UVVis紫外吸收光谱分析
(UV-Vis)紫外-可见吸收光谱分析

为紫外光区光源。
• 其中:486.13nm (F线) 和 656.28nm ( C线)
可作为波长校正。
(二).单色器 紫外-可见分光光度计的单色器的作用是
将来自光源的连续光谱按波长顺序色散,并从
中分离出一定宽度的谱带。单色器由入射狭缝、
准直镜、色散元件、物镜和出射狭缝构成。
(1).色散光件
棱镜
棱镜的色散作用是棱镜材料对不同波长的光有
A logT
实际测量,往往测量物质的透光率,再转化为吸光强度。
半导体材料中光的吸收规律 紫外-可见光的吸收主要是电子从基态到激发态的跃迁 半导体材料中,电子从基态到激发态的跃迁是和它们 的能带结构相关的。 因此光的吸收规律必然和它们的能带结构相关 直接禁带 间接禁带 ZnO,GaAs,CdS Si,Ge
B(hv E g )
2 2
3
2
3. 间接跃迁 在间接带隙的半导体材料中,由于价带顶和导带底在 K空间的位置不同,加上光子的波矢比电子的波矢小 得多,为了满足动量守恒的原则,必须要借助其他过 程,如声子参与或杂质散射来实现电子在能级间的跃 迁,这种电子跃迁方式称为间接跃迁。通过计算,可 以得到吸收系数和光子能量的关系:
m I0 4 A log 4.343 10 Nb ai Ci I i 1
将常数项和光子的吸收界面 a i 合并为单一项,
m I 以 i 表示 称为摩尔吸光系数。则 A log 0 b i Ci I i 1 I0 一般对于单一组分,上式可以写成: A log bC I
( ) B
B(hv Eg )
1 2
2
和 hv 的图谱, 就得到线性吸收边
二. 紫外-可见吸收光谱的方法和设备 紫外-可见光分光光度计是在紫外和可见光范围内, 改变通过样品的入射光波长,并测得不同入射光波 长下样品的吸光度,从而获得样品信息的分析仪器。
实例解析——紫外可见分光光度法(UV-VIS)

紫外可见分光光度法实例解析一、原理分析UV-VIS依据电子跃迁光谱,通常分子轨道基态外层电子处在,当分子外层吸收紫外或者可见辐射后,从基态向激发态跃迁。
其中紫外光谱:200~400nm,可见400~780nm。
其定性依据是不同物质对不同波长吸光度不同,定量依据是朗伯比尔定律A= εbc 吸光度分子二、适用范围一般适用于有机物,尤其是含有发色光能团、大共轭体系如含有苯环的有机物的测定三、特点:灵敏度高、选择性好、准确度好、通用性强、操作简单、价格低廉缺点:远不如红外光谱好,很多化合物在紫外没有吸收或者吸收很弱,而且紫外光谱特征性不强。
可以用来检验一些具有大的共轭体系或者发色官能团,并作为其他方法的补充。
四、仪器组成:光源——单色器——狭缝——样品池——检测器五、准备工作实验开始前查相关文献确定显色剂,显色剂:将待测组分形成有色化合物反应类型:络合反应氧化还原反应取代反应缩合反应显色剂选择条件:(1)灵敏度(2)选择性(3)生色物质稳定(4)组成恒定(5)显色剂在测定波长处无明显吸收,有色化合物与显色剂颜色对比大六、实验仪器前期设定:由待测物质查阅相关文献,确定使用可见区还是紫外区,确定光源钨丝或者氢、氘。
