高数下册积分重点

合集下载

大一下高数下册知识点

大一下高数下册知识点

高等数学下册知识点第八章 空间解析几何与向量代数(一) 向量线性运算定理1:设向量a ≠0,则向量b 平行于a 的充要条件是存在唯一的实数λ,使 b =λa1、 线性运算:加减法、数乘;2、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式;3、 利用坐标做向量的运算:设),,(z y x a a a a =,),,(z y x b b b b =;则 ),,(z z y y x x b a b a b a b a ±±±=±, ),,(z y x a a a a λλλλ= ;4、 向量的模、方向角、投影:1) 向量的模:222z y x r ++= ;2) 两点间的距离公式:212212212)()()(z z y y x x B A -+-+-=3) 方向角:非零向量与三个坐标轴的正向的夹角γβα,,4) 方向余弦:rz r y r x ===γβαcos ,cos ,cos 5) 投影:ϕcos Pr a a j u=,其中ϕ为向量a 与u的夹角;(二) 数量积,向量积1、 数量积:θcos b a b a=⋅12a a a =⋅2⇔⊥b a 0=⋅b a2、 向量积:b a c⨯=大小:θsin b a ,方向:c b a,,符合右手规则 10 =⨯a a 2b a //⇔0 =⨯b a运算律:反交换律 b a a b⨯-=⨯(三) 曲面及其方程 1、 曲面方程的概念:0),,(:=z y x f S2、 旋转曲面:yoz 面上曲线0),(:=z y f C ,绕y 轴旋转一周:0),(22=+±z x y f 绕z 轴旋转一周:0),(22=+±z y x f3、 柱面:0),(=y x F 表示母线平行于z 轴,准线为⎪⎩⎪⎨⎧==0),(z y x F 的柱面4、 二次曲面1) 椭圆锥面:22222z b y a x =+ 2) 椭球面:1222222=++cz b y a x旋转椭球面:1222222=++cz a y a x3) 单叶双曲面:1222222=-+c z b y a x4) 双叶双曲面:1222222=--czb y a x5) 椭圆抛物面:z by a x =+22226) 双曲抛物面马鞍面:z b y a x =-22227) 椭圆柱面:12222=+b ya x8) 双曲柱面:12222=-b y a x9) 抛物柱面:ay x =2 (四) 空间曲线及其方程1、 一般方程:⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F2、 参数方程:⎪⎪⎩⎪⎪⎨⎧===)()()(t z z t y y t x x ,如螺旋线:⎪⎪⎩⎪⎪⎨⎧===bt z t a y t a x sin cos3、 空间曲线在坐标面上的投影⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F ,消去z ,得到曲线在面xoy 上的投影⎪⎩⎪⎨⎧==00),(z y x H (五) 平面及其方程1、 点法式方程:0)()()(000=-+-+-z z C y y B x x A法向量:),,(C B A n =,过点),,(000z y x2、 一般式方程:0=+++D Cz By Ax截距式方程:1=++czb y a x 3、 两平面的夹角:),,(1111C B A n = ,),,(2222C B A n =,4、 点),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: (六) 空间直线及其方程1、 一般式方程:⎪⎩⎪⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A2、 对称式点向式方程:p z z n y y m x x 000-=-=-方向向量:),,(p n m s = ,过点),,(000z y x3、 参数式方程:⎪⎪⎩⎪⎪⎨⎧+=+=+=pt z z nty y mt x x 0004、 两直线的夹角:),,(1111p n m s = ,),,(2222p n m s =,5、 直线与平面的夹角:直线与它在平面上的投影的夹角,第九章 多元函数微分法及其应用(一) 基本概念1、 距离,邻域,内点,外点,边界点,聚点,开集,闭集,连通集,区域,闭区域,有界集,无界集;2、 多元函数:1定义:设n 维空间内的点集D 是R 2的一个非空子集,称映射f :D →R 为定义在D 上的n 元函数;当n ≥2时,称为多元函数;记为U=fx 1,x 2,…,x n ,x 1,x 2,…,x n ∈D;3、 二次函数的几何意义:由点集D 所形成的一张曲面;如z=ax+by+c 的图形为一张平面,而z=x 2+y 2的图形是旋转抛物线;4、 极限:1定义:设二元函数fp=fx,y 的定义域D,p0x0,y0是D 的聚点D,如果存在函数A 对于任意给定的正数ε,总存在正数δ,使得当点px,y ∈D ∩∪p0,δ时,都有Ⅰfp-A Ⅰ=Ⅰfx,y-A Ⅰ﹤ε成立,那么就称常数A 为函数fx,y 当x,y →x 0,y 0时的极限,记作多元函数的连续性与不连续的定义5、 有界闭合区域上二元连续函数的性质:1在有界闭区域D 上的多元连续函数,必定在D 上有界,且能取得它的最大值和最小值;2在有界区域D 上的多元连续函数必取得介于最大值和最小值之间的任何值; 6、 偏导数:设有二元函数z=fx,y,点x 0,y 0是其定义域D 内一点;把y 固定在y0而让x 在x0有增量△x,相应地函数z=fx,y 有增量称为对x/y 的偏增量如果△z 与△x/△y 之比当△x →0/△y →0时的极限存在,那么此极限值称为函数z=fx,y 在x0,y0处对x/y 的偏导数记作xy x f y x x f y x f x x ∆-∆+=→∆), (), (lim ),(0000000 7、 混合偏导数定理:如果函数的两个二姐混合偏导数f xy x,y 和f yx x,y 在D内连续,那么在该区域内这两个二姐混合偏导数必相等;8、 方向导数: βαcos cos yfx f l f ∂∂+∂∂=∂∂其中βα,为l的方向角;9、 全微分:如果函数z=fx, y 在x, y 处的全增量△z=fx △x,y △y-fx,y 可以表示为△z=A △x+B △y+o ρ,其中A 、B 不依赖于△x, △y,仅与x,y 有关, 当Ρ→0,此时称函数z=fx, y 在点x,y 处可微分,A △x+ B △y 称为函数z=fx, y 在点x, y 处的全微分,记为 (二) 性质1、 函数可微,偏导连续,偏导存在,函数连续等概念之间的关系:微分法1) 定义: u x 2) 复合函数求导:链式法则 z若(,),(,),(,)zf u v u u x y v v x y ===,则 v yz z u z v x u x v x ∂∂∂∂∂=⋅+⋅∂∂∂∂∂,z z u z vy u y v y∂∂∂∂∂=⋅+⋅∂∂∂∂∂ 3) 隐函数求导:两边求偏导,然后解方程组 (三) 应用充分条件1、 极值1) 