江西省2020版八年级上学期数学10月月考试卷(II)卷
江西省九江市 八年级(上)第一次月考数学试卷

八年级(上)第一次月考数学试卷一、选择题(本大题共10小题,共30.0分)1.一个直角三角形的两条边分别是6和8,则第三边是()A. 10B. 12C. 12或27D. 10或272.等腰三角形的腰长为10,底长为12,则其底边上的高为()A. 13B. 8C. 25D. 643.三角形的三边长为(b+c)2=a2+2bc,则这个三角形是()A. 等边三角形B. 钝角三角形C. 直角三角形D. 锐角三角形4.下列说法不正确的是()A. 1的平方根是±1B. −1的立方根是−1C. 4是2的平方根D. −3是9的平方根5.下列各式中无意义的是()A. −16B. (−1)2C. a2+1D. −a2−16.在下列各数中,是无理数的是()A. πB. 4C. 3.1415926D. −387.我们知道20是一个无理数,那么20−1的大小在哪两个数之间()A. 3和4B. 4和5C. 19和20D. 20和218.若a=3,b=-|-2|,c=-3(−2)3,则a、b、c的大小关系是()A. a<b<cB. b<a<cC. b<c<aD. c<b<a9.如图,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的长为() .A. 12B. 7C. 5D. 1310.三角形三边之比分别为(1)32:2:52(2)3:4:5(3)1:2:3(4)4:5:6,其中可以构成直角三角形的有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共5小题,共15.0分)11.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要______米.12.在Rt△ABC中,斜边AB=4,则AB2+AC2+BC2=______.13.如图,数轴上点A所表示的实数是______.14.已知a,b分别是13的整数部分和小数部分,则2a-b的值为______.15.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为______cm2.三、计算题(本大题共1小题,共6.0分)16.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点就做格点,以格点为顶点分别按下列要求画三角形;①使三角形的三边长分别为1,3,10(在图①中画出一个即可);②使三角形为钝角三角形且面积为3(在图②中画出一个即可),并计算你所画三角形的三边的长.四、解答题(本大题共5小题,共40.0分)17.把下列各式化为最简二次根式;(1)10145(2)420+54010(3)(2−3)(2+3)(4)8+1818.解下列方程;(1)4x2=25;(2)(x-0.5)3=0.027.19.已知y−2x+|x2−25|5−x=0,求7(x+y)-20的立方根.20.如图,在四边形ABCD中,BC=DC=2,AD=3,AB=1,且∠C=90°,求∠B的度数.21.如图,长方形纸片ABCD沿对角线AC折叠,设点D落在D′处,BC交AD′于点E,AB=6cm,BC=8cm,求阴影部分的面积.答案和解析1.【答案】D【解析】解:设第三条边为x,当8为直角边时,x==10;当8为斜边时,x=.综上所述,第三条边的长度是10或2.故选:D.设第三条边为x,再根据8为直角边与斜边两种情况求解即可.本题考查的是勾股定理,在解答此题时要进行分类讨论,不要漏解.2.【答案】B【解析】解:作底边上的高并设此高的长度为x,根据勾股定理得:62+x2=102,解得:x=8.故选:B.先作底边上的高,由等腰三角形的性质和勾股定理即可求出此高的长度.本题考点:等腰三角形底边上高的性质和勾股定理,等腰三角形底边上的高所在直线为底边的中垂线.然后根据勾股定理即可求出底边上高的长度.3.【答案】C【解析】解:因为三角形的三边长为(b+c)2=a2+2bc,可得:b2+c2=a2,所以这个三角形是直角三角形,故选:C.展开等式后,利用勾股定理的逆定理解答即可.此题考查了勾股定理的逆定理的应用,熟练掌握因式分解的方法是解本题的关键.4.【答案】C【解析】解:A、1的平方根是±1,正确,不合题意;B、-1的立方根是-1,正确,不合题意;C、4是16的一个平方根,故此选项错误,符合题意;D、-3是9的平方根,正确,不合题意;故选:C.直接利用平方根以及立方根的定义计算得出答案.此题主要考查了立方根和平方根,正确掌握相关定义是解题关键.5.【答案】D【解析】解:A、-,有意义;B、,有意义;C、,有意义;D、,无意义.故选:D.直接利用二次根式的定义分析得出答案.此题主要考查了二次根式的定义,正确把握定义是解题关键.6.【答案】A【解析】解:A.π是无理数;B.=2,是整数,属于有理数;C.3.1415926是有限小数,属于有理数;D.=-2,是整数,属于有理数;故选:A.根据无理数的三种形式解答即可.本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.7.【答案】A【解析】解:∵4<<5,∴3<<4.故选:A.直接得出的取值范围进而得出答案.此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.8.【答案】B【解析】解:∵a=,b=-|-|=-,c=-=2,∵-<<2,∴b<a<c,故选:B.根据实数大小的比较方法比较即可.本题考查了实数大小的比较,熟记比较的方法是解题的关键.9.【答案】D【解析】解:∵△BCE等腰直角三角形,BE=5,∴BC=5,∵CD=17,∴DB=CD-BE=17-5=12,∵△ABD是等腰直角三角形,∴AB=BD=12,在Rt△ABC中,∵AB=12,BC=5,∴AC===13.故选:D.先根据△BCE等腰直角三角形得出BC的长,进而可得出BD的长,根据△ABD是等腰直角三角形可知AB=BD,在Rt△ABC中利用勾股定理即可求出AC的长.本题考查的是等腰直角三角形的性质及勾股定理,熟知等腰三角形两腰相等的性质是解答此题的关键.10.【答案】A【解析】解:设每份为k,则(1)(k)2+(2k)2≠(k)2;(2)(3k)2+(4k)2=(5k)2;(3)k2+(2k)2≠(3k)2;(4)(4k)2+(5k)2≠(6k)2,∴可以构成直角三角形的是1个.故选:A.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.11.【答案】7【解析】解:由勾股定理得:楼梯的水平宽度==4,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是3+4=7米.故答案为7.当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.本题考查了勾股定理的知识,与实际生活相联系,加深了学生学习数学的积极性.12.【答案】32【解析】解:∵在Rt△ABC中,斜边AB=4,∴AB2=BC2+AC2=16,AB2=16,∴AB2+BC2+AC2=32.故答案为:32.根据勾股定理即可求得该代数式的值.本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.13.【答案】5【解析】解:由勾股定理,得斜线的为=,由圆的性质,得:点表示的数为,故答案为:.根据勾股定理,可得斜线的长,根据圆的性质,可得答案.本题考查了实数与数轴,利用勾股定理得出斜线的长是解题关键.14.【答案】9-13【解析】解:∵9<13<16,∴3<<4.∴a=3,b=-3.∴2a-b=2×3-(-3)=6-+3=9-.先股算术的大致范围,然后再求得a、b的值,最后代入计算即可.本题主要考查的是估算无理数的大小,求得a、b的值是解题的关键.15.【答案】49【解析】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.熟练运用勾股定理进行面积的转换.16.【答案】解:①如图,△ABC即为所求.②如图,△ABC即为所求.△ABC的三边的长分别为:AB=2,AC=32+42=5,BC=22+32=13.【解析】(1)三角形的三边长分别为1,3,,恰好为勾股数,利用网格直接作出即可,(2)利用三角形的面积为3,固定底为整数,高为整数,例如2×3等,即可画出;再利用勾股定理求得三角形的三边的长.此题主要考查勾股定理及三角形的面积.17.【答案】解:(1)原式=1095=10×355=65;(2)原式=42010+54010=42+10;(3)原式=2-3=-1;(4)原式=22+32=52.【解析】(1)利用二次根式的性质化简;(2)根据二次根式的除法法则运算;(3)利用平方差公式计算;(4)先把各二次根式化简为最简二次根式,然后合并即可.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【答案】解:(1)4x2=25故x2=254,解得:x=±52;(2)(x-0.5)3=0.027故x-0.5=0.3则x=0.8.【解析】(1)直接利用平方根的定义计算得出答案;(2)直接利用立方根的定义计算得出答案.此题主要考查了立方根和平方根,正确掌握相关定义是解题关键.19.【答案】解:由题意得,5-x>0,解得x<5,y-2x=0,x2-25=0,解得x=-5,y=-10,∴7(x+y)-20=7×(-5-10)-20=-125,∵(-5)3=-125,∴7(x+y)-20的立方根是-5.【解析】根据被开方数大于等于0,分母不等于0列式求出x的取值范围,再根据非负数的性质列式求出x、y的值,然后代入代数式进行计算,再根据立方根的定义解答.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.20.【答案】解:连接BD,在Rt△BCD中,BD2=BC2+DC2=8.∵BC=DC,∴∠BDC=∠DBC=45°.在△ABD中,∵AB2+BD2=8+12=9=32=AD2,∴△ABD为直角三角形,故∠ABD=90°,∴∠B=∠ABD+∠DBC=90°+45°=135°.【解析】连接BD,根据勾股定理的逆定理得出△ABD为直角三角形,进而解答即可.本题考查的是勾股定理、勾股定理的逆定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.21.【答案】解:∵△AD′C由△ADC翻折而成,∴∠EAC=∠DAC,∵AD∥BC,∴∠DAC=∠ACB,∴∠EAC=∠ACB,∴AE=CE,设CE=x,则BE=8-x,在Rt△ABE中,AE2=AB2+BE2,即x2=62+(8-x)2,解得x=254,∴S阴影=12CE•AB=12×254×6=754.【解析】先根据翻折变换的性质得出∠EAC=∠DAC,再由平行线的性质得出∠DAC=∠ACB,故可得出AE=CE,设CE=x,则BE=8-x,在Rt△ABE中根据勾股定理可求出x的值,进而得出结论.本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.第11页,共11页。