由待测物质确定样品池采用紫外区的石英池或者可见区的玻璃池检测器选用光电倍增管达到最佳检测效果七、配置标准检测液、显色剂溶液、参比溶液、标准溶液标准溶液:由分析纯的待测物质配置而成的溶液参比溶液:若仅待测组分和显色剂反应产物有吸收,其他试剂无吸收,用水做参比若显色剂和其他试剂略有吸收,试液本身无吸收,用“试剂空白”(不加试样溶液)参比若待测试液有吸收,而显色剂无吸收,则用“试样空白”(不加显色剂)做参比一般都选用试剂空白,即八、样品前处理,制成相应的溶液,如果其中有干扰离子,则加入掩蔽剂进行掩蔽或者采用化学方法分离出干扰离子九、实验条件确定:(1)最大吸收波长确定取1ml的标准溶液,1ml显色剂配制成溶液,稀释、定容、差文献确定谱线大致范围,多次测定,选择有最大吸收时的波长定为最大吸收波长,并且和标线对比,确定其误差是否在允许范围内,适当控制吸光度在最适范围(2)显色剂用量确定分别取1ml标准液,不同体积显色剂配成溶液,稀释、定容、多次测定得到吸光度-显色剂用量曲线,选择使得曲线平缓的最低用量再增加0.5ml为最佳显色剂用量(设为a ml)(3)显色温度确定取分别取1ml标准液、和a ml的显色显色液,稀释定容,测量在相同时间,不同温度下的吸光度显色时间曲线,得到最适温度T0(4)显色时间的确定分别取1ml标准液、和a ml的显色显色液,稀释定容,恒温T0测量,分在测量得到吸光度-显色时间曲线。
仪器分析第六章UVVIS

C
O
CH3
—环己烷 …水
异丙叉丙酮的紫外-可见光谱
二、溶剂极性对吸收光谱精细结构的影响 例如:对称四嗪在不同溶剂中的吸收光谱
Ⅰ:在蒸汽态中 Ⅱ:在环己烷中 Ⅲ:在水中
★
三、正确选择溶剂 溶剂对紫外-可见吸收光谱影响很大,因此选择溶
剂应注意下列要求: 1.对试样有很好的溶解力,且对试样应是惰性的; 2.在溶解度允许的范围内,尽量选择极性较小的
二、配位场跃迁
过渡金属离子及其化合物除了电荷迁移跃 迁外,还有配位场跃迁。
配位场跃迁的产生:过渡金属离子配合物 在配体的配位场作用下,5个能量相等的d 轨道或7个能量相等的f轨道裂分成几组能 量不等的d轨道或f轨道,当物质吸收光能 后,处于低能级的d电子或f电子可分别跃 迁至高能级的d轨道或f轨道,产生吸收光 谱。
最大吸收峰所对应的波长λmax是化合物中电 子能级跃迁时吸收的特征波长,对鉴定化 合物尤为重要,与λmax相应的εmax也是定性 和定量分析的另一重要参数。
整个吸收光谱的形状决定于物质的性质, 反映物质分子内部能级分布状况,是物质 定性的依据。
▲
6.2有机化合物紫外—可见吸收光谱
一、有机化合物电子跃迁类型 紫外-可见吸收光谱是由分子中价电子在电
能复合成白光的两种颜色的光叫互补色光。物 质所显示的颜色是吸收光的互补色。
KMnO4的颜色及吸收光谱
▲
6.1 分子吸收光谱基本原理
一、电子跃迁产生紫外—可见吸收光谱 分子和原子一样,也有它的特征分子能级,
这些能级是由分子内部运动决定的。
①价电子的运动
分子内部运动
②分子内原子在平衡 位置附近的振动
使电子从给予体外层轨道向接受体相应的 轨道跃迁产生吸收光谱,此过程又称内氧 化-还原。
紫外可见吸收光谱分析

(2) 介质不均匀性引起的偏离 朗伯-比尔定律在均匀、非散射时可成立,当介质不均匀,或有胶体、乳浊、悬浮体存
在时,入射光除了被吸收外,还有反射、折射损失,故所测A值比实际吸收要大许多,导 致偏离比尔定律。
