ACB=180°﹣2∠DCB,∴∠A+180°﹣2∠DBC+180°﹣2∠DCB=180°,∴∠A﹣2(∠DBC+∠DCB)=﹣180°,∴∠A﹣2(180°﹣∠D)=﹣180°,∴∠A﹣2∠D=180°,∴∠D=90°−12∠A,故④正确;∵∠EBC=∠A+∠ACB,∠A=∠ACB,∴∠A=12∠EBC,∵∠EBD=12∠EBC,∴∠EBD=∠A,∴PD∥AC.故⑤正确;所以答案是:①②④⑤.23.Rt△ABC中,AC=BC,∠ACB=90°,如图,BO、CO分别平分∠ABC、∠ACB,EO∥AB,FO∥AC,若S△ABC=32,则△OEF的周长为8.试题分析:根据已知条件得到BC=8,根据平行线的性质得到∠ABO=∠BOE由角平分线的定义得到∠ABO=∠OBE,等量代换得到∠ABO=∠BOE于是得到BE=OE,则同理可得CE=OE即可得到结论.答案详解:解:∵AC=BC,∠ACB=90°,S△ABC=32,∴12BC2=32,∴BC=8,∵OE∥AB∴∠ABO=∠BOE∵OB平分∠ABC∴∠ABO=∠OBE∴∠ABO=∠BOE∴BE=OE,则同理可得OF=CF,∴△OEF的周长=OE+OF+EF=BE+EF+FC=BC=8.所以答案是:8.24.如图,△ABC中,∠ABC与∠ACB的平分线交于点D,过点D作EF∥BC,分别交AB,AC于点E,F.那么下列结论:①BD=DC;②△BED和△CFD都是等腰三角形;③点D是EF的中点;④△AEF的周长等于AB与AC的和.其中正确的有②④.(只填序号)试题分析:利用角平分线的定义可得∠ABD=∠DBC=12∠ABC,∠ACD=∠DCB=12∠ACB,然后根据∠ABC≠∠ACB,从而可得∠DBC≠∠DCB,进而可得DB≠DC,即可判断①;利用平行线的性质可得∠EDB=∠DBC,∠FDC=∠DCB,从而可得∠ABD=∠EDB,∠ACD=∠FDC,进而利用等角对等边可得ED=EB,FD=FC,即可判断②;根据EB≠FC,可得ED≠FD,即可判断③;利用等量代换可得△AEF的周长=AB+AC,即可判断④.答案详解:解:∵BD平分∠ABC,CD平分∠ACB,∴∠ABD=∠DBC=12∠ABC,∠ACD=∠DCB=12∠ACB,∵∠ABC≠∠ACB,∴∠DBC≠∠DCB,∴DB≠DC,故①不正确;∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∴∠ABD=∠EDB,∠ACD=∠FDC,∴ED=EB,FD=FC,∴△BED和△CFD都是等腰三角形,故②正确;∵EB≠FC,∴ED≠FD,故③不正确;∵EB=ED,FD=FC,∴△AEF的周长=AE+EF+AF=AE+ED+DF+AF=AE+EB+AF+FC=AB+AC,故④正确;综上所述:上列结论其中正确的有②④,所以答案是:②④.八.等边三角形的判定与性质25.如图,已知AB=AC,AD平分∠BAC,∠DEB=∠EBC=60°,若BE=5,DE=2,则BC=7.试题分析:作出辅助线后根据等腰三角形的性质得出△BEM为等边三角形,得出BM=EM=BE=5,从而得出BN的长,进而求出答案.答案详解:解:延长ED交BC于M,延长AD交BC于N,如图,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=CN,∵∠EBC=∠DEB=60°,∴△BEM为等边三角形,∴BM=EM=BE=5,∠EMB=60°,∵DE=2,∴DM=3,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=30°,∴NM=12DM=32,∴BN=BM﹣MN=5−32=72,∴BC=2BN=7.所以答案是:7.26.已知:如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求证:AD=BE;(2)求∠DOE的度数;(3)求证:△MNC是等边三角形.试题分析:(1)根据等边三角形性质得出AC =BC ,CD =CE ,∠ACB =∠DCE =60°,求出∠ACD =∠BCE ,证△ACD ≌△BCE 即可;(2)根据全等求出∠ADC =∠BEC ,求出∠ADE +∠BED 的值,根据三角形的内角和定理求出即可;(3)求出AM =BN ,根据SAS 证△ACM ≌△BCN ,推出CM =CN ,求出∠NCM =60°即可. 答案详解:解:(1)∵△ABC 、△CDE 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠BCD =∠DCE +∠BCD ,∴∠ACD =∠BCE ,在△ACD 和△BCE 中{AC =BC ∠ACD =∠BCE CD =CE,∴△ACD ≌△BCE ,∴AD =BE .