2020-2021学年江西省某校高二(上)10月月考数学试卷(有答案)

2020-2021学年江西省某校高二(上)10月月考数学试卷一、选择题1. 等比数列{a n }的前n 项和S n =3n +a ,则a 等于( ) A.−3 B.−1 C.3 D.12. 在△ABC 中,已知b =40,c =20,C =60∘,则此三角形的解的情况是( ) A.有一解 B.有两解C.无解D.有解但解的个数不确定3. 使不等式x 2−x −6<0成立的一个充分不必要条件是( ) A.−2<x <0 B.−3<x <2 C.−2<x <3 D.−2<x <44. 某校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有( ) A.30种 B.35种 C.42种 D.48种5. 在数列{a n }中, a 1=12,a n =1−1a n−1(n ≥2,n ∈N +),则a 2020=( )A.12B.1C.−1D.26. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin 2A ≤sin 2B +sin 2C +sin B sin C ,则A 的取值范围是( ) A.(0, 5π6]B.[5π6, π) C.(0, 2π3]D.[2π3, π),7. 设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9=( ) A.63 B.45 C.36 D.278. 已知x >0,y >0,且1x+1+1y =12,则x +y 的最小值为( ) A.3 B.5 C.7 D.94值为( )A.1B.−1C.0D.210. 有30个完全相同的苹果,分给4个不同的小朋友,每个小朋友至少分得4个苹果,问有多少种不同的分配方案( )A.680B.816C.1360D.145611. 已知数列{a n}的各项均为正数,a1=2,a n+1−a n=4a n+1+a n ,若数列{1a n+1+a n}的前n项和为5,则n=( )A.119B.121C.120D.122212. 设函数f(x)=mx2−mx−1,若对任意的x∈{x|1≤x≤3},f(x)<−m+4恒成立,则实数m的取值范围为( )A.m≤0B.0≤m<57C.m<0或0<m<57D.m<57二、填空题如图所示的五个区域中,中心区E域是一幅图画,现要求在其余四个区域中涂色,有四种颜色可供选择.要求每个区域只涂一种颜色且相邻区域所涂颜色不同,则不同的涂色方法种数为________.三、解答题设p:实数x满足x2−4ax+3a2<0,q:实数x满足|x−3|<1.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若a>0,且¬p是¬q的充分不必要条件,求实数a的取值范围.已知{a n}为等差数列,其前n项和为S n(n∈N∗),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4−2a1,S11=11b4.(1)求数列{a n}和{b n}的通项公式;(2)求数列{a2n b n}的前n项和T n(n∈N∗).在△ABC中,角A,B,C所对的边分别为a,b,c,且2a cos A=c cos B+b cos C.(1)求角A的大小;(2)若a=3,求△ABC周长的取值范围.四位同学参加三项不同的竞赛.(1)每位同学必须参加一项,有几种不同结果?(2)每项竞赛只有且必须有一位同学参加,有几种不同结果?(3)每位同学最多参加一项,且每项竞赛只许有一位同学参加,有几种不同结果?数列{a n}满足a1=1,a n+a n+12a n+1−1=0.(1)求证:数列{1a n}是等差数列;(2)若数列{b n}满足b1=2,b n+1b n =2⋅a na n+1,求数列{b n}的前n项和S n.设x,y满足约束条件{8x−y−4≤0,x+y+1≥0,y−4x≤0,目标函数z=ax+by(a>0,b>0)的最大值为2.(1)作出可行域;(2)求a+4b的值;(3)若不等式1a +1b≥mx2−x+(m+154)对任意x∈R恒成立,求实数m的取值范围.参考答案与试题解析2020-2021学年江西省某校高二(上)10月月考数学试卷一、选择题1.【答案】B【考点】等比中项【解析】此题暂无解析【解答】解:等比数列{a n}中,a1=S1=3+a,a2=S2−S1=6,a3=S3−S2=18,由a22=a1a3,得a=−1.故选B.2.【答案】C【考点】正弦定理【解析】利用正弦定理列出关系式,将b,c,sin C的值代入求出sin B的值,即可做出判断.【解答】解:∵在△ABC中,b=40,c=20,C=60∘,∴由正弦定理bsin B =csin C得:sin B=b sin Cc =40×√3220=√3>1,则此三角形无解.故选C.3.【答案】A【考点】必要条件、充分条件与充要条件的判断一元二次不等式的解法【解析】此题暂无解析【解答】解:解不等式x2−x−6<0,得−2<x<3,令A={x|−2<x<3},∴不等式x2−x−6<0成立的一个充分不必要条件,只有A符合题意.故选A .4.【答案】A【考点】排列、组合的应用计数原理的应用【解析】两类课程中各至少选一门,包含两种情况:A类选修课选1门,B类选修课选2门;A类选修课选2门,B类选修课选1门,写出组合数,根据分类计数原理得到结果.【解答】解:可分以下2种情况:①A类选修课选1门,B类选修课选2门,有C31C42种不同的选法;②A类选修课选2门,B类选修课选1门,有C32C41种不同的选法.∴根据分类计数原理知不同的选法共有C31C42+C32C41=18+12=30种.故要求两类课程中各至少选一门,则不同的选法共有30种.故选A.5.【答案】A【考点】数列递推式【解析】无【解答】解:a2=1−1a1=1−2=−1,a3=1−1a2=1+1=2,a4=1−1a3=1−12=12,可得数列{a n}是以3为周期的周期数列,∴a2020=a3×673+1=a1=12.故选A.6.【答案】C【考点】余弦定理正弦定理【解析】运用正弦定理和余弦定理,可得角A三角不等式,然后求解即可.【解答】得:a2≤b2+c2+bc,即cos A=b 2+c2−a22bc≥−12.∵A∈(0, π),∴A∈(0, 2π3].故选C.7.【答案】B【考点】等差数列的性质【解析】观察下标间的关系,知应用等差数列的性质求得.【解答】解:由等差数列性质知S3,S6−S3,S9−S6成等差数列,即9,27,S9−S6成等差数列,∴S9−S6=45,∴a7+a8+a9=45.故选B.8.【答案】C【考点】基本不等式在最值问题中的应用【解析】将x+1+y=2(1x+1+1y)(x+1+y)的形式,再展开,利用基本不等式,注意等号成立的条件.【解答】解:∵x>0,y>0,且1x+1+1y=12,∴x+1+y=2(1x+1+1y)(x+1+y)=2(1+1+yx+1+x+1y)≥2(2+2√yx+1⋅x+1y)=8,当且仅当yx+1=x+1y,即x=3,y=4时取等号,∴x+y≥7,故x+y的最小值为7. 故选C.9.【答案】【考点】二项式定理的应用二项式系数的性质【解析】通过令x=1和x=−1,代入化简即可得所需关系式,求解即可【解答】4解:当x=1时,得(2+√3)=a0+a1+a2+a3+a4=97+56√3,4当x=−1时,(√3−2)=a0−a1+a2−a3+a4=97−56√3,则由上式联立可得a0+a2+a4=97,a1+a3=56√3,∴(a0+a2+a4)2−(a1+a3)2=972−(56√3)2=9409−9408=1.故选A.10.【答案】A【考点】排列、组合及简单计数问题排列、组合的应用【解析】根据题意采用挡板法,去掉3×4=12个苹果后,将剩余的苹果分成四份即可求解. 【解答】解:因为每个小朋友至少分得4个苹果,故先每人分3个苹果后,还剩30−3×4=18个,用隔板法,将剩余18个苹果有17个空,中间找3个位置用隔板插入即可,故分成四份有C173=680种.故选A.11.【答案】C【考点】数列的求和数列递推式等差数列的通项公式【解析】由已知推导出a n=2√n.a n+1=2√n+1=22,由此能求出n.【解答】,解:∵数列{a n}的各项均为正数,a1=2,a n+1−a n=4a n+1+a n∴a n2为首项为4,公差为4的的等差数列,∴a n2=4+4(n−1)=4n,即a n=2√n.∵a1=2,a n+1−a n=4a n+1+a n ,数列{1a n+1+a n}的前n项和为5,∴14(a2−a1+a3−a2+⋯+a n+1−a n)=14(a n+1−2)=5,∴a n+1=2√n+1=22,解得n+1=121,∴n=120.故选C.12.【答案】D【考点】函数恒成立问题【解析】由题意,mx2−mx−1<−m+4,x∈[1, 3]恒成立,可得m(x2−x+1)<5恒成立,讨论m与0关系,结合二次函数性质可得m的范围;【解答】解:函数f(x)=mx2−mx−1,即mx2−mx−1<−m+4,x∈{x|1≤x≤3}恒成立,可得m(x2−x+1)<5恒成立,当m≤0成立,显然恒成立,当m>0时,∵y=x2−x+1,x∈{x|1≤x≤3}的值域为{1≤x≤7}.