无条件极值:求函数),(y x f z =的极值解方程组 ⎪⎩⎪⎨⎧==00yx f f 求出所有驻点,对于每一个驻点),(00y x ,令),(00y x f A xx =,),(00y x f B xy =,),(00y x f C yy =,① 若02>-B AC ,0>A ,函数有极小值, 若02>-B AC ,0<A ,函数有极大值; ② 若02<-B AC ,函数没有极值; ③ 若02=-B AC ,不定;2) 条件极值:求函数),(y x f z =在条件0),(=y x ϕ下的极值 令:),(),(),(y x y x f y x L λϕ+=——— Lagrange 函数解方程组 ⎪⎪⎩⎪⎪⎨⎧===0),(00y x L L y x ϕ2、 几何应用1) 曲线的切线与法平面曲线⎪⎪⎩⎪⎪⎨⎧===Γ)()()(:t z z t y y t x x ,则Γ上一点),,(000z y x M 对应参数为0t 处的 切线方程为:)()()(00000t z z z t y y y t x x x '-='-='- 法平面方程为:0))(())(())((000000=-'+-'+-'z z t z y y t y x x t x2) 曲面的切平面与法线曲面0),,(:=∑z y x F ,则∑上一点),,(000z y x M 处的切平面方程为:法线方程为:),,(),,(),,(000000000000z y x F z z z y x F y y z y x F x x z y x -=-=-第十章 重积分(一) 二重积分1、 定义:∑⎰⎰=→∆=nk k k kDf y x f 1),(lim d ),(σηξσλ2、 性质:6条3、 几何意义:曲顶柱体的体积;4、 计算: 1) 直角坐标⎭⎬⎫⎩⎨⎧≤≤≤≤=b x a x y x y x D )()(),(21ϕϕ,⎭⎬⎫⎩⎨⎧≤≤≤≤=d y c y x y y x D )()(),(21φφ,2) 极坐标 (二) 三重积分 1、 定义: ∑⎰⎰⎰=→Ω∆=nk k k k kv f v z y x f 1),,(limd ),,(ζηξλ2、 性质:3、 计算:1) 直角坐标⎰⎰⎰⎰⎰⎰=ΩDy x z y x z z z y x f y x v z y x f ),(),(21d ),,(d d d ),,( -------------“先一后二”⎰⎰⎰⎰⎰⎰=ΩZD bay x z y x f z v z y x f d d ),,(d d ),,( -------------“先二后一” 2) 柱面坐标⎪⎪⎩⎪⎪⎨⎧===zz y x θρθρsin cos ,(,,)d (cos ,sin ,)d d d f x y z v f z z ρθρθρρθΩΩ=⎰⎰⎰⎰⎰⎰3) 球面坐标 (三) 应用 曲面D y x y x f zS ∈=),(,),(:的面积:第十二章 无穷级数(一) 常数项级数 1、 定义:1无穷级数:+++++=∑∞=n n nu u u u u3211部分和:n n k kn u u u u uS ++++==∑= 3211,正项级数:∑∞=1n n u ,0≥n u交错级数:∑∞=-1)1(n n n u ,0≥n u 2级数收敛:若S S n n =∞→lim 存在,则称级数∑∞=1n n u 收敛,否则称级数∑∞=1n n u 发散 3绝对收敛:∑∞=1n n u 收敛,则∑∞=1n n u 绝对收敛;条件收敛:∑∞=1n n u 收敛,而∑∞=1n n u 发散,则∑∞=1n n u 条件收敛;定理:若级数∑∞=1n n u 绝对收敛,则∑∞=1n n u 必定收敛;2、 性质:1) 级数的每一项同乘一个不为零的常数后,不影响级数的收敛性; 2) 级数∑∞=1n n a 与∑∞=1n n b 分别收敛于和s 与σ,,则∑∞=±1)(n n nb a收敛且,其和为s+σ3) 在级数中任意加上、去掉或改变有限项,级数仍然收敛;4) 级数收敛,任意对它的项加括号后所形成的级数仍收敛且其和不变;5) 必要条件:级数∑∞=1n n u 收敛即0lim =∞→n n u . 3、 审敛法正项级数:∑∞=1n n u ,0≥n u1) 定义:S S n n =∞→lim 存在; 2)∑∞=1n nu收敛⇔{}nS 有界;3) 比较审敛法:∑∞=1n n u ,∑∞=1n n v 为正项级数,且),3,2,1( =≤n v u n n若∑∞=1n n v 收敛,则∑∞=1n n u 收敛;若∑∞=1n n u 发散,则∑∞=1n n v 发散.4) 比较法的推论:∑∞=1n n u ,∑∞=1n n v 为正项级数,若存在正整数m ,当mn>时,n n kv u ≤,而∑∞=1n n v 收敛,则∑∞=1n n u 收敛;若存在正整数m,当mn >时,n n kv u ≥,而∑∞=1n n v 发散,则∑∞=1n n u 发散.做题步骤:①找比较级数等比数列,调和数列,p 级数1/n p ;②比较大小;③是否收敛;5) 比较法的极限形式:设∑∞=1n n u ,∑∞=1n n v 为正项级数,1若)0( lim +∞<≤=∞→l l v u n nn ,而∑∞=1n n v 收敛,则∑∞=1n n u 收敛; 2若0lim >∞→n n n v u 或+∞=∞→nnn v u lim ,而∑∞=1n n v 发散,则∑∞=1n n u 发散. 6) 比值法:∑∞=1n n u 为正项级数,设l u u nn n =+∞→1lim ,则当1<l 时,级数∑∞=1n n u 收敛;则当1>l 时,级数∑∞=1n n u 发散;当1=l 时,级数∑∞=1n n u 可能收敛也可能发散.7) 根值法:∑∞=1n n u 为正项级数,设l u n nn =∞→lim ,则当1<l 时,级数∑∞=1n n u 收敛;则当1>l 时,级数∑∞=1n n u 发散;当1=l 时,级数∑∞=1n n u 可能收敛也可能发散.8) 极限审敛法:∑∞=1n n u 为正项级数,若0lim >⋅∞→n n u n 或+∞=⋅∞→n n u n lim ,则级数∑∞=1n n u 发散;若存在1>p ,使得)0( lim +∞<≤=⋅∞→l l u n n pn ,则级数∑∞=1n n u 收敛.交错级数:莱布尼茨审敛法:交错级数:∑∞=-1)1(n n nu ,0≥n u 满足:),3,2,1( 1 =≤+n u u n n ,且0lim =∞→n n u ,则级数∑∞=-1)1(n n n u 收敛;任意项级数:∑∞=1n nu绝对收敛,则∑∞=1n nu收敛;常见典型级数:几何级数:⎪⎩⎪⎨⎧≥<∑∞=1 1 0q q aq n n发散,收敛, p -级数:⎪⎩⎪⎨⎧≤>∑∞=1p 1 11发散,收敛,p n n p(二) 函数项级数1、 定义:函数项级数∑∞=1)(n n x u ,收敛域,收敛半径,和函数;2、 幂级数:∑∞=0n nnx a收敛半径的求法:ρ=+∞→nn n a a 1lim ,则收敛半径 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=∞++∞=+∞<<=0 , ,00 ,1ρρρρR。