(2)解:∵△ACD ≌△BCE ,∴∠ADC =∠BEC ,∵等边三角形DCE ,∴∠CED =∠CDE =60°,∴∠ADE +∠BED =∠ADC +∠CDE +∠BED ,=∠ADC +60°+∠BED ,=∠CED +60°,=60°+60°,=120°,∴∠DOE =180°﹣(∠ADE +∠BED )=60°,答:∠DOE 的度数是60°.(3)证明:∵△ACD ≌△BCE ,∴∠CAD =∠CBE ,AD =BE ,AC =BC又∵点M 、N 分别是线段AD 、BE 的中点,∴AM =12AD ,BN =12BE ,∴AM =BN ,在△ACM 和△BCN 中{AC =BC ∠CAM =∠CBN AM =BN,∴△ACM ≌△BCN ,∴CM =CN ,∠ACM =∠BCN ,又∠ACB =60°,∴∠ACM +∠MCB =60°,∴∠BCN +∠MCB =60°,∴∠MCN =60°,∴△MNC 是等边三角形.27.如图,在△ABC 中,∠ACB =90°,∠A =30°,AB 的垂直平分线分别交AB 和AC 于点D ,E .(1)求证:AE =2CE ;(2)连接CD ,请判断△BCD 的形状,并说明理由.试题分析:(1)连接BE,由垂直平分线的性质可求得∠EBC=∠ABE=∠A=30°,在Rt△BCE 中,由直角三角形的性质可证得BE=2CE,则可证得结论;(2)由垂直平分线的性质可求得CD=BD,且∠ABC=60°,可证明△BCD为等边三角形.答案详解:(1)证明:连接BE,∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC﹣∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE;(2)解:△BCD是等边三角形,理由如下:连接CD.∵DE垂直平分AB,∴D为AB中点,∵∠ACB=90°,∴CD=BD,∵∠ABC=60°,∴△BCD是等边三角形.九.直角三角形斜中线的灵活运用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BCAE D轴对称填空选择 一、填空题1.角是轴对称图形,其对称轴是________________________. 2.点M (-2,1)关于x 轴对称点N 的坐标是_____________.3.如图,在△ABC 中,AB =AC =14cm ,边AB 的中垂线交AC 于D ,且△BCD 的周长为24cm ,则BC =__________. 4. 下列数中,成轴对称图形的有___________个5.等腰△ABC 中,AB =AC =10,∠A =30°,则腰AB 上的高等于___________.6.一个等腰三角形的一个外角等于110°,则这个三角形的三个内角分别是________________. 7.一辆汽车牌在水中的倒影为, 则该车牌照号码为 .8.仔细观察下图的图案,并按规律在横线上画出合适的图形.9...(.1.)等腰三角形的一个内角等............于.130...°,则其余两个角分别为.......... ;.(.2.)等腰三角形的一个内角等............于.70..°,则其余两个角分别为.......... ..10....如.图.1.4.-.11..2.所示..,.△.AB ..C .是等边三角形......,.∠.1.=.∠.2.=.∠.3.,.则.∠.BE ..C .的度数为....C=90....°,.D .E .垂直平...分.A .B .,.交.A .B .于.E .,.交. BC .. 于.D .,.∠.1=..21∠.1.1..如图所示,......在.△.AB ..C .中.,.∠.2.,.则.∠.B=..12....如.图.14..-.11..1.所示,...在.△.AB ..C .中.,.AB=A ....C .,.B .D .是角平分线,......若.∠.BDC=69......°,.则.∠.A .等于.. 13、如图,在△ABC 中,∠C=90°,AB 的垂直平分线交BC 于D ,若∠B=20°,则∠DAC= 14、等腰三角形的周长是25 cm,一腰上的中线将周长分为3∶2两部分,则此三角形的底边长为____ _. 15.点(2,5)关于直线x =1的对称点的坐标为__________.16.