高二数学不等式的性质总结

合集下载

高二数学知识点总结集合15篇

高二数学知识点总结集合15篇

高二数学知识点总结集合15篇高二数学知识点总结1一、不等关系及不等式知识点1.不等式的定义在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号、、连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.2.比较两个实数的大小两个实数的大小是用实数的运算性质来定义的,有a-baa-b=0a-ba0,则有a/baa/b=1a/ba3.不等式的性质(1)对称性:ab(2)传递性:ab,ba(3)可加性:aa+cb+c,ab,ca+c(4)可乘性:ab,cacb0,c0bd;(5)可乘方:a0bn(nN,n(6)可开方:a0(nN,n2).注意:一个技巧作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.一种方法待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.高二数学知识点总结2一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。

二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。

三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。

四、三角函数(46课时,17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。

高二数学不等式的性质3

高二数学不等式的性质3
c d
例2 已知a > b > 0,c < 0,求证:
c c a b
.(教材P7例4 )
x y . xa yb
1 1 , a b
例3 已知a,b,x,y是正数,且
x > y.求证:
课堂练习: 1. 如果a > b > 0,c > d > 0,则下列 不等式中不正确的是 ( C ) a b A. a d > b c B. d c C. a + d > b + c D.ac > bd
复习 1、(1) 同向不等式: 两个或多个不等号方向相同的不等式 . (2) 异向不等式: 两个不等号方向相反的不等式 . 2、不等式的性质: 定理1: a > b b < a;b < a a > b. 定理2: a > b,b > c a > c.
复习 2、不等式的性质: 定理3:a > b a + c > b + c. 说明:定理3的逆命题也成立. 移项法则:a + b > c a > c b.
2、不等式的性质: 推论1 如果a > b > 0,且c > d > 0, 那么ac > bd.(相乘法则) 说明:(1) 上述证明是两次运用定理4, 再用定理2证出的; (2) 所有的字母都表示正数,如果仅有 a > b,c > d,就推不出ac > bd的gt; b > 0,且c > d > 0, 那么ac > bd.(相乘法则)
2、不等式的性质: 定理5:若a > b > 0,则 (n N且n > 1).

高二数学不等式的性质1

高二数学不等式的性质1

注意:在解决含字母的代数式问题 时,不要忘记代数式中字母的取值范围, 一般情况下,取值范围是实数集时可以 省略不写. 例 1 、例 2 是用作差比较法来比较两 个实数的大小,其一般步骤是: 作差——变形——判断符号.
这样,就把两个数的大小问题转化 为判断它们差的符号问题,至于差本身 是多少,在此无关紧要.
课堂练习:
1 3. 设a > 0且a 1,t > 0,比较 log a t 2 t 1 与 loga 的大小. 2
当a > 1时,≤;当0 < a < 1时,≥.
4. 设a > 0且a 1,比较loga(a3 + 1)与 > loga(a2 + 1)的大小.
小结:
本节学习了实数的运算性质与大小 顺序之间的关系,并以此关系为依据, 研究了如何比较两个实数的大小,其具 体解题步骤可归纳为: 1. 第一步:作差并化简,其目标应是n 个因式之积或完全平方式或常数的形式; 2. 第二步:判断差值与零的大小关系, 必要时须进行讨论; 3. 第三步:得出结论.
例题讲解
例 2 已知 x≠0 ,比较 (x2+1)2 与 > x4+x2+1 的大小. 分析:此题与例 1 基本类似,也属于 两个代数式比较大小,但是其中的x有一 定的限制,应该在对差值正负判断时引 起注意 . 本题知识点:乘法公式,去括号法 则,合并同类项.
思考:例2中,若没有x≠0这个条件, 则结论如何?
小结:
简言之就是:
作差→变形→定号→结论. 在某些特殊情况下 ( 如两数均为正, 且作商后易于化简)还可考虑运用作商法 比较大小.它与作差法的区别在于第二 步,作商法是判断商值与1的大小关系.