∴0<m<57,综上可得实数m的取值范围为{m|m<57}.故选D.二、填空题【答案】84【考点】排列、组合的应用分类加法计数原理【解析】每个区域只涂一种颜色,相邻区域颜色不相同,然后分类研究,A、C不同色;A、C同色两大类【解答】解:分三种情况:①用四种颜色涂色,有A44=24种涂法;②用三种颜色涂色,有2A43=48种涂法;③用两种颜色涂色,有A42=12种涂法;三、解答题【答案】解:(1)由x 2−4ax +3a 2<0得(x −3a)(x −a)<0,当a =1时,1<x <3,即p 为真时实数x 的取值范围是1<x <3. 由|x −3|<1,得−1<x −3<1,得2<x <4, 即q 为真时实数x 的取值范围是2<x <4, 若p ∧q 为真,则p 真且q 真,∴ 实数x 的取值范围是2<x <3.(2)由x 2−4ax +3a 2<0得(x −3a)(x −a)<0,且a >0, 即p :{x|a <x <3a},q :{x|2<x <4}. 若¬p 是¬q 的充分不必要条件, 则q 是p 的充分不必要条件. 则{0<a ≤2,3a ≥4,解得43≤a ≤2.∴ 实数a 的取值范围是43≤a ≤2. 【考点】其他不等式的解法逻辑联结词“或”“且”“非”根据充分必要条件求参数取值问题 命题的否定【解析】(1)若a =1,根据p ∧q 为真,则p ,q 同时为真,即可求实数x 的取值范围; (2)根据¬p 是¬q 的充分不必要条件,建立条件关系即可求实数a 的取值范围. 【解答】解:(1)由x 2−4ax +3a 2<0得(x −3a)(x −a)<0,当a =1时,1<x <3,即p 为真时实数x 的取值范围是1<x <3. 由|x −3|<1,得−1<x −3<1,得2<x <4, 即q 为真时实数x 的取值范围是2<x <4, 若p ∧q 为真,则p 真且q 真,∴ 实数x 的取值范围是2<x <3.(2)由x 2−4ax +3a 2<0得(x −3a)(x −a)<0,且a >0, 即p :{x|a <x <3a},q :{x|2<x <4}. 若¬p 是¬q 的充分不必要条件, 则q 是p 的充分不必要条件. 则{0<a ≤2,3a ≥4,解得43≤a ≤2.∴ 实数a 的取值范围是43≤a ≤2.【答案】解:(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q2+q−6=0.又因为q>0,解得q=2.所以b n=2n.由b3=a4−2a1,可得3d−a1=8①.由S11=11b4,可得a1+5d=16②.联立①②,解得a1=1,d=3,由此可得a n=3n−2.所以,{a n}的通项公式为a n=3n−2,{b n}的通项公式为b n=2n;(2)设数列{a2n b n}的前n项和为T n,由a2n=6n−2,有T n=4×2+10×22+16×23+⋯+(6n−2)×2n,2T n=4×22+10×23+16×24+⋯+(6n−8)×2n+(6n−2)×2n+1,上述两式相减,得−T n=4×2+6×22+6×23+⋯+6×2n−(6n−2)×2n+1=12×(1−2n)1−2−4−(6n−2)×2n+1=−(3n−4)2n+2−16.得T n=(3n−4)2n+2+16.所以,数列{a2n b n}的前n项和为(3n−4)2n+2+16.【考点】等差数列与等比数列的综合等差数列的性质等差数列的通项公式等比数列的通项公式数列的求和【解析】(Ⅰ)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.通过b2+b3=12,求出q,得到b n=2n.然后求出公差d,推出a n=3n−2.(Ⅱ)设数列{a2n b n}的前n项和为T n,利用错位相减法,转化求解数列{a2n b n}的前n项和即可.【解答】解:(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q2+q−6=0.又因为q>0,解得q=2.所以b n=2n.由b3=a4−2a1,可得3d−a1=8①.由S11=11b4,可得a1+5d=16②.联立①②,解得a1=1,d=3,由此可得a n =3n −2.所以,{a n }的通项公式为a n =3n −2,{b n }的通项公式为b n =2n ;(2)设数列{a 2n b n }的前n 项和为T n ,由a 2n =6n −2,有T n =4×2+10×22+16×23+⋯+(6n −2)×2n ,2T n =4×22+10×23+16×24+⋯+(6n −8)×2n +(6n −2)×2n+1,上述两式相减,得−T n =4×2+6×22+6×23+⋯+6×2n −(6n −2)×2n+1=12×(1−2n )1−2−4−(6n −2)×2n+1 =−(3n −4)2n+2−16.得T n =(3n −4)2n+2+16.所以,数列{a 2n b n }的前n 项和为(3n −4)2n+2+16.【答案】解:(1)因为2a cos A =c cos B +b cos C ,所以2sin A cos A =sin C cos B +sin B cos C ,所以2sin A cos A =sin (B +C )=sin A .因为sin A ≠0,所以cos A =12.因为A ∈(0,π),所以A =π3 .(2)因为a =3,由余弦定理得9=b 2+c 2−bc ,所以9=b 2+c 2−bc =(b +c )2−3bc .因为bc ≤(b+c )24,所以9=(b +c )2−3bc ≥(b+c )24,所以b +c ≤6,当且仅当b =c 时等号成立.又因为b +c >a =3,所以b +c ∈(3,6],即△ABC 周长的范围是(6,9] .【考点】正弦定理两角和与差的正弦公式余弦定理基本不等式在最值问题中的应用【解析】此题暂无解析【解答】解:(1)因为2a cos A =c cos B +b cos C ,所以2sin A cos A =sin C cos B +sin B cos C ,所以2sin A cos A =sin (B +C )=sin A .因为sin A ≠0,所以cos A =12.因为A ∈(0,π),所以A =π3 .(2)因为a =3,由余弦定理得9=b 2+c 2−bc ,所以9=b 2+c 2−bc =(b +c )2−3bc .因为bc ≤(b+c )24,所以9=(b +c )2−3bc ≥(b+c )24,所以b +c ≤6,当且仅当b =c 时等号成立.又因为b +c >a =3,所以b +c ∈(3,6],即△ABC 周长的范围是(6,9] .【答案】解:(1)让每一位同学选择,第一位同学有3种选择;第二、三、四位同学同样各有3种选择,由乘法原理,共有3×3×3×3=81(种)不同结果.(2)让竞赛项目去“选择”学生,第一个竞赛项目有4种选择,第二、三个竞赛项目同样有4种选择,所以共有43=64(种)不同结果.(3)由题意,从4位同学中选出3人,分别参加三项不同的竞赛,所以有A 43=24(种)不同结果.【考点】分步乘法计数原理排列、组合的应用【解析】【解答】解:(1)让每一位同学选择,第一位同学有3种选择;第二、三、四位同学同样各有3种选择,由乘法原理,共有3×3×3×3=81(种)不同结果.(2)让竞赛项目去“选择”学生,第一个竞赛项目有4种选择,第二、三个竞赛项目同样有4种选择,所以共有43=64(种)不同结果.(3)由题意,从4位同学中选出3人,分别参加三项不同的竞赛,所以有A 43=24(种)不同结果.【答案】(1)证明:若a n+1=0,则a n =0,这与a 1=1矛盾,∴ a n+1≠0.由已知得2a n a n+1−a n +a n+1=0,∴ 1a n+1−1a n =2, ∴ 数列{1a n }是以1a 1=1为首项,2为公差的等差数列. (2)解:由(1)可知,1a n =1+2(n −1)=2n −1, 由b n+1b n =2⋅a na n+1可知a n+1b n+1=2a n b n .又a 1b 1=2,∴a n b n=2×2n−1=2n,∴b n=(2n−1)⋅2n,∴S n=1⋅21+3⋅22+5⋅23+⋯+(2n−1)⋅2n,则2S n=1⋅22+3⋅23+5⋅24+⋯+(2n−1)⋅2n+1,∴−S n=2+2⋅22+2⋅23+⋯+2⋅2n−(2n−1)⋅2n+1=(3−2n)⋅2n+1−6,∴S n=(2n−3)⋅2n+1+6.【考点】数列的求和数列递推式等差数列【解析】本题考查数列的递推公式、等差数列的定义及通项公式、等比数列的求和公式、数列求和.【解答】(1)证明:若a n+1=0,则a n=0,这与a1=1矛盾,∴a n+1≠0.由已知得2a n a n+1−a n+a n+1=0,∴1a n+1−1a n=2,∴数列{1a n }是以1a1=1为首项,2为公差的等差数列.(2)解:由(1)可知,1a n=1+2(n−1)=2n−1,由b n+1b n =2⋅a na n+1可知a n+1b n+1=2a n b n.又a1b1=2,∴a n b n=2×2n−1=2n,∴b n=(2n−1)⋅2n,∴S n=1⋅21+3⋅22+5⋅23+⋯+(2n−1)⋅2n,则2S n=1⋅22+3⋅23+5⋅24+⋯+(2n−1)⋅2n+1,∴−S n=2+2⋅22+2⋅23+⋯+2⋅2n−(2n−1)⋅2n+1 =(3−2n)⋅2n+1−6,∴S n=(2n−3)⋅2n+1+6.【答案】解:(1)画出约束条件{8x−y−4≤0,x+y+1≥0,y−4x≤0,表示的平面区域,如图阴影部分所示:(2)由图形知,当直线ax +by =z (a >0,b >0)过直线8x −y −4=0与y =4x 的交点B (1,4)时,目标函数z =ax +by (a >0,b >0)取得最大值2,即a +4b =2 .(3)由题意,得 1a +1b =12(a +4b )(1a +1b) =12(5+4b a +a b )≥12(5+2√4b a ⋅a b )=92.当且仅当a =2b =23时等号成立,所以1a +1b 的最小值是92.不等式1a +1b ≥mx 2−x +(m +154)对任意x ∈R 恒成立, 等价于mx 2−x +(m +154)≤92对任意x ∈R 恒成立, 即mx 2−x +(m −34)≤0,当m =0时,−x −34≤0,不符题意;当m ≠0时, {m <0,Δ=1−4m (m −34)≤0,解得m ≤−14 .综上实数m 的取值范围是m ≤−14 . 【考点】含参线性规划问题不等式恒成立问题函数恒成立问题基本不等式在最值问题中的应用简单线性规划【解析】【解答】解:(1)画出约束条件{8x −y −4≤0,x +y +1≥0,y −4x ≤0,表示的平面区域,如图阴影部分所示:(2)由图形知,当直线ax +by =z (a >0,b >0)过直线8x −y −4=0与y =4x 的交点B (1,4)时,目标函数z =ax +by (a >0,b >0)取得最大值2,即a +4b =2 .(3)由题意,得 1a +1b =12(a +4b )(1a +1b )=12(5+4b a +a b )≥12(5+2√4b a ⋅a b )=92. 当且仅当a =2b =23时等号成立,所以1a +1b 的最小值是92.不等式1a +1b ≥mx 2−x +(m +154)对任意x ∈R 恒成立,等价于mx 2−x +(m +154)≤92对任意x ∈R 恒成立, 即mx 2−x +(m −34)≤0,当m =0时,−x −34≤0,不符题意;当m ≠0时, {m <0,Δ=1−4m (m −34)≤0,解得m ≤−14 .综上实数m 的取值范围是m ≤−14 .。