已知点A (x ,-4)与点B (3,y )关于y 轴对称,那么x +y 的值为_______.17....如.图.1.4.-.11..6.所示..,.∠.A=15....°,.AB=BC=CD=DE=E .............F .,.则.∠.DEF=....______......_...18....如.图.1.4.-.11..7.所示,...在.△.AB ..C .中.,.∠.C=90....°,.A .D .平.分.∠.BA ..C .,.交.B .C .于.点.D .,.CD=...3.,.BD=...5.,则..点.D .到.A .B .的距离...为. ..19....如.图.1.4.-.11..8.所示,...在.△.AB ..C .中.,.AB=A ....C .,.∠.A=60....°,.B .E .⊥.A .C .于.E .,延..长.B .C .到.D .,.使.CD=C ....E .,连..接.D .E .,.若.△.AB ..C .的周..长.是.2.4.,.BE=...a .,.则.△.BD ..E .的周长是.... ..20.已知:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 .21.如图,Rt △ABC ,∠C =90°,∠B =30°,BC =8,D 为AB 中点,P 为BC 上一动点,连接AP 、DP,则AP +DP 的最小值是22.如图,点B 、D 、F 在AN 上,C 、E 在AM 上,且AB =BC =CD =ED =EF,∠A =20o,则∠FEB =________度. 二、选择题1...等腰三角形的一边等.........于.5.,一边等....于.1.2.,则它的周长......为.( )..A.22....B.29....C.2...2.或.29..D.17....2...如.图.1.4.-.11..0.所示,图中不是轴对称图形的.............是.( )..3.已知点A (-2,1)与点B 关于直线x =1成轴对称,则点B 的坐标为( )A.(4,1)B.(4,-1)C.(-4,1)D.(-4,-1)4.如图所示,将一张正方形纸片经过两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是( ).P2P 1PNMOBA5.下列轴对称图形中,对称轴条数最少的是( ) A .等腰直角三角形B .正方形C .等边三角形D .长方形6.已知点P (-2,1),那么点P 关于x 轴对称的点P 的坐标是( ) A .(-2,1) B .(-2,-1) C .(-1,2) D .(2, 1)7.桌面上有A 、B 两球,若要将B 球射向桌面任意一边,使一次反弹后击中A 球,则如图所示8个点中,可以瞄准的点有( )个. A . 1 B . 2 C .4 D .68、.下列几何图形中,是轴对称图形且对称轴的条数大于1的有( )⑴ 长方形; ⑵正方形; ⑶圆; ⑷三角形; ⑸线段; ⑹射线; ⑺直线. A. 3个 B. 4个 C. 5个 D. 6个9.下列命题中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看着是以它的垂直平分线为对称轴的轴对称图形. 正确的说法有( )个A .1个B .2个C .3个D .4个10.如图:等边三角形ABC 中,BD =CE ,AD 与BE 相交于点P ,则∠APE 的度数是 ( ) A .45° B .55° C .60° D .75° 11. 等腰梯形两底长为4cm 和10cm ,面积为21cm 2,则 这个梯形较小 的底角是( )度. A .45°B .30°C .60°D .90°12.下列图形中:①角,②正方形,③梯形,④圆,⑤菱形,⑥平行四边形,其中是轴对称图形的有( )A 、2个B 、3个C 、4个D 、5个13.小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是( )A 、21:10B 、10:21C 、10:51D 、12:0114.如图所示,共有等腰三角形( )A 、5个B 、4个C 、3个D 、2个15.先将正方形纸片对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的ED CBA 36367272︰PAECB DADM对应点为H ,沿AH 和DH 剪下,这样剪得的三角形中 ( ) A .AD DH AH ≠= B .AD DH AH == C .DH AD AH ≠= D .AD DH AH ≠≠ 16.