高等数学(下册)线积分要点总结

高等数学(下册)线积分要点总结
知道弧线l的线密度对坐标的曲线积分积分路径路径的数学描述计算公式和典型例题对应曲线正向化成一元函数积分计算公式
线积分要点总结
对弧长的曲线积分 积分路径 积分路径 L 路径的数学描述 平面路径 计算公式和典型例题
L : y ( x) ,( x ) x (t ) ( t ) L: ( ) y t

L
f ( x, y, z )ds f ( (t ), (t ), (t ))


2 (t ) 2 (t ) 2 (t )dt
典型题:130 页例 2、3;131 页,作业题 3 题(5,6,7)。
路径对称性和函数奇偶性:路径 L 关于 X 轴对称,函数关于 Y 是奇函数;路径 L 关于 XOY 平面对称,函数关于 Z 函数奇函数;积分都是 0。 应用:知道弧线 L 的线密度 ( x, y, z ) ,求 L 的质量,公式: 对坐标的曲线积分 积分路径 L 路径的数学描述 平面路径: 计算公式和典型例题 化成一元函数积分,计算公式: 典型题:137 页,例 1,2,3,4z ) ds
L : y ( x) , ( x 从 到 对应曲线正向) x (t ) L: y (t ) ( t 从 到 对应曲线正向)
空间路径:
x (t ) L : y (t ) z (t ) ( t 从 到 对应曲线正向)
x (t ) L : y (t ) ( t ) z (t )