江西省校永修县第三中学2023-2024学年八年级上学期第二次月考数学试题(含解析)

2023-2024学年度上学期阶段(二)质量检测试卷八年级数学考生须知:1、全卷满分120分,考试时间120分钟;2、试卷和答题卡都要写上班级、姓名;3、请将答案写在答题卡上的相应位置上,否则不给分.一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项.1中,无理数有()A.2个B.3个C.4个D.5个2.已知△ABC的三条边分别为a,b,c,下列条件不能判断是直角三角形的是()A.a2=b2-c2B.a=6,b=8,c=10C.∠A=∠B+∠C D.∠A:∠B:∠C=5:12:133.《九章算术》中第七章《盈不足》记载了一个问题:“今有共买物,人出八,赢三;人出七,不足四.问人数、物价各几何?”译文:“现有一些人合伙购买物品,若每人出8钱,则多出3钱;若每人出7钱,则还差4钱,问人数、物品价格各是多少?”设有x个人,物品价格为y钱,则下列方程组中正确的是()A.B.C.D.4.直线y=kx+3与y=3x+k在同一坐标系内,其位置可能是()A.B.C.D.5.一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),s与t之间的函数关系如图所示,下列说法中正确的有()①A、B两地相距120千米;②出发1小时,货车与小汽车相遇;③出发1.5小时,小汽车比货车多行驶了60千米;④小汽车的速度是货车速度的2倍.A.1个B.2个C.3个D.4个220.10100100017π8374x yx y=--=⎧⎨⎩8374x yx y=+-=⎧⎨⎩8374x yx y=++=⎧⎨⎩8374x yx y=-+=⎧⎨⎩6.如图,在平面直角坐标系中,(图中的三角形都是等边三角形),一个点从原点O 出发,沿折线移动,每次移动1个单位长度,则点的坐标为()A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)7______.8.点A (-2,3)关于x 轴的对称点的坐标为______.9.已知点都在直线上,则大小关系是______.10.如图,Rt △ABC 的周长为24,∠C =90°,且AB :AC =5:4,则BC 的长为______.第10题11.如图,直线y =-x +3与y =mx +n 交点的横坐标为1,则关于x 、y 的二元一次方程组的解为______.第11题12.如图,直线y =2x -4与x 轴和y 轴分别交与A ,B 两点,射线AP ⊥AB 于点A ,若点C 是射线AP 上的一11223341O A AA A A A A ===== 1234n O AA A A A 2023A ()1348,0113482⎛ ⎝11348,2⎛ ⎝()1349,0A '()()124,,2,y y -122y x =-+12,y y3x y mx y n+=-+=⎧⎨⎩个动点,点D是x轴上的一个动点,且以A,C,D为顶点的三角形与△AOB全等,则OD的长为______.第12题三、(本大题共5小题,每小题6分,共30分)13.(1(2)解方程组:14.已知2a-7和a+4是某正数的两个不同的平方根,b-11的立方根是-2.(1)求a、b的值.(2)求a+b的平方根.15.如图,一只小鸟旋停在空中4点,A点到地面的高度AB=20米,A点到地面C点(B、C两点处于同一水平面)的距离AC=25米.若小鸟竖直下降12米到达D点(D点在线段AB上),求此时小鸟到地面C点的距离.16.图(1)、图(2)均是5×5的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A、B均在格点上,只用无刻度的直尺,分别在给定的网格中按下列要求作△ABC,点C在格点上.图(1)图(2)(1)在图(1)中,△ABC的面积为5;(2)在图(2)中,△ABC是面积为的钝角三角形.)22+-23451x yx y-=+=-⎧⎨⎩5217.若的值.四、(本大题共3小题,每小题8分,共24分)18.某中学八(1)共有45人,该班计划为每名学生购买一套学具,超市现有A 、B 两种品牌学具可供选择.已知1套A 学具和1套B 学具的售价为45元;2套A 学具和5套B 学具的售价为150元.(1)A 、B 两种学具每套的售价分别是多少元?(2)现在商店规定,若一次性购买A 型学具超过20套,则超出部分按原价的6折出售.设购买A 型学具a 套(a >20)且不超过30套,购买A 、B 两种型号的学具共花费w 元.①请写出w 与a 的函数关系式;②请帮忙设计最省钱的购买方案,并求出所需费用.19.先阅读,再解方程组.解方程组时,设a =x +y ,b =x -y ,则原方程组变为,整理,得,解这个方程组,得,即,解得.请用这种方法解下面的方程组:.20.甲、乙两车间一起加工一批零件,同时开始加工,10个小时完成任务.在这个过程中,甲车间的工作效率不变,乙车间在中间停工一段时间维修设备,然后按停工前的工作效率继续加工.设甲、乙两车间各自加工零件的数量为y (个),甲车间加工的时间为x (时),y 与x 之间的函数图象如图所示.(1)甲车间每小时加工零件的个数为______个,这批零件的总个数为______个;(2)求乙车间维护设备后,乙车间加工零件的数量y 与x 之间的函数关系式;(3)在加工这批零件的过程中,当甲、乙两车间共同加工完930个零件时,求甲车间加工的时间.五、(本大题共2小题,每小题9分,共18分)21.如图,已知△ABC 中,∠B =90°,AB =16cm ,BC =12cm ,P 、Q 是△ABC 边上的两个动点,其中点Px y ==22x xy y -+()()623452x y x yx y x y +-⎧-=⎪⎨⎪+--=⎩623452a ba b ⎧+=⎪⎨⎪-=⎩3236452a b a b +=⎧⎨-=⎩86a b =⎧⎨=⎩86x y x y +=⎧⎨-=⎩71x y =⎧⎨=⎩()()()()5316350x y x y x y x y +--=⎧⎪⎨+--=⎪⎩从点A 开始沿A →B 方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B →C →A 方向运动,且速度为每秒2cm ,它们同时出发,同时停止.备用图(1)P 、Q 出发4秒后,求PQ 的长;(2)当点Q 在边CA 上运动时,出发几秒钟后,△CQB 能形成直角三角形?22.如图,已知A (3,0),B (0,4),点D 在y 轴的负半轴上,若将△DAB 沿直线AD 折叠,点B 恰好落在x 轴正半轴上的点C 处.(1)求直线AB 的表达式;(2)求C 、D 的坐标;(3)在直线DA 上是否存在一点P ,使得?若存在,直接写出点P 的坐标;若不存在,请说明理由.六、(本大题共1小题,共12分)我们新定义一种三角形:若一个三角形中存在两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,两边交点为勾股顶点.特例感知①等腰直角三角形______勾股高三角形(请填写“是”或者“不是”);②如图,已知△ABC 为勾股高三角形,其中C 为勾股顶点,CD 是AB 边上的高.若BD =1,AD =2,试求线段CD的长度.10P A B S △深入探究如图,已知△ABC为勾股高三角形,其中C为勾股顶点且CA>CB,CD是AB边上的高.试探究线段AD与CB的数量关系,并给予证明:推广应用如图,等腰△ABC为勾股高三角形,其中AB=AC>BC,CD为AB边上的高,过点D向BC边引平行线与AC 边交于点E.若CE=a,直接写出线段DE的长度(用含a的代数式表示).八年级阶段二数学答案1.【答案】C【分析】根据无理数的定义,即可求解.,,4个.故选:C2.【答案】D.3.【答案】C4.【答案】A【分析】根据一次函数的性质分k>0,k<0两种情形分别分析即可.【详解】解:当时,两条直线都经过第一,二,三象限,四个选项都不符合题意;当时,经过第一,二,四象限,的图象经过第一,三,四象限,只有选项A正确,故选:A.5.【答案】D6.【答案】B【分析】过作轴,垂足为B,求出,,求出前若干个点的坐标,找到规律点的每运动6次循环一次,每循环一次向右移动4个单位,每个周期内点的横坐标变化为:,,计算出2023与6的商和余数,据此得到结果.【详解】解:∵图中的三角形都是等边三角形,边长为1,如图,过作轴,垂足为B,则,∴,3=-k>k<3y kx=+3y x k=+1A1AB x⊥OB1AB A1111,,1,,,12222++++++ 1A1AB x⊥212OB A B==1A B==∴点的坐标为:;点的坐标为:;点的坐标为:;点的坐标为:;点的坐标为:;点的坐标为:;…分析图象可以发现,点的每运动6次循环一次,每循环一次向右移动4个单位,每个周期内点的横坐标变化为:,,,∴点的坐标为,即,故选B .7.