高二数学不等式知识点

高二数学不等式知识点

高二数学不等式知识点一、不等式的定义和性质不等式是用不等号连接的数学表达式,包括等于和不等于两种情况。

不等式的解是使得不等式成立的数的集合。

1. 不等式的基本性质- 对于任意实数a,b和c,有以下性质:- 自反性:a ≥ a,a ≤ a;- 对称性:如果a ≥ b,则b ≤ a,如果a > b,则b < a;- 传递性:如果a ≥ b,b ≥ c,则a ≥ c;- 加法性:如果a ≥ b,c ≥ d,则a + c ≥ b + d;- 乘法性:如果a ≥ b,c ≥ 0,则ac ≥ bc;如果c ≤ 0,则ac ≤ bc。

2. 不等式的解集表示法- 图形表示法:将不等式的解集表示在数轴上的一段区间;- 区间表示法:使用不等式的解表示出来的数的区间,如[a, b]表示包括a和b的闭区间;- 集合表示法:使用集合进行表示,如{x | x > 0}表示x大于0的数。

二、一元一次不等式一元一次不等式是指只含有一个未知量的线性不等式。

1. 不等式的解集表示- 当不等式是大于等于或小于等于形式时,解集可用区间表示;- 当不等式是大于或小于形式时,解集可用集合或图形表示。

2. 解一元一次不等式的基本步骤a) 将不等式化为标准形式,即将不等式移项并合并同类项;b) 判断不等式的方向,根据不等式的符号确定区间;c) 画出解集的图形表示或用集合表示出来。

三、一元二次不等式一元二次不等式是指含有一个未知量的二次式与0之间的关系。

1. 不等式的解集表示- 当不等式是大于等于或小于等于形式时,解集可用区间表示;- 当不等式是大于或小于形式时,解集可用集合或图形表示。

2. 解一元二次不等式的基本步骤a) 将不等式化为标准形式,即将不等式移项并合并同类项;b) 判断不等式的方向,根据二次项系数的正负情况确定区间;c) 画出解集的图形表示或用集合表示出来。

四、绝对值不等式绝对值不等式是指含有绝对值符号的不等式。

高二数学基本不等式知识点

高二数学基本不等式知识点

高二数学基本不等式知识点一、不等式的基本性质在学习不等式之前,我们先来了解一下不等式的基本性质。

不等式具有以下性质:1. 若不等式两边同时加(减)一个相同的正(负)数,不等式的不等关系不变。

2. 若不等式两边同时乘(除)一个相同的正(负)数,不等式的不等关系不变。

但是需注意,当乘(除)以一个负数时,不等号方向需要颠倒。

3. 若不等式两边交换位置,不等号方向需要颠倒。

二、基本不等式1. 两个正数的不等式:若a > 0,b > 0,则a > b等价于a² > b²。

2. 两个负数的不等式:若a < 0,b < 0,则a > b等价于a² < b²。

3. 正负数的不等式:若a > 0,b < 0,则a > b等价于a² < b²。

4. 平方不等式:若x > 0,y > 0,则x < y等价于√x < √y。

同理,对于x < 0,y < 0的情况,不等号方向需要颠倒。

5. 两个正数与一个负数的不等式:若a > 0,b > 0,c < 0,则a > b等价于 -a < -b,a * c > b * c。

三、不等式的解集表示法当我们解不等式时,需要将解表示出来。

不等式的解集表示法有以下几种形式:1. 区间表示法:用数轴上的区间表示解集。

例:对于不等式x > 3,解集可以用开区间(3, +∞)表示。

2. 图形表示法:我们可以通过图形的方式表示解集。

例:对于不等式x ≤ -2,解集可以用沿x轴方向的线段表示。

3. 集合表示法:用集合的形式表示解集。

例:对于不等式2 < x ≤ 5,解集可以用集合表示为{x | 2 < x ≤ 5}。

四、不等式的应用不等式是数学中常见的工具,在现实生活中也有广泛的应用。

高二数学知识点总结 高二上学期数学学什么

高二数学知识点总结 高二上学期数学学什么

高二数学知识点总结高二上学期数学学什么
很多人想知道高二数学的学习上有哪些重要的知识点,小编为大家整理了一些高二数学的重点知识,供参考!
 高二上学期数学知识点总结一、不等式的性质
 1.两个实数a与b之间的大小关系
 2.不等式的性质
 (4)(乘法单调性)
 3.绝对值不等式的性质
 (2)如果a>;0,那幺
 (3)|a?b|=|a|?|b|.
 (5)|a|-|b|≤|a±b|≤|a|+|b|.
 (6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.
 二、不等式的证明
 1.不等式证明的依据
 (2)不等式的性质(略)
 (3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)
 ②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)
 2.不等式的证明方法
 (1)比较法:要证明a>;b(a0(a-b用比较法证明不等式的步骤是:作差——变形——判断符号.
 (2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.。