L
f ( x, y ) ds f ( x, y ( x)) 1 y '2 ( x) dx
a
b
典型题:130 页例 1;131 页,作业题 3 题(2,3,4)

高数下册常用常见知识点

高数下册常用常见知识点

高数下册常用常见知识点高等数学下册常用知识点第八章:空间解析几何与向量代数一、向量及其线性运算1.向量的概念及基本性质:包括向量相等、单位向量、零向量、向量平行、共线、共面等基本概念。

2.向量的线性运算:包括加减法和数乘。

3.空间直角坐标系:包括坐标轴、坐标面、卦限和向量的坐标分解式等。

4.利用坐标进行向量的运算:设向量a=(ax。

ay。

az),向量b=(bx。

by。

bz),则a±b=(ax±bx。

ay±by。

az±bz),λa=(λax。

λay。

λaz)。

5.向量的模、方向角、投影:包括向量的模、两点间的距离公式、方向角、方向余弦和投影等。

二、数量积和向量积1.数量积:包括数量积的概念、性质和计算公式等。

2.向量积:包括向量积的概念、性质和计算公式等。

三、曲面及其方程1.曲面方程的概念:包括曲面方程的定义和基本性质等。

2.旋转曲面:包括旋转曲面的定义、方程和旋转后方程的计算等。

3.柱面:包括柱面的特点、方程和母线的概念等。

4.二次曲面:包括椭圆锥面的方程和图形等。

2.椭球面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$3.旋转椭球面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$4.单叶双曲面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$5.双叶双曲面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=-1$6.椭圆抛物面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=z$7.双曲抛物面(马鞍面):$\frac{x^2}{a^2}-\frac{y^2}{b^2}=z$8.椭圆柱面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$9.双曲柱面:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$10.抛物柱面:$2x=ay^2$空间曲线及其方程:1.参数方程:$\begin{cases}x=x(t)\\y=y(t)\\z=z(t)\end{cases}$,如螺旋线:$\begin{cases}x=a\cos t\\y=a\sin t\\z=bt\end{cases}$2.一般方程:$F(x,y,z)=0$,消去$z$,得到曲线在面$xoy$上的投影。

高数下册积分重点

高数下册积分重点

微积分下册常见六种积分考试重点二重积分、三重积分第一型曲线积分、曲面积分第二型曲线积分、曲面积分二重积分/累次积分⎰⎰Dd y x f σ),(1)⎰⎰D在有界闭区域D 上进行积分的积分符号;D Oxy 平面上的有界闭区域,积分区域;f (x,y )被积函数(其在D 上连续才可积),比如可以是区域D 的密度大小,也可以表示底面是D 的曲顶柱体的高。

2)d σ Oxy 平面上微小区域面积,面积元素(d 微分;σ D 中微小区域,微小曲顶柱体的底面积)。

3)微小面质量=微小面密度×微小面积;微小曲顶柱体面积=微小曲顶柱体高×微小曲顶柱体底面长度;f (x,y )d σ 微小面质量或者微小面积,被积表达式。

4)σd y x f D⎰⎰),( 曲面D 的质量,曲顶柱体面积。

此处应注意:f (x,y )>0时,二重积分积分的现实意义才成立。

5)的面积。

即为时,注意:当D D d y x f y x f D)(),(1),(σσ=≡⎰⎰6)二重积分的计算:化二重积分为二次积分{}{}⎰⎰⎰⎰⎰⎰⎰⎰=≤≤≤≤==≤≤≤≤==)()(21)()(212121),(),(,),()(),(),(),(,),()(),()1y x y x baDx y x y ba Ddxy x f dy d y x f b y a y x x y x y x D dy y x f dx d y x f b x a x y y x y y x D dxdyd σσσ当当型域条件下, {}⎰⎰⎰⎰⎰⎰==≤≤≤≤=⎩⎨⎧===⨯=)()(2121)sin ,cos ()sin ,cos (),(),()(),(,sin cos )2x r x r DDrdrr r f d dr rd r r f d y x f r r r r D r y r x drrd dr rd d θθθθθθσβθαθθθθθθθσβα极坐标条件下, ⎰⎰⎰⎰'=≠∂∂∂∂∂∂∂∂=∂∂='→⎩⎨⎧===D DdudvJ v u y v u x f d y x f vy uyv xu xv u y x J D D v u y y v u x x D dudvJ d )),(),,((),(0),(),(,,),(),()3σσ令对于区域换元条件下,三重积分dV z y x f ⎰⎰⎰Ω),,(1)⎰⎰⎰Ω在有界闭区域Ω上进行积分的积分符号;Ω Oxyz 空间中的有界闭区域,积分区域,代表一几何体;f (x,y,z ) 被积函数(其在Ω上连续才可积),可以是区域Ω的密度大小。