【答案】±28.【答案】9.【答案】10.【答案】611.【答案】12.【答案】6或13.(1)1A 12⎛⎝2A ()1,03A ()2,04A 5,2⎛ ⎝5A ()3,06A ()4,0A 1111,,1,,,12222++++++20236337......1÷=2023A 133742⎛⨯+ ⎝113482⎛ ⎝()23-,-12yy >12x y =⎧⎨=⎩2+)22++-.(2)【答案】14.【详解】(1)由题意得:2a -7+a +4=0,b -11=-8,解得:a =1,b =3;(2)∵a =1,b =3,∴a +b =4,4的平方根为±2.【答案】17米【详解】解:由勾股定理得;,∴(米),∵(米),∴在中,由勾股定理得,∴此时小鸟到地面C 点的距离17米.答;此时小鸟到地面C 点的距离为17米.16.点C 到AB,进而可找到点C 所在的直线,与网格的交点即为点C 的位置).(2)如图(3)所示(点拨:由,可知点C 的距离为,进而可找到点C 所在的直线,再结合△ABC 角三角形,且点C在格点处,即可找到点C 的位置)17.【答案】13∵x y,∴x =2,y =,∴x 2-xy ﹢y 2=(x -y )2﹢xy =+1=1318.【详解】解:设A 种品牌的学具售价为x 元,B 种品牌的学具售价为y 元,根据题意有,,解之可得,222=+-34=-1=11x y =⎧⎨=-⎩222222520225BC AC AB =-=-=15BC =20128BD AB AD =-=-=Rt BCD 17CD ==52ABC AB S ==△(2()14525150x y x y +=⎧⎨+=⎩{2520x y ==所以A 、B 两种学具每套的售价分别是25和20元;因为,其中购买A 型学具的数量为a ,则购买费用,即函数关系式为:,;符合题意的还有以下情况:Ⅰ、以的方案购买,因为-5<0,所以时,w 为最小值,即元;Ⅱ、由于受到购买A 型学具数量的限制,购买A 型学具30套w 已是最小,所以全部购买B 型学具45套,此时元元,综上所述,购买45套B 型学具所需费用最省钱,所需费用为:900元.故答案为(1)A 、B 两种学具每套的售价分别是25和20元;(2)①w =-5a +1100,(20<a ≤30);②购买45套B 型学具所需费用最省钱,所需费用为900元.19.【答案】【分析】根据举例,结合换元法a =x +y ,b =x -y ,可得方程组;解方程,可以得到a ,b 的值,代入所设,组成关于x ,y 的方程组,解方程组即可.【详解】解:设,,则原方程组变为,解得,所以,解得.20.【答案】(1)75,1110(2)(3)8.5小时【详解】(1)甲车间每小时加工零件的个数为个;这批零件的总个数为个,故答案为:75,1110;(2)设乙车间维护设备后,y 与x 之间的函数关系式为,()2①2030a <≤()()2025202560%4520w a a =⨯+-⨯⨯+-⨯500153009002051100a a a =+-+-=-+51100w a =-+(2030)a <≤②①30a =5301100950(w =-⨯+=4520900(w =⨯=)950<41x y =⎧⎨=⎩5316350a b a b -=⎧⎨-=⎩a x y =+b x y =-5316350a b a b -=⎧⎨-=⎩53a b =⎧⎨=⎩53x y x y +=⎧⎨-=⎩41x y =⎧⎨=⎩4590y x =-750=7510750360=1110+y kx b =+将点代入,得,解得,∴设乙车间维护设备后,y 与x 之间的函数关系式为;(3)乙车间每小时加工零件的个数为个,设甲车间加工x 小时,则解得,∴甲车间加工8.5小时.21.【详解】(1)解:由题意可得,BQ =2×4=8(cm ),BP =ABAP =161×4=12(cm ),∵∠B =90°,∴PQcm ),即PQ 的长为cm ;(2)解:当BQ ⊥AC 时,∠BQC =90°,∵∠B =90°,AB =16cm ,BC =12cm ,∴AC (cm ),∵,∴,解得cm ,∴CQ(cm ),∴当△CQB 是直角三角形时,经过的时间为:(12+)÷2=9.6(秒);当∠CBQ =90°时,点Q 运动到点A ,此时运动的时间为:(12+20)÷2=16(秒);由上可得,当点Q 在边CA 上运动时,出发9.6秒或16秒后,△CQB 能形成直角三角形.22.【答案】(1)(2),(3)存在,或()()4,90,10,75049010360k b k b +=⎧⎨+=⎩4590k b =⎧⎨=-⎩4590y x =-90245÷=()75452930x x +-=8.5x ===20=22AB BC AC BQ = 16122022BQ ⨯=485BQ =365==365443y x =-+()80C ,()06D -,()14-,()54,【详解】(1)解:设一次函数表达式:,将点的坐标代入得:,解得:,故直线的表达式为:;(2)解:,,由题意得:,,,故点,设点D 的坐标为:,,解得:,故点;(3)解:存在,理由如下:设直线的表达式为,由点、的坐标代入得:,解得:,直线的表达式为:,,,,,,点P 在直线上,设,,解得:或5,y kx b =+()()3004A B ,,,034k b b =+⎧⎨=⎩434k b ⎧=-⎪⎨⎪=⎩AB 443y x =-+()()3004A B ,,,5AB ∴=CD BD =5AC AB ==358OC OA AC ∴=+=+=()80C ,()0m ,CD BD =4m =-6m =-()06D -,AD 11y k x b =+()30A ,()06D -,111036k b b =+⎧⎨=-⎩1126k b =⎧⎨=-⎩AD 26y x =-()04B ,()06D -,10BD ∴=1103152ABD S ∴=⨯⨯= 10P A B S =DA (),26P a a -13102PAB BDP BDA S S S BD a ∴=-=⨯⨯-= 1a =即点P 的坐标为:或.23.【详解】解:特例感知:①等腰直角三角形是勾股高三角形.,∵,∵等腰直角三角形的一条直角边可以看作另一条直角边上的高,∴等腰直角三角形是勾股高三角形,故答案为:是;②∵是边上的高,,,∴,,∵为勾股高三角形,为勾股顶点,是边上的高,∴,∴,解得:或(负值不符合题意,舍去),∴线段;深入探究:.证明:∵为勾股高三角形,为勾股顶点且,是边上的高,∴,∴,∵,∴,∴;推广应用:过点作于,∴,∵等腰为勾股高三角形,且,为边上的高,∴,,由上问可知:,∵,∴,,∵,∴,∴,∴,()14-,()54,=)222a a -=CD AB 1BD =2AD =22221CB CD BD CD =+=+22224CA CD AD CD =+=+ABC C CD AB 222CD CA CB =-()()22241CD CD CD =+-+CD CD =CD AD CB =ABC C CA CB >CD AB 222CA CB CD -=222CA CD CB -=222CA CD AD -=22AD CB =AD CB =A AG ED ⊥G 90AGD ∠=︒ABC AB AC BC =>CD AB 222AC BC CD -=90CDB ∠=︒AD BC =ED BC ∥ADE B ∠=∠AED ACB ∠=∠AB AC =ACB B =∠∠ADE AED ∠=∠AE AD =∵,在和中,,∴,∴,∵为等腰三角形,∴,∵,,,∴,∴,∴线段的长度为.90AGD CDB ∠=∠=︒AGD △CDB △AGD CDB ADG CBD AD CB ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AGD CDB △≌△DG BD =ADE 22ED DG BD ==AB AC =AE AD =CE a =BD CE a ==2ED a =DE 2a。
江西省上进联考2024-2025学年高三上学期10月月考数学试题

江西省2025届高三上学期10月阶段检测考数学试卷试卷共4页,19小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考生必须保持答题卡的整洁。
考试结束后,请将答题卡交回。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}4,3,0,6,3A B x x =--=∈≤Z ,则A B 的非空真子集的个数为( )A .2B .3C .4D .62.已知命题:,20240p x x ∀∈+>R ,命题():3,sin 30q x x ∃<-+=,则( ) A .p 和q 都是真命题 B .p ⌝和q 都是真命题 C .p 和q ⌝都是真命题D .p ⌝和q ⌝都是真命题3.将函数()()sin 3(0π)f x x ϕϕ=+<<的图象向左平移π4个单位长度后得到奇函数()g x 的图象,则ϕ=( )A .π12B .π4C .5π12 D .π24.已知函数()223,0,25,0e x xf x x ax a x ⎧+≤⎪=⎨++>⎪⎩在R 上单调,则a 的取值范围是( )A .1,5⎛⎤-∞ ⎥⎝⎦B .10,5⎡⎤⎢⎥⎣⎦C .1,5⎡⎫+∞⎪⎢⎣⎭D .[)0,+∞5.已知22sin cos 3cos 4θθθθ++=,则tan θ=( )A .1B.2-C .2D.36.在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,满足23bc a =,且72b c a +=,则sin A =( ) A.6B.8C .23 D .387.已知3212log 61a a +=+-,则a =( )A .39log 2B .32C .3log 4D .28.已知a ,b 为正数,若x b ∀>-,有函数()()1x af x x b -=+≥,则18a b+的最小值为( )A .9+B .9+C .9D .