平面内点A (-1,2)和点B (-1,6)的对称轴是( )A 、x 轴B 、y 轴C 、直线y =4D 、直线x =-117. 如图,在△ABC 中,∠ACB=100°,AC=AE ,BC=BD ,则∠DCE 的度数为( ) A .20° B .25° C .30° D .40°18. 如图,ABC △中,AB AC =,30A ∠=,DE 垂直平分AC , 则BCD ∠的度数为( )A.80 B.75 C.65 D.4519、如图,△ABC 中,∠C = 90°,AC = BC ,AD 是∠BAC 的平分线,DE ⊥AB 于E , 若AC = 10cm ,则△DBE 的周长等于( )A .10cmB .8cmC .6cmD .9cm2.0.、已知等腰三角形的两边...........a .,.b .,满足...532+-b a +(2...a .+3b ...-.13)...2.=.0.,则此等腰三角形的周长...........为.( ) ..A...7.或.8.B...6.或.10..C...6.或.7.D...7.或.10..21、小宇同学在一次手工制作活动中,先把一张矩形纸片按图1的方式进行折叠,使折痕的左侧部分比右侧部分短1cm ;展开后按图2的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm ,再展开后,在纸上形成的两条折痕之间的距离是 cm .22.在下列说法中,正确的是( )A 、如果两个三角形全等,则它们必是关于直线成轴对称的图形B 、如果两个三角形关于某直线成轴对称,那么它们是全等三角形C 、等腰三角形是关于底边中线成轴对称的图形D 、一条线段是关于经过该线段中点的直线成轴对称的图形23.若一个图形上所有点的纵坐标不变,横坐标乘以-1,则所得图形与原图形的关系为( )A 、关于x 轴成轴对称图形B 、关于y 轴成轴对称图形C 、关于原点成中心对称图形D 、无法确定24如图,已知线段AB 的端点B 在直线 l 上(AB 与 l 不垂直)请在直线 l 上另找一点C ,使△ABC 是等腰三角形,这样的点能找( )AABCDEA B DECDCAA 2个 B 3个 C 4个 D 5个2.5..如..图.B .、.C .、.D .在一直线上.....,.Δ.AB ..C .、.Δ.AD ..E .是等边三角形,.......若.C .E .=.15c ...m .,.C .D .=.6c ..m .,.则.A .C .=.____...._.,.∠.EC ..D .=.____...._...26.如图:已知∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,PD= ( )A .4B .3C .2D .127.∠AOB 的平分线上一点P 到OA 的距离为5,Q 是OB 上任一点,则 ( )A .PQ >5B .PQ ≥5C .PQ <5D .PQ ≤528.等腰三角形的周长为15cm ,其中一边长为3cm .则该等腰三角形的底长为 ( ) A .3cm 或5cm B .3cm 或7cm C .3cm D .5cm29.如图,在Rt △ABC 中,∠ACB = 90°,∠BAC 的平分线交 BC 于D. 过C 点作CG ⊥AB 于G ,交AD 于E. 过D 点作DF ⊥AB 于F.下列结论:①∠CED =∠CDE ;②AEC S ∆︰AC S AEG =∆︰AG ;③∠ADF =2∠ECD ; ④DFB CED S S ∆∆=;⑤CE =DF. 其中正确结论的序号是【 】A .①③④B .①②⑤C .③④⑤D .①③⑤30.如图,C 为线段AE 上一动点(不与点A 、E 重合),在AE 同侧分别作等边三角形ABC 和等边三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下六个结论:①AD =BE;②PQ ∥AE;③AP =BQ;④DE =DP; ⑤∠AOB =60°;⑥CO 平分∠AOE.其中不正确的有【 】个A .0B .1C .2D .320、解答题1、在网格中作出关于直线m 的相应对称图 作出△PNM 关于直线n 的对称图形BADP OC2、如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题: (1)画出格点△ABC (顶点均在格点上)关于直线DE 对称的△A 1B 1C 1; 画出点P ,使PC PB +1最小;(2)在DE 上(3)在DE 上画出点Q ,使QC QA +最小。