积分知识点总结公式

积分知识点总结公式

积分知识点总结公式一、基本概念1. 定积分定积分是对函数f(x)在区间[a, b]上积分的概念,表示为∫f(x)dx。

它的几何意义是函数f(x)与x轴所围成的面积。

定积分的概念可以表示成:∫f(x)dx = lim[n→∞]∑[i=1]ⁿ f(xᵢ)Δx其中,Δx = (b - a)/n,xᵢ = a + iΔx。

求解定积分通常使用牛顿-莱布尼茨公式:∫[a, b]f(x)dx = F(b) - F(a)其中,F(x)是f(x)的不定积分。

2. 不定积分不定积分是对函数f(x)的积分的概念,表示为∫f(x)dx。

它的几何意义是求解函数f(x)的原函数F(x)。

求解不定积分的常用方法包括换元法、分部积分法、特殊积分法等。

3. 曲线的长、面积、体积通过积分的方法可以求解曲线的长度、曲线围成的面积以及体积。

曲线的长度可以表示成:L = ∫[a, b]√(1 + (dy/dx)²)dx曲线围成的面积可以表示成:S = ∫[a, b]f(x)dx体积可以表示成:V = ∫[a, b]A(x)dx其中A(x)是截面积。

二、常见积分公式1. 基本积分公式基本积分公式包括:∫xⁿdx = (1/(n+1))x^(n+1) + C,其中n≠-1∫eˣdx = eˣ + C∫aˣdx = (1/lna)aˣ + C,其中a>0,a≠1∫sinxdx = -cosx + C∫cosxdx = sinx + C∫sec²xdx = tanx + C∫csc²xdx = -cotx + C∫secxtanxdx = secx + C∫cscxcotxdx = -cscx + C∫1/(1+x²)dx = arctanx + C∫1/√(1-x²)dx = arcsinx + C∫1/(x²+a²)dx = (1/a)arctan(x/a) + C2. 分部积分公式分部积分公式是对两个函数的积分的概念,表示为∫u(x)v'(x)dx = u(x)v(x) - ∫v(x)u'(x)dx。

高等数学积分知识点总结

高等数学积分知识点总结

高等数学积分知识点总结高等数学积分知识点总结漫长的学习生涯中,很多人都经常追着老师们要知识点吧,知识点在教育实践中,是指对某一个知识的泛称。

相信很多人都在为知识点发愁,下面是店铺整理的高等数学积分知识点总结,仅供参考,希望能够帮助到大家。

高等数学积分知识点总结1一、不定积分计算方法1. 凑微分法2. 裂项法3. 变量代换法1) 三角代换2) 根幂代换3) 倒代换4. 配方后积分5. 有理化6. 和差化积法7. 分部积分法(反、对、幂、指、三)8. 降幂法二、定积分的计算方法1. 利用函数奇偶性2. 利用函数周期性3.参考不定积分计算方法三、定积分与极限1. 积和式极限2. 利用积分中值定理或微分中值定理求极限3. 洛必达法则4. 等价无穷小四、定积分的估值及其不等式的应用1. 不计算积分,比较积分值的大小1) 比较定理:若在同一区间[a,b]上,总有f(x)>=g(x),则 >=()dx2) 利用被积函数所满足的不等式比较之 a)b) 当0<x<兀 2时,2="" 兀<<1<="" p="">2. 估计具体函数定积分的值积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为m则M(b-a)<= <=M(b-a)3. 具体函数的定积分不等式证法1) 积分估值定理2) 放缩法3) 柯西积分不等式≤ %4. 抽象函数的定积分不等式的证法1) 拉格朗日中值定理和导数的有界性2) 积分中值定理3) 常数变易法4) 利用泰勒公式展开法五、变限积分的导数方法高等数学积分知识点总结2A.Function函数(1)函数的定义和性质(定义域值域、单调性、奇偶性和周期性等)(2)幂函数(一次函数、二次函数,多项式函数和有理函数)(3)指数和对数(指数和对数的公式运算以及函数性质)(4)三角函数和反三角函数(运算公式和函数性质)(5)复合函数,反函数*(6)参数函数,极坐标函数,分段函数(7)函数图像平移和变换B.Limit and Continuity极限和连续(1)极限的定义和左右极限(2)极限的运算法则和有理函数求极限(3)两个重要的极限(4)极限的应用-求渐近线(5)连续的定义(6)三类不连续点(移点、跳点和无穷点)(7)最值定理、介值定理和零值定理C.Derivative导数(1)导数的定义、几何意义和单侧导数(2)极限、连续和可导的关系(3)导数的求导法则(共21个)(4)复合函数求导(5)高阶导数(6)隐函数求导数和高阶导数(7)反函数求导数*(8)参数函数求导数和极坐标求导数D.Application of Derivative导数的应用(1)微分中值定理(D-MVT)(2)几何应用-切线和法线和相对变化率(3)物理应用-求速度和加速度(一维和二维运动)(4)求极值、最值,函数的增减性和凹凸性*(5)洛比达法则求极限(6)微分和线性估计,四种估计求近似值(7)欧拉法则求近似值E.Indefinite Integral不定积分(1)不定积分和导数的关系(2)不定积分的公式(18个)(3)U换元法求不定积分*(4)分部积分法求不定积分*(5)待定系数法求不定积分F.Definite Integral 定积分(1)Riemann Sum(左、右、中和梯形)和定积分的定义和几何意义(2)牛顿-莱布尼茨公式和定积分的.性质*(3)Accumulation function求导数*(4)反常函数求积分H.Application of Integral定积分的应用(1)积分中值定理(I-MVT)(2)定积分求面积、极坐标求面积(3)定积分求体积,横截面体积(4)求弧长(5)定积分的物理应用I.Differential Equation微分方程(1)可分离变量的微分方程和逻辑斯特微分方程(2)斜率场*J.Infinite Series无穷级数(1)无穷级数的定义和数列的级数(2)三个审敛法-比值、积分、比较审敛法(3)四种级数-调和级数、几何级数、P级数和交错级数(4)函数的级数-幂级数(收敛半径)、泰勒级数和麦克劳林级数(5)级数的运算和拉格朗日余项、拉格朗日误差注意:(1)问答题主要考察知识点的综合运用,一般每道问答题都有3-4问,可能同时涵盖导数、积分或者微分方程的内容,解出的答案一般都是保留3位小数。