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知a b c >>,则( ) A .22a cbc ->-B .22a c b c ->-C .()()cos 2cos 2a c b c +>+D .33a b >10.已知函数()x f x ae bx c =++的两个零点分别为1,1-,且()00f <,则( )A .12e e c a -+=-⋅ B .0a >C .20b ea +<D .0a b c ++<11.若存在实数b 使得方程430x mx nx b +++=有四个不等的实根,则mn 的值可能为( ) A .2024-B .2025C .0D .6-三、填空题:本题共3小题,每小题5分,共15分.12.已知扇形的圆心角为3rad ,面积为24,则该扇形的弧长为___________.13.已知函数()(3log 3sin 1f x x =+,则______. 14.函数()()28ln sin sin 2f x x x =+在区间π0,2⎛⎫⎪⎝⎭上的零点个数为___________. 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数()π24f x x ⎛⎫=+ ⎪⎝⎭.(1)求()f x 的单调递增区间; (2)当5π0,8x ⎡⎤∈⎢⎥⎣⎦时,求()f x 的最值. 16.(15分)已知集合{}(){}21,lg 310A x a x a B x y x x =≤≤+==--.(1)当1a =时,求()RB A ;(2)若“x A ∈”是“Rx B ∈”的充分不必要条件,求a 的取值范围.17.(15分)已知函数()3sin 2xx x f x e-+=.(1)求曲线()y f x =在点()()0,0f 处的切线方程; (2)求()f x 的最值.18.(17分)记ABC △的内角A ,B ,C 所对的边分别为a ,b ,c ,且24a b c +==. (1)求C 的取值范围;(2)若ABC △为锐角三角形,设(),1AN AB BM BA λλλ==>,探究是否存在λ,使得tan tan CMA CNB ∠⋅∠为定值?若存在,求出该定值;若不存在,请说明理由.19.(17分)定义:设函数()f x 的图象上一点()()00,x f x 处的切线为00,l l 在()()00,x f x 处的垂线1l 也与()f x 的图象相切于另一点()()11,x f x ,则称0l 和1l 为()f x 的一组“垂切线”,0x 为“垂切点”.已知三次函数()30,f x x bx l =+和1l 为()f x 的一组“垂切线”,其中0x 为()f x 的垂切点,1l 与()f x 相切于点()()11,x f x .(1)求曲线()y f x =在点()()00,x f x 处的切线方程;(用0x 和b 表示) (2)若对任意1x 都存在π0,,2α⎡⎫∈⎪⎢⎣⎭使21cos m x α=,求正数m 的取值范围;(3)证明:点()()00,x f x 和()()11,x f x参考公式:()()()()232333221100100110100011232,x x x x x x x x x x x x x x x x -+=-+-=-++.。
江西省南昌市八年级上学期数学10月月考试卷

江西省南昌市八年级上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019八上·武汉月考) 在下列图形中,不一定是轴对称图形的是()A . 线段B . 长方形C . 三角形D . 角【考点】2. (2分) (2020八上·洪泽月考) 将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上面的爱心,将留下的纸片展开,得到的图形是()A .B .C .D .【考点】3. (2分) (2019八上·永春月考) 下面是作角等于已知角的尺规作图过程,要说明∠A′O′B′=∠AOB,需要证明△D′O′C′≌△DOC,则这两个三角形全等的依据是()A . 边边边B . 边角边C . 角边角D . 角角边【考点】4. (2分) (2019八上·呼和浩特期中) 如图,AB=AC ,∠BAC=120°,AB的垂直平分线交BC于点D ,那么∠DAC的度数为()A . 90°B . 80°C . 70°D . 60°【考点】5. (2分) (2016八上·绍兴期中) 用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A . (SSS)B . (SAS)C . (ASA)D . (AAS)【考点】6. (2分) (2018八上·九台期末) 如图,图中的尺规作图是作()A . 线段的垂直平分线B . 一条线段等于已知线段C . 一个角等于已知角D . 角平分线【考点】7. (2分) (2019七下·青山月考) 如图所示,已知AC⊥BC,CD⊥AB,垂足分别是C,D,那么以下线段大小的比较必定成立的是()A . CD>ADB . AC<BCC . BC>BDD . CD<BD【考点】8. (2分) (2019八上·恩施期中) 如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD ;(2)AD⊥BC;(3)∠B=∠C ;(4)AD是△ABC的角平分线。
江西省赣州市八年级上学期数学第二次月考试卷

江西省赣州市八年级上学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2019七下·监利期末) 下列运算正确的()A . (﹣3)2=﹣9B .C .D .2. (2分) (2019七上·海口期中) 1.449精确到十分位的近似数是()A . 1.5B . 1.45C . 1.4D . 2.03. (2分)课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A . (5,4)B . (4,5)C . (3,4)D . (4,3)4. (2分)下列实数中,无理数是()A .B .C .D .5. (2分)点P(3,-5)关于y轴对称的点的坐标为()A . (-3,-5)B . (5,3)C . (-3,5)D . (3,5)6. (2分)在平面直角坐标系中,将点P(-2,3)沿x轴方向向右平移3个单位得到点Q,则点Q的坐标是()A . (-2,6)B . (-2,0)C . (1,3)D . (-5,3)7. (2分)下列语句不正确的是().A . 所有的正比例函数肯定是一次函数B . 一次函数的一般形式是y=kx+bC . 正比例函数和一次函数的图象都是直线D . 正比例函数的图象是一条过原点的直线8. (2分)(2017·龙岗模拟) 如图,在平面直角坐标系中,设点P到原点O的距离为ρ,OP与x轴正方向的交角为a,则用[ρ,a]表示点P的极坐标,例如:点P的坐标为(1,1),则其极坐标为[ ,45°].若点Q 的极坐标为[4,120°],则点Q的平面坐标为()A . (﹣2,﹣2 )B . (2,﹣2 )C . (﹣2 ,﹣2)D . (﹣4,﹣4 )二、填空题 (共9题;共10分)9. (1分) (2016九上·思茅期中) 函数中,自变量x的取值范围是________.10. (1分) (2016七下·大冶期末) 大于的最小整数是________.11. (1分) (2017八下·沙坪坝期中) 已知点P的坐标为(﹣5,﹣8),那么该点P到x轴的距离为________.12. (1分) (2016七上·重庆期中) 若|m﹣2|+(n+3)2=0,则m﹣n=________.13. (1分) (2019八下·灯塔期中) 在平面直角坐标系中,将A(﹣1,5)绕原点逆时针旋转90°得到A′,则点A′的坐标是 ________14. (1分)如图,数轴上点A、B对应的数分别是1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径作圆弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,当点M在点B的右侧时,点M对应的数是________.15. (1分) (2017八上·三明期末) 在直角坐标系中,有点P(﹣2,3),则点P到x轴的距离是________.16. (1分) (2017八上·孝义期末) 如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC 于点D,则∠A的度数是________.17. (2分) (2017八上·南海期末) 点P(2,﹣3)关于x轴的对称点坐标为________.三、解答题 (共9题;共99分)18. (5分)计算:(1)2cos30°﹣﹣| |(2)﹣14﹣(﹣2)0+2tan 45°.19. (10分) (2017九下·六盘水开学考) 计算:+|1﹣ |﹣2sin60°+(π﹣2017)0﹣.20. (10分) (2016八上·嵊州期末) 在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称为“理想点”.例如点(﹣2,﹣4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有无数多个.(1)若点M(2,a)是“理想点”,且在正比例函数y=kx(k为常数,k≠0)图象上,求这个正比例函数的表达式.(2)函数y=3mx﹣1(m为常数,且m≠0)的图象上存在“理想点”吗?若存在,请用含m的代数式表示出“理想点”的坐标;若不存在,请说明理由.21. (20分) (2016七下·宝坻开学考) 如图所示,在数轴上由两点A、B,回答下列问题(1)写出A、B两点所表示的数,并求线段AB的长;(2)将点A向左移动个单位长度得到点C,点C表示的数是多少,并在数轴上表示出来(3)数轴上存在一点D,使得C、D两点间的距离为8,请写出D点表示的数.22. (10分)(2018·建湖模拟) 如图1,对称轴为直线x=1的抛物线y= x2+bx+c,与x轴交于A、B两点(点A在点B的左侧),且点A坐标为(-1,0).又P是抛物线上位于第一象限的点,直线AP与y轴交于点D,与抛物线对称轴交于点E,点C与坐标原点O关于该对称轴成轴对称.