引起工作曲线弯曲的原因还有一些,如:溶质的性质变化、操作不当等等。
§ 2.3 影响显色反应的若干因素 (一) 吸光光度法对显色反应的要求
2、分子吸收光谱
①电子光谱 在多原子分子中,分子轨道中有许多电子能级,平时各电子都尽先进入低能级,处于基态。当
有光波照射这些分子时,轨道中的电子会吸收光波中的某些波长的光,使这束光中缺少某些波长的 光。电子本身将从低能级跃迁到高能级上。
象这样的情况下,被吸收的光往往波长较短,在紫外和可见光范围。本章主要讨论这一部分内 容。
红色), 1﹕3(pH 8~11.5 黄色,最稳定)三种不同颜色的络合物生成。
3、温度的影响:一般在室温.有些需加热. 4、显色时间的影响
5、溶剂的影响:可提高显色反应的灵敏度. 6、共存离子的影响:
§ 2.4 光度测量误差和测量条件的选择
一、 仪器测量误差
在吸光光度分析中,除了各种化学条件所引起的误差外,仪器测量不准确也是误差的主要来源。 任何光度计都有一定的测量误差,这种误差可能来源于光电池不灵敏、光电流测量不准和光源不稳
§ 2 光度分析法的基本原理
一、光度分析法的特点 1、适用范围:常用于测定试样中1%~10-3 %的微量组分,甚至可测定低至10-4 %~10-5 %的痕量组份。目 前,随着仪器和方法的改进,有的已达10-9 %。一般情况下,相对误差为2~5 %,这在微量分析中已是十 分精确的了。 2、特点:灵敏、快速、准确、简便。
cF2e
4-UV-VIS吸光光度法解析

移)。吸收强度即摩尔吸光系数ε
增大或减小的现象分别称为增色效 应或减色效应,如图所示。
2.金属配合物的紫外—可见吸收光谱
金属离子与配位体反应生成配合物的颜色一般不同于游离金属离子 (水合离子)和配位体本身的颜色。金属配合物的生色机理主要有三种类 型:
⑴配位体微扰的金属离子d一d电子跃迁和f一f电子跃迁
(三)操作简便,测定速度快
(四)应用广泛 几乎所有的无机离子和有机化合物都可 直接或间接地用吸光光度法进行测定。
紫外吸收光谱:电子跃迁光谱,吸收光波长范围 200400 nm(近紫外区) ,可用于结构鉴定和定量 分析。
可见吸收光谱:电子跃迁光谱,吸收光波长范围 400750 nm ,主要用于有色物质的定量分析。
摩尔吸收系数ε很小,对定量分析意义不大。
⑵金属离子微扰的配位体内电子跃迁
金属离子的微扰,将引起配位体吸收波长和强度的变化。变化与成 键性质有关,若静电引力结合,变化一般很小。若共价键和配位键结合, 则变化非常明显。
⑶电荷转移吸收光谱
在分光光度法中具有重要意义。
电荷转移吸收光谱
当吸收紫外可见辐射后,分子中原定域在金属M轨道上电荷的转移
分子具有三种不同能级:电子能级、振动能级和转动能级 三种能级都是量子化的,且各自具有相应的能量 分子的内能:电子能量Ee 、振动能量Ev 、转动能量Er
即 E=Ee+Ev+Er ΔΕe>ΔΕv>ΔΕr
能级跃迁
紫外-可见光谱属于电子 跃迁光谱。
电子能级间跃迁的同时 总伴随有振动和转动能级间 的跃迁。即电子光谱中总包 含有振动能级和转动能级间 跃迁产生的若干谱线而呈现 宽谱带。
二、紫外可见吸收光谱
物理实验技术中紫外可见光谱的测量与分析方法