积分知识点归纳总结

积分知识点归纳总结

积分知识点归纳总结一、积分的概念积分指的是对函数的定积分。

在数学中,积分的概念是对函数的区间内的曲线的面积进行求解。

积分可以分为定积分和不定积分。

定积分是指对一个函数在一个给定的区间内求积分,而不定积分是指对一个函数的积分不指定上下限的积分。

二、积分的性质1. 可加性:即若f(x)在区间[a,b]内有积分,则f(x)在[a,b]的积分等于f(x)在[a,c]的积分加上f(x)在[c,b]的积分。

2. 线性:若f(x)和g(x)都在区间[a,b]内有积分,则f(x)+g(x)在[a,b]的积分等于f(x)在[a,b]的积分加上g(x)在[a,b]的积分。

3. 区间上下限对换:若f(x)在区间[a,b]内有积分,则f(x)在[a,b]的积分等于f(x)在[b,a]的积分的负数。

三、积分的计算积分的计算主要有两种方法:一种是不定积分的计算,一种是定积分的计算。

不定积分的计算中主要是使用换元法、分部积分法等方法进行计算。

而定积分的计算主要是使用积分的定义进行计算。

四、积分的应用积分的应用非常广泛,可以应用于各个领域,如物理学、生物学、工程学等等。

积分可以用来求解函数的面积、体积、质量、重心、惯性矩等等。

五、积分的意义积分的意义在于求解曲线下的面积。

通过对函数的积分,可以求解出曲线下任意区间内的面积,从而可以理解函数的几何意义。

六、积分的历史积分的概念最早可以追溯到17世纪的牛顿和莱布尼兹。

他们分别独立地创立了微积分学的基本理论。

牛顿和莱布尼兹都研究了曲线的面积问题,并最终建立了积分的概念和性质。

积分的发展历程与微积分的发展历程是分不开的。

七、积分与微分的关系积分与微分是微积分学中两个最重要的概念。

积分和微分是相互联系的。

微分是求函数的导数,而积分是对函数的定积分。

微分和积分是相互倒数的关系。

微分与积分都是微积分的两个基本概念,两者相辅相成。

八、积分的解题方法积分的解题方法有很多种,例如常见的换元法、分部积分法、三角换元法等等。

高数(同济第六版)下册多元函数的积分学及其应用知识点

高数(同济第六版)下册多元函数的积分学及其应用知识点

第十章多元函数的积分学及其应用一、二重积分1.二重积分的概念�定义:设(,)f x y 是有界闭区域D 上的有界函数,“分割、近似、求和、取极限”:01(,)lim (,)n i iii D f x y d f λσξησ→==∆∑∫∫其中:D 为积分区域,(,)f x y 称为被积函数,d σ为面积元素。

�几何意义:当(,)0f x y ≥,(,)D f x y d σ∫∫表示以区域D 为底、以曲面(,)z f x y =为顶的曲顶柱体的体积。

�非均匀平面薄片的质量:(,)DM x y d µσ=∫∫。

2.二重积分的性质�性质1(线性性质).),(),()],(),([∫∫∫∫∫∫±=±DD D d y x g d y x f d y x g y x f σβσασβα�性质2(区域具有可加性)如果闭区域D 可被曲线分为两个没有公共内点的闭子区域1D 和2D ,则.),(),(),(21∫∫∫∫∫∫+=D D Dd y x f d y x f d y x f σσσ�性质3如果在闭区域D 上,σ,1),(=y x f 为D 的面积,则.1σσσ==⋅∫∫∫∫DD d d 几何意义:以D 为底、高为1的平顶柱体的体积在数值上等于柱体的底面积。

�性质4(单调性)如果在闭区域D 上,有),,(),(y x g y x f ≤则.),(),(∫∫∫∫≤DD d y x g d y x f σσ推论1.|),(|),(∫∫∫∫≤DD d y x f d y x f σσ推论2设m M ,分别是),(y x f 在闭区域D 上的最大值和最小值,σ为D 的面积,则.),(σσσM d y x f m D≤≤∫∫这个不等式称为二重积分的估值不等式。