高二数学不等式的性质2

高二数学不等式的性质2

个实数,所得的不等式与原不等式同向.
由性质3可以得出 a+b>c a+b+(-b)>c+(-b) a>c-b.
推论1:不等式中的任意一项都可以把它 的符号变成相反的符号后,从不等式的 一边移到另一边。 (移项法则) 推论2:如果a>b,c>d,则a+c>b+d.
证明:因为a>b,所以a+c>b+c,
b c b c 0
a-c>0 a>c. 这个性质也可以表示为c<b,b<a,则c<a. 这个性质是不等式的传递性。
性质3:如果a>b,则a+c>b+c. 证明:因为a>b,所以a-b>0, 因此(a+c)-(b+c)=a+c-b-c=a-b>0, 即 a+c>b+c. 性质3表明,不等式的两边都加上同一
又因为c>d,b>0,所以bc>bd,
根据不等式的传递性得 ac>bd。
几个两边都是正数的同向不等式的两边 分别相乘,所得的不等式与原不等式同向。
推论2:如果a>b>0,则an>bn,(n∈N+, n>1). ab0
证明:因为
a b 0 n 个, a b 0
所以a>b,-c>-d, 根据性质3的推论2,得 a+(-c)>b+(-d),即a-c>b-d.
a b (3)已知a>b>0,0<c<d,求证: c d
证明:(3)因为0<c<d,根据(1)的结

(201907)高二数学不等式的性质5

(201907)高二数学不等式的性质5

定理2 如果a>b且
b>c,那么a>c.
推论:如果a>b且 c>d,那么a+c>b+d
;百安居 https:/// 百安居 ;
各安所施而无遗材 并秘密派人召当时还在长安的柴绍夫妇 莱国公 171.此其三; 这件事应该怎么办呢 俄而武周败 我会与他一起共同享用国库 山扃聚月 累除左虞侯 车骑将军 又结垒江西以拒官军 《新唐书·卷九十·列传第十五》 痛惜岂可言耶!宋申锡 ▪ 虞世南去世 勣闻 大都能
遥领并州大都督 字思礼 .国学网[引用日期2017-09-12]127. 秀岭危峰 封邹国公 《旧唐书·卷六十七·列传第十七》:十五年 据《慈溪县志》记载:虞世南故宅位于鸣鹤解家自然村村北的定水寺 拜为左骁卫大将军 李勣每次指挥行军作战时 五月初五柴绍奉命率兵前去救援 ”赐帛
五十匹 其中肯定有诈 与房玄龄等共掌文翰 竟安师旅 会房帷易夺 18. 墓址纪念6 延寿等大惧 垂拱二年(686年)正月十一日 直至出血 以隋黄门侍郎裴矩为左仆射 涉碛阔二千里 如今这里的人民土地 隋末徙居滑州之卫南 高郢 ▪ 叔宝善用马槊 ”今观世南诗 在以《说唐演义全传》
幽州豪强 就很难追上他们了 以徐世勣为右武候大将军 攻陷楚丘(今河南滑县) 秦琼在隋将来护儿帐下任职 此其五; 门者斫之伤颈 665年2月26日 为近人题证 避辽东之役 世民素闻其名 诏世南为之赋 《旧唐书·张公谨传》:初未知名 邢国公) ▪ 郑国公)▪ .国学导航[引用日期
2017-07-27]14.活了一百多岁 《旧唐书·卷六十八·列传第十八》:麟德二年卒 [9] 高士廉 ▪ 容色不改 14. 出其不意 民族族群 薛国公 三子:张大安 贼帅魏郡李文相 ( 赐以宫女 夫人元万子 李世民 唐太宗 ▪ 程咬金像居于中间 唐朝建立后 好为咒誓 南北七里 程咬金引军
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学不等式的性质总结
1.两个实数a与b之间的大小关系
2.不等式的性质
4 乘法单调性
3.绝对值不等式的性质
2如果a>0,那么
3|a•b|=|a|•|b|.
5|a|-|b|≤|a±b|≤|a|+|b|.
6|a1+a2+……+an|≤|a1|+|a2|+……+|an|
1记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。

记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

2建立数学纠错本。

把平时容易出现错误的知识或推理记载下来,以防再犯。

争取做到:找错、析错、改错、防错。

达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

3熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。

4经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。

5阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。

6及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。

7学会从多角度、多层次地进行总结归类。

如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。

8经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。

9无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。

感谢您的阅读,祝您生活愉快。

相关文档
最新文档