为了更好地进行紫外可见光谱的测量,还需要对光路进行校正。校正主要包括零点校正和波长校正两个方面。零点校正是通过测量空白样品(即无吸光物质的溶液)来校正仪器的基线,保证测量ห้องสมุดไป่ตู้果的准确性。波长校正是通过测量已知波长的参比样品(比如溴己烷、二甲基甲酰胺等)来校正仪器的波长刻度,确保测量结果的准确性和可靠性。
综上所述,紫外可见光谱作为一种重要的物理实验技术在科学研究和实践应用中占据重要地位。准备样品溶液、选择合适的测量仪器、进行光路校正以及熟练掌握各种分析方法是顺利开展紫外可见光谱测量与分析的关键。希望本文对读者进一步了解紫外可见光谱的测量与分析方法有所帮助。
紫外可见光谱的测量实验中,通常使用分光光度计作为测量仪器。分光光度计由光源、样品室、光栅、光电二极管等部件组成。光源产生一定波长范围的光,通过光栅分散成多个不同波长的光,在经过样品后,光电二极管可以测量样品对不同波长光的吸收或透射强度。
测量时,根据样品的特点和要求,可以选择透射光谱或吸收光谱进行测量。透射光谱是指测量样品溶液中透射光的强度,可以获得样品在特定波长下的透明度信息。而吸收光谱是指测量样品对不同波长光的吸收强度,可以获得样品对特定波长光的吸收能力。透射光谱和吸收光谱在实际应用中各有优劣,需根据实验目的和需求选择合适的测量方式。
物理实验技术中紫外可见光谱的测量与分析方法
紫外可见光谱(UV-vis)是一种重要的物理实验技术,广泛应用于分析化学、材料科学、生物科学等领域。它通过测量吸收或透射光的强度,获取目标物质分子间的相互作用信息。本文将介绍紫外可见光谱的测量原理和常用的分析方法。
UV-Vis紫外吸收光谱分析共29页PPT资料

二.价电子跃迁类型
紫外吸收光谱是由分子中价电子的跃 迁而产生的。紫外吸收光谱决定于分 子中价电子的分布和结合情况。
HC O
n
s
Hp
A.σ→σ*:一般发生在远紫外线区,10 ~200nm
B. π→π*:发生在近紫外线区 ~200nm
C. n→σ*:发生在远、近紫外线区之间
150nm~250nm
D. n →π* :发生在近紫外线区与可见光区之间,
❖ 吸光物质的特征常数,ε(λ)
❖ 在温度和介质条件一定时,ε 仅与吸光物质的结构与性质有关
❖ 不随浓度c 和光程长度b 的改变而改变:ε= b c / A。
❖ εmax越大表明该物质的吸光能力越强,测定的灵敏度越高。
3.吸光度的加合性
多组分混合体系中,如果各组分分子之间不存在离解、聚合、
化学反应等化学平衡时,其吸光度具有加合性,即:
图a):X,Y 组份最大吸收波长不重迭,相互不干扰,可以按两个单一组份处理。
具体做法:以浓度为cs的标准溶液调T=100%或A=0(调零),所测得的试样吸 光度实际就是上式中的A,然后求出c,则试样中该组份的浓度为(cs+c)。
2、多组分定量方法
① 由于吸光度具有加合性,因此可以在同一试样中测定多个组份。 设试样中有两组份 X 和 Y,将其显色后,分别绘制吸收曲线,会出现如图所 示的三种情况:
5.最佳的吸光度测量范围
由L-B定律: AlgTbc
微分后得: dlgT0.43d4Tbdc
T
将上两式相比,并将 dT 和 dc 分别换为T 和 c,得
c 0.434T c TlgT
当相对误差 c/c 最小时,求得T=0.368 或 A=0.434。即当A=0.434 时,吸 光度读数误差最小!