�性质5(积分中值定理)如果函数(,)f x y D 上连续,σ是D 的面积,那么在D 上至少存在一点(,)ξη,使得(,)(,)Df x y d f σξησ=⋅∫∫。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分下册常见六种积分考试重点二重积分、三重积分第一型曲线积分、曲面积分第二型曲线积分、曲面积分二重积分 二重积分二重积分/累次积分⎰⎰Dd y x f σ),(1)⎰⎰D 在有界闭区域D 上进行积分的积分符号;D Oxy 平面上的有界闭区域,积分区域;f (x,y ) 被积函数(其在D 上连续才可积),比如可以是区域D 的密度大小,也可以表示底面是D 的曲顶柱体的高。

2)d σ Oxy 平面上微小区域面积,面积元素(d 微分;σ D 中微小区域,微小曲顶柱体的底面积)。

3)微小面质量=微小面密度×微小面积;微小曲顶柱体面积=微小曲顶柱体高×微小曲顶柱体底面长度;f (x,y )d σ 微小面质量或者微小面积,被积表达式。

4)σd y x f D⎰⎰),( 曲面D 的质量,曲顶柱体面积。

此处应注意:f (x,y )>0时,二重积分积分的现实意义才成立。

5)的面积。

即为时,注意:当D D d y x f y x f D )(),(1),(σσ=≡⎰⎰6)二重积分的计算:化二重积分为二次积分{}{}⎰⎰⎰⎰⎰⎰⎰⎰=≤≤≤≤==≤≤≤≤==)()(21)()(212121),(),(,),()(),(),(),(,),()(),()1y x y x b a D x y x y b a D dx y x f dy d y x f b y a y x x y x y x D dy y x f dx d y x f b x a x y y x y y x D dxdyd σσσ当当型域条件下, {}⎰⎰⎰⎰⎰⎰==≤≤≤≤=⎩⎨⎧===⨯=)()(2121)sin ,cos ()sin ,cos (),(),()(),(,sin cos )2x r x r D D rdrr r f d dr rd r r f d y x f r r r r D r y r x drrd dr rd d θθθθθθσβθαθθθθθθθσβα极坐标条件下, ⎰⎰⎰⎰'=≠∂∂∂∂∂∂∂∂=∂∂='→⎩⎨⎧===D D dudvJ v u y v u x f d y x f vy u yv x u xv u y x J D D v u y y v u x x D dudvJ d )),(),,((),(0),(),(,,),(),()3σσ令对于区域换元条件下,三重积分dVz y x f ⎰⎰⎰Ω),,(1)⎰⎰⎰Ω在有界闭区域Ω上进行积分的积分符号;Ω Oxyz 空间中的有界闭区域,积分区域,代表一几何体;f (x,y,z ) 被积函数(其在Ω上连续才可积),可以是区域Ω的密度大小。

2)dV Oxyz 空间中微小区域体积,体积元素(d 微分,V Ω中的微小几何体)。

3)微小体质量=微小体密度×微小体积;f (x,y,z )dV 微小体质量,被积表达式。

4)⎰⎰⎰ΩdV z y x f ),,( 几何体Ω的质量。

此处应注意:f (x,y,z )>0时,三重积分积分的现实三重积分 三重积分 意义才成立。

5)的体积。

即为时,注意:当ΩΩ=≡⎰⎰⎰Ω)(),,(1),,(V dV z y x f z y x f6)三重积分的计算:化三重积分为三次积分{}公式应当做相应调整型域型域或者型域,若是是注:此处上的投影在是,其中)先一后二,),,(]),,([),,(),(),,(),(),,(1),(),(),(),(212121xz yz xy dz z y x f d d dz z y x f dV z y x f Oxy DD y x y x z z y x z z y x y x z y x z D y x z y x z D xy xy xyxy Ω==Ω∈≤≤=Ω⎰⎰⎰⎰⎰⎰⎰⎰⎰Ωσσ{}{}。