(1)求点 B 的坐标和抛物线的表达式;(2)当 AE:EP=1:4 时,求点 E 的坐标;(3)如图 2,在(2)的条件下,将线段 OC 绕点 O 逆时针旋转得到OC ′,旋转角为α(0°<α<90°),连接 C ′D、C′B,求 C ′B+ C′D 的最小值.23. (16分)(2017·武汉模拟) 九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200﹣2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.24. (11分)(2016·龙东) 甲、乙两车从A城出发前往B城,在整个行程中,两车离开A城的距离y与t 的对应关系如图所示:(1) A、B两城之间距离是多少千米?(2)求乙车出发多长时间追上甲车?(3)直接写出甲车出发多长时间,两车相距20千米.25. (7分)在数轴上点A表示的数是.(1)若把点A向左平移2个单位得到点为B,则点B表示的数是什么?(2)点C和(1)中的点B所表示的数互为相反数,点C表示的数是什么?(3)求出线段OA,OB,OC的长度之和.26. (10分) (2017八下·福州期末) 综合题(1)操作发现:如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD内部.小明将BG 延长交DC于点F,认为GF=DF,你同意吗?说明理由.(2)问题解决:保持(1)中的条件不变,若DC=2DF,求的值;(3)类比探求:保持(1)中条件不变,若DC=nDF,求的值.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共9题;共10分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共9题;共99分)18-1、18-2、19-1、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、26-3、。
江西省吉安市第八中学2023-2024学年八年级上学期第一次月考数学试题

江西省吉安市第八中学2023-2024学年八年级上学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.以下四组数中,是勾股数的是( )A .1,2,3B .12,13,4C .8,15,17D .4,5,62.在3.1415,17,83,0,0.89-,13π-,2011-,0.3030030003L (相邻两个3之间0的个数逐次加1),5 )A .2个B .3个C .4个D .5个3.一个圆柱底面周长为16cm ,高为6cm ,则蚂蚁从A 点爬到B 点的最短距离为( )cm .A .8B .10C .8πD .10π4.已知a ,b ,c 为△ABC 的三边长,|b -c |=0,则△ABC 的形状是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰直角三角形 5.《九章算术》是我国古代第一部数学专著,它的出现标志着中国古代数学形成了完整的体系,“折竹抵地“问题源自《九章算术》中:“今有竹高一丈,永折抵地,去本四尺,问折者高几何?”意思是:一根竹子原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺) ( )A .3B .3.5C .4.2D .4.96.一个正数的两个平方根分别为21m -与2m -,则m 的值为( )A .1B .1-C .2D .2-二、填空题7.如图字母B 所代表的正方形的边长是 .8(填>,<或=).9的平方根是 .10.一艘轮船以20km/h 的速度离开港口向东北方向航行,另一艘轮船同时离开港口以48km/h 的速度向东南方向航行,它们离开港口半小时后相距 km .11.若y 4= .12.90C ∠=︒,5cm 3cm AB AC ==,,动点P 从点B 出发沿射线BC 以1cm/s 的速度移动,设运动的时间为s t ,当ABP V 为直角三角形时,t 的值为 .三、解答题13.计算:2;14.先化简,再求值:(a +2b )2+(a +2b )(a -2b )+2a (b -a ),其中a b15.如图,四边形ABCD 是舞蹈训练场地,要在场地上铺上草坪.经过测量得知:90B ??,24m AB =,7m BC =,15m CD =,20m AD =.(1)判断∠D 是不是直角,并说明理由;(2)求四边形ABCD 需要铺的草坪的面积.16.已知23a +的平方根是3±,32b c -的立方根是2,c 6a b c +-的算术平方根.17.图1是某品牌婴儿车,图2为其简化结构示意图.根据安全标准需满足BC CD ⊥,现测得6AB CD ==dm ,3BC =dm ,9AD =dm ,其中AB 与BD 之间由一个固定为90°的零件连接(即90ABD ??),通过计算说明该车是否符合安全标准.18.求下列各式中x 的值.(1)()249x -=;(2)32780x +=.19.实数a 、b20.如图,将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,FC 交AD 于E .(1)求证:AFE CDE △△≌;(2)若4,8AB BC ==,求图中阴影部分的面积.21.我们知道,负数没有算术平方根,但对于三个互不相等的负整数,若两两乘积的算术平方根都是整数,则称这三个数为“完美组合数”,例如:9-,4-,1-6=,3=2=,其结果6,3,2都是整数,所以1-,4-,9-这三个数称为“完美组合数”.(1)18-,8-,2-这三个数是“完美组合数”吗?请说明理由,(2)若三个数3-,m ,12-是“完美组合数”,其中有两个数乘积的算术平方根为12.求m 的值.22.数学张老师在课堂上提出一个问题:“ 1.414L ,它是无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”,小明举手1来表示它的小数部分,张老师夸奖小明真聪明,肯定了他的说法.现请你根据小明的说法解答:(2)a b 的整数部分,求a b +(3)已知8x y +,其中x 是一个正整数,01y <<,求20222(1)+x y 的值. 23.如图,已知ABC V 中,90B ??,8cm AB =,6cm BC =,P 、Q 是ABC V 边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当2t =秒时,求PQ 的长;(2)求出发时间为几秒时,PQB △是等腰三角形?(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ △成为等腰三角形的运动时间.。
2024-2025学年江西省南昌市红谷滩区八年级(上)第一次月考数学试卷(无答案)

江西省2025届八年级第一次阶段适应性评估数学上册11.1~12.1说明:共有六个大题,23个小题,满分120分,作答时间120分钟.一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填入题后括号内.错选、多选或未选均不得分.1.下列长度的三条线段不能组成三角形的是( )A .2,3,4B .3,5,8C .6,8,10D .5,5,92.如图,将△ABC 沿直线AB 翻折,点C 与点D 重合,点E 在AB 上,则全等三角形有( )A .1组B .2组C .3组D .4组3.如图,人字梯中间一般会设计一根“拉杆”,以增加使用梯子时的安全性,其中蕴含的数学依据是( )A .两点确定一条直线B .两点之间,线段最短C .垂线段最短D .三角形具有稳定性4.王大爷要将一块如图所示的三角形土地平均分配给两个儿子,则图中他所作的线段AD 应该是△ABC 的( )A .角平分线B .高C .中线D .以上都不是5.如图,在△ABC 中,AD ,CE 是三角形的高,若,,,则线段CE 的长为( )5AB =6BC =4AD =A.B .4C .5D .66.如图,在四边形OAPE 中,点D ,B 分别在边OA ,OE 上,△APD ≌△BPE ,下列结论不一定正确的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)7.在△ABC 中,,,则的度数为________.8.“香渡栏干屈曲,红妆映、薄绮疏棂.”图1窗棂的外边框可抽象为正六边形(如图2),则该正六边形的内角和为________.图1 图29.若三角形三个内角的比为,则这个三角形是________三角形.10.如图,在△ABC 中,,,CD 是边AB 上的高,AE 是的平分线,则的度数是________.11.如图,,点D ,E 分别在边AB ,AC 上,若,,则________.245PB PA =OB PD =BPA DPE ∠=∠180OBP A ∠+∠=︒45B ∠=︒60C ∠=︒A ∠1:2:330BCD ∠=︒80ACB ∠=︒CAB ∠AEB ∠ABE ACD △△≌3AD =5AC =BD =12.有一张三角形纸片ABC ,其中,,,过三角形纸片的某个顶点将△ABC 剪成两个三角形,其中有一个为直角三角形,则剪完后得到的两个三角形的所有内角中,最大角的度数为________.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)在△ABC 中,三角形各内角的度数如图所示,求的度数.(2)已知一个多边形的内角和是它的外角和的4倍,求该多边形的边数.14.已知一个三角形的两条边长分别为4cm ,8cm .设第三条边长为x cm .(1)求x 的取值范围.(2)若此三角形为等腰三角形,求该等腰三角形的周长.15.现有一块如图所示的模板.为了加工成某种特定的形状,需要AB ,CD 的延长线的夹角为().由于交点M 不在模板上,不便测量,工人师傅测得,,,请通过计算判断该模板是否符合要求.16.如图,在△ABC 中,AD 为BC 边上的高,CE 平分交AD 于点E ,若,.100A ∠=︒60B ∠=︒20C ∠=︒B ∠80︒80M ∠=︒122A ∠=︒156C ∠=︒90E F ∠=∠=︒ACD ∠:3:2BAC CAD ∠∠=35DCE ∠=︒(1)求的度数;(2)求的度数.17.如图,在的网格中,每个小正方形的边长均为1,小正方形的每一个顶点称为格点.A ,B ,C 均在格点上,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).图1 图2(1)在图1中,过点C 作△ABC 的中线.(2)在图2中,在边BC 上找到点E ,使.四、解答题(本大题共3小题,每小题8分,共24分)18.如图,已知,点B ,F ,C ,E 在同一条直线上.(1)若,,求线段BF 的长.(2)请判断AC 与DF 的位置关系,并说明理由.19.追本溯源我们知道,三角形三个内角的和等于,利用该定理我们可以得到推论:三角形的外角等于与它不相邻的两个内角的和.推论证明(1)已知:如图1,是△ABC 的一个外角.求证:.CAD ∠B ∠65⨯2ABE ACE S S =△△ABC DEF △△≌11BE =3CF =180︒ACD ∠ACD A B ∠=∠+∠图1知识应用(2)如图2,在△ABC 中,,点D 在边BC 上,交AC 于点F .若,求的度数.图220.定义:若三角形的两个内角与满足,则称该三角形为“准互余三角形”,与为“准互余角”.(1)下列各组给出了三角形的三个内角,其中能构成“准互余三角形”的是________(填序号).①,,;②,,;③,,.(2)若△ABC 为“准互余三角形”,,和是“准互余角”,求的度数.(3)如图,在Rt △ABC 中,,若AD 平分,求证:△ABD 是“准互余三角形”.五、解答题(本大题共2小题,每小题9分,共18分)21.问题情境:在探索多边形的内角与外角关系的活动中,同学们经历了观察、猜想、实验、计算、推理、验证等过程,提出了以下问题,请解答.(1)若六边形的一个内角的度数是.①与它相邻的外角的度数为________;②其他五个内角的和为________.(2)若n 边形的一个外角为,与它不相邻的个内角的和为,求,与n 之间满足的等量关系,并说明理由.22.【模型理解】(1)如图1,AB 和CD 交于点O ,求证:.50B ∠=︒DE AB ∥195∠=︒C ∠αβ90αβ-=︒αβ50︒60︒70︒20︒50︒110︒30︒30︒120︒100A ∠=︒A ∠B ∠C ∠90C ∠=︒BAC ∠50︒α()1n -βαβA C B D ∠+∠=∠+∠图1【模型应用】(2)如图2,AE ,CE 分别平分,,求证:.图2六、解答题(本大题共12分)23.特例感知(1)如图1,BP 是的平分线,CP 是△ABC 外角的角平分线.图1①若,则________;②判断与的数量关系,并说明理由.类比迁移(2)如图2,是的外角,的平分线与的平分线交于点,的平分线与的平分线交于点,,的平分线与的平分线交于点(n 为正整数).设,则________.图2拓展应用BAD ∠BCD ∠2B D E ∠+∠=∠ABC ∠50A ∠=︒P ∠=P ∠A ∠0A CD ∠0A BC △0A BC ∠0A CD ∠1A 1A BC ∠1A CD ∠2A 1n A BC -∠1n A CD -∠n A 0A α∠=n A ∠=(3)如图3,在△ABC 中,是△ABC 的外角,的三等分线与的三等分线交于点P .若,,请直接写出的度数.(用含、的式子表示)图3ACD ∠B ∠ACD ∠A α∠=()B βαβ∠=>P ∠αβ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西省2020版八年级上学期数学10月月考试卷(II)卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共8题;共16分)
1. (2分)如图,已知点D在AC上,点B在AE上,△ABC≌△DBE,且∠BDA=∠A,若∠A:∠C=5:3,则∠DBC=()
A . 30°
B . 25°
C . 20°
D . 15°
2. (2分)(2020·重庆模拟) 下列命题为真命题的是()
A . 直角三角形的两个锐角互余
B . 任意多边形的内角和为360°
C . 任意三角形的外角中最多有一个钝角
D . 一个三角形中最多有一个锐角
3. (2分) (2020八上·越秀期中) 等腰三角形有一个外角是110°,则其顶角度数是()
A . 70°
B . 70°或40°
C . 40°
D . 110°或40°
4. (2分) (2018八上·永定期中) 以下各组线段为边,能组成三角形的是()
A . 8cm,6cm,4cm
B . 2cm,4cm,6cm
C . 14cm,6cm,7cm
D . 2cm,3cm,6cm
5. (2分) (2020八上·安丘月考) 如图,,OA=OD,,的度数为()
A .
B .
C .
D .
6. (2分)在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论:
△ACD≌△ACE;②△CDE为等边三角形;③=2;④=.其中结论正确的是()
A . 只有①②
B . 只有①②④
C . 只有③④
D . ①②③④
7. (2分) (2019八上·瑞安期中) 如图,在△ABC中,∠ABC=45° , BC=4,以AC为直角边,点A为直角顶点向△ABC的外侧作等腰直角三角形ACD,连接BD,则△DBC的面积为() .
A . 8
B . 10
C . 4
D . 8
8. (2分) (2019九上·重庆开学考) 如图,在▱中,,,将沿边折叠得到,交于,,则点到的距离为()
A .
B .
C .
D .
二、填空题 (共6题;共6分)
9. (1分)已知从某个多边形的一个顶点出发一共画出4条对角线,那么这个多边形共有________条对角线.
10. (1分) (2018七上·龙岩期中) 数学中有很多精炼的符号,如表示1开始的100个连续自然数的和,即这里“ ”是求和符号又如:
,则 ________.
11. (1分) (2020八上·仙居期中) 如图是一枚“八一”建军节纪念章,其外轮廓是一个正五边形,则图中∠1的大小为________°.
12. (1分)(2020·重庆模拟) 如图,在边长为1的菱形ABCD中,,将沿射线BD 的方向平移得到,分别连接,,,则的最小值为________.
13. (1分)(2016·河北) 如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,
则光线沿原路返回到点A,此时∠A=90°-7°=83°.
当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2 ,易知∠1=∠2.若A1A2⊥AO ,光线又会沿A2→A1→A原路返回到点A,此时∠A=________°.
若光线从点A发出后,经若干次反射能沿原路返回到点A ,则锐角∠A的最小值=________°.
14. (1分) (2017八上·深圳月考) 在直角坐标系中,如图有△ABC,现另有一点D满足以A、B、D为顶点的三角形与△ABC全等,则D点坐标为________
三、解答题 (共6题;共45分)
15. (5分) (2019八上·吉林期中) 如图,,是的角平分线,,
,求的度数.
16. (5分) (2020七下·郓城期末) 如图,在△ABC 中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,AD=AE,且 BE= .试说明:AB 平分∠EAD.
17. (5分) (2020八上·蒙阴月考) 已知:如图,CD⊥AB于D,BE⊥AC于E,∠1=∠2.求证:OB=OC.
18. (5分)如图,已知直线l1∥l2 ,直线l3和直线l1、l2交于点C和D,在C、D之间有一点P,如果P 点在C、D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化.若点P在C、D两点的外侧运动时(P 点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?
19. (10分) (2019八上·乐陵月考) 已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D 分别在AN,AM上,连接BD.
(1)(发现)
如图1,若∠ABC=∠ADC=90°,则∠BCD=________°,△CBD是________三角形;
(2)(探索)
如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;
(3)(应用)
如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH为等边三角形,则满足上述条件的△PGH的个数一共有________.(只填序号)
①2个②3个③4个④4个以上
20. (15分) (2020八上·沈阳期末) 已知:在Rt△ABC中,∠ACB=90°,AB=AC,点D在直线AB上,连接CD,在CD的右侧作CE⊥CD,CD=CE.
(1)如图1,①点D在AB边上,直接写出线段BE和线段AD的关系;
(2)如图2,点D在B右侧,BD=1,BE=5,求CE的长.
(3)拓展延伸
如图3,∠DCE=∠DBE=90,CD=CE,BC=,BE=1,请直接写出线段EC的长.
参考答案一、单选题 (共8题;共16分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、考点:
解析:
答案:7-1、考点:
解析:
答案:8-1、考点:
解析:
二、填空题 (共6题;共6分)答案:9-1、
考点:
解析:
答案:10-1、考点:
解析:
答案:11-1、考点:
解析:
答案:12-1、考点:
解析:
答案:13-1、考点:
解析:
答案:14-1、
考点:
解析:
三、解答题 (共6题;共45分)
答案:15-1、
考点:
解析:
答案:16-1、考点:
解析:
答案:17-1、
考点:
解析:
答案:18-1、考点:
解析:
答案:19-1、
答案:19-2、答案:19-3、考点:
解析:
答案:20-1、
答案:20-2、答案:20-3、考点:
解析:。