及公式应当做相应调整型域,型域或者型域,若是是另外,整。

型域,公式应做相应调型域,若是是注:此处)三管齐下xy xy y x z y x z x y x y b a xy xy D xz yz xy y x D dz z y x f dy dx dV z y x f b x a x y y x y y x D D y x y x z z y x z z y x Ω=≤≤≤≤=∈≤≤=Ω⎰⎰⎰⎰⎰⎰Ω),(),()()(21212121),,(),,(),()(),(),(),,(),(),,(2 {}公式应做相应调整取定,或者取定,另外,若对中已将注:所得区域的平面截闭区域是,其中)先二后一z z D b a z z D y x z D dxdyz y x f dz dV z y x f z z D b z a D y x z y x z⎰⎰⎰⎰⎰⎰=Ω=≤≤∈=ΩΩ),,(),,(,),(),,(3 ),(),,(21),sin ,cos (),,(,sin cossin cos ,,])2,0[,0)(,,(),,()4220000202200z y x z y x f z drdzrd z r r f dV z y x f drdzrd dV z z r y r x yx x z r y x z r r r x Oxy M P z M r r z r z y x M +Ω==⎪⎩⎪⎨⎧===Ω===+=>=<∈≥→⎰⎰⎰⎰⎰⎰ΩΩϕθθθθθθθθθθθθπθθ可化成)其部分,(轴为旋转轴的旋转体或是以)(积分的最佳条件利用球面坐标计算三重令对于区域的平面,方程轴正向夹角为轴与代表过;方程轴为旋转轴轴的柱面,以代表半径为轴正向面上的投影,在是轴的距离,到代表点柱面坐标O P三重积分 三重积分)(),,(21sin )cos ,sin sin ,cos sin (),,(sin sin ,cos sin sin cos sin sin cos sin cos ,,,])2,0[],,0[,0)(,,(),,()5222220000022002022200z y x z y x f dr d d r r r r f dV z y x f dr d d r dr d r rd dxdydz dV r z r y r x y x x z y x x z r z y x r r r x Oxy M P z r r r M z y x M ++Ω==⨯⨯==⎪⎩⎪⎨⎧===Ω==+===++=>=<>=<=∈∈≥→⎰⎰⎰⎰⎰⎰ΩΩϕθϕϕϕθϕθϕθϕϕθϕϕϕθϕθϕθθθθθϕϕϕϕθϕπθπϕθϕ可化成)分构成,(由球面或圆锥面或其部)(积分的最佳条件利用球面坐标计算三重令对于区域的平面,方程轴正向夹角为轴与代表过轴为轴的圆锥面,方程代表原点为顶点,程球心在原点的球面,方代表半径为轴正向面上的投影,在是,轴正向,球面坐标O P O M O M ϕθϕθθθθθsin 100cos sin 0cos cos )),,(),,,(),,,((),,(0),,(),,(,),,(),,(),,()62r J r z y x r r J z r z y x dudvdwJ w v u z w v u y w v u x f dV z y x f w z vzu z w y v y u y w x v xu x w v u z y x J w v u z z w v u y y w v u x x dudvdwJ dV -=-==≠∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=∂∂=Ω'→Ω⎪⎩⎪⎨⎧===Ω=⎰⎰⎰⎰⎰⎰ΩΩ的函数,、、都是、、在球面坐标中,的函数,、、都是、、在柱面坐标中,常用范例。

求三重积分是换元法的柱面坐标、球面坐标法法。

用到求三重积分的换元注:极少数情况下,才,令对于区域换元条件下,第一型曲线积分⎪⎩⎪⎨⎧⎰⎰LL ds z y x f ds y x f ),,(),( 第一型曲线积分又叫作对弧长的曲线积分,或数量值函数的曲线积分1)⎰L 在线段L 上进行积分的积分符号;L 当被积函数是二元函数时,其是Oxy 平面上一条光滑曲线,当被积函数是三元函数时,其是Oxyz 空间中一条光滑曲线;f (x ,y ,z ) 被积函数,一函数值,比如可以是线L 的密度大小,也可以表示底边是L 的曲边梯形的高。

2)ds 微小弧长(d 微分;s 微小线段,微小曲边梯形的底边长度)。

3)微小线质量=微小线密度×微小线长度;微小曲边梯形面积=微小曲边梯形高×微小曲边梯 形底边长度;f (x,y,z )ds 微小线质量或者微小曲边梯形面积,被积表达式。

4)ds z y x f L ⎰),,( 线质量,曲边梯形面积。

此处应注意:f (x,y,z )>0时,第一型曲线积分的现实意义才成立。

5)的长度。

即为时,注意:当L L s ds z y x f z y x f L)(),,(1),,(=≡⎰6)第一型曲线积分计算公式 dt t y t x ds y x f dt t y t x ds b a t t y y t x x L x L d x y ds y x f dxx y ds b a x x x y y L dy dx ds Oxy L dt t z t y t x ds z y x f dt t z t y t x ds b a t t z z t y y t x x L L dx x z x y ds z y x f dxx z x y ds b a x x x z z x y y L dz dy dx ds L b a L b a L b a L ba L ⎰⎰⎰⎰⎰⎰⎰⎰'+'='+'=∈=='+='+=∈==+='+'+'='+'+'=∈==='+'+='+'+=∈===++=)()(),()()(],[),(),(2)(1),()(1],,[),(1)()()(),,()()()(],[),()()(2)()(1),,()()(1],[)()(1222222222222222222222,则:)如果(,公式应做对应调整采用采用线的其他方程若则:)若(平面上的一条光滑曲线是,则若被积函数是二元函数,则,,:)如果(,公式应做对应调整采用采用线的其他方程若,则,,:)若(的方程应首先解出第一型曲线积分的计算第一型曲面积分⎰⎰∑dS z y x f ),,(第一型曲面积分又叫作对面积的曲面积分,或数量值函数的曲面积分1)⎰⎰∑在有界光滑曲面Σ上进行积分的积分符号;Σ一空间有界光滑曲面;f (x ,y ,z ) 被积函数,一函数值,比如可以是曲面Σ的密度大小,也可以表示底面是Ω的曲面体的高(有限制)。

相关文档
最新文档