(UV-Vis)紫外-可见吸收光谱分析

朗伯-比耳定律 材料对光的吸收可以用吸收定律加以描述。
布格Bouguer和朗伯Lambert先后于1729年和1760年阐 明了光的吸收和吸收层厚度的关系,称为朗伯定律。 1852年比耳又提出了光的吸收和吸收物浓度之间的关 系,称为比耳定律。两者的结合称为朗伯比耳定律。
1
B(hv Eg ) 2
为吸收系数,B为常数,hv 为光子的能量
Eg 为半导体的禁带宽带。
( )2和 hv为线性关系,由半导体的吸收光谱,做 ( )2
B
B
(
)
2和
hv
的图谱,就得到线性吸收边
B
如果将吸收边的线性关系延伸到与 hv
轴相交的地方,就可以得到半导体的带隙 Eg
一般将用这种方法得到的带隙叫做光学带隙,它的测 量是紫外-可见吸收光谱在半导体材料中最常见的应用。
dI x
ai dni
i 1
Ix
s
当光束通过厚度为b的吸收层时,产生的总的吸光度等
于在全部吸收层内吸收的总和,对上式积分得到:
m
ln I0
ai ni
i 1
I
s
吸光度是指吸光体对光的吸收程度,通常人们用
A
log
I0 I
来表示,因此,根据吸光度A的定义
A log I0
I
2. 禁戒的直接跃迁
某些情况下,即使在直接禁带的半导体材料中,其价 带顶和导带底都在K空间的原点,但是它们之间的跃 迁即K=0可能被选择定则禁止,而K不为0的情况下的 跃迁反而被允许,一般把这种跃迁称为禁戒的直接跃 迁。同样通过计算,可以得到吸收系数和光子能量的 关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单,价廉,适于在给定波长处测量吸光度或透光度, 一般不能作全波段光谱扫描,要求光源和检测器具有很高 的稳定性。 2).双光束
自动记录,快速全波段 扫描。可消除光源不稳定、 检测器灵敏度变化等因素的 影响,仪器复杂,价格较高。
3).双波长
将不同波长的两束单色光(λ1、λ2) 快束交替通过同一吸收
能量:n→π* < π→π* ≤ n→σ* < σ→σ*
三. 一些常用名词
A. 生色团(chromophore) 含有非键或p键的电子体系,能吸收特征外来辐射时并引起n-p* 和
p-p*跃迁的基团,称为生色团。 生色团为不饱和基团:C=C、N=O、C=O、C=S等;
B. 助色团(auxochrome)
n
n
n
A Ai ibci b ici
i1
i1
i1
mber-Beer定律的偏离
1.0
A
Lamber-Beer定律的适用条件(前提)
0.5
入射光为单色光; 溶液是稀溶液
正偏离 负偏离
0
C
偏离L-B定律的主要因素:
1. 非单色光 2. 非吸收光的影响(杂散光) 3.反射光和散色光的影响 4.非平行光的影响
生色团的吸收带向短波移动的效应成为蓝移。 如-CH3、-CH2CH3、 -O-COCH3与生色团(C=O)连接,可发生蓝移。
E.溶剂效应
溶剂的极性不同也会引起某些化合物的吸收带红移或蓝移, 或者影响光谱强度和精细结构,这种作用称为溶剂CH3
C CH3
π→π* λmax/ nm n →π* λmax/ nm
具体做法:以浓度为cs的标准溶液调T=100%或A=0(调零),所测得的试样吸 光度实际就是上式中的A,然后求出c,则试样中该组份的浓度为(cs+c)。
吸光物质的特征常数,ε(λ)
在温度和介质条件一定时,ε 仅与吸光物质的结构与性质有关
不随浓度c 和光程长度b 的改变而改变:ε= b c / A。
εmax越大表明该物质的吸光能力越强,测定的灵敏度越高。
3.吸光度的加合性
多组分混合体系中,如果各组分分子之间不存在离解、聚合、
化学反应等化学平衡时,其吸光度具有加合性,即:
②、单色器 与原子吸收光度仪不同,在UV-Vis光度计中,单色器通常置于吸收池
的前面!(可防止强光照射引起吸收池中一些物质的分解)
③、吸收池(Cell,Container):
用于盛放样品。可用石英或玻璃两种材料制作,前者适于紫外区和可 见光区;后者只适于可见光区。
④、检测器:硒光电池、PMT
2、分光光度计的类型
光源
0.575
单色 器
检测 显
器
示
吸收 池
-胡罗卜素
咖啡因 阿斯匹林
几种有机化合物的 分子吸收光谱图。
丙酮
一. 分子吸收光谱的产生
ΔE 分子
ΔE 电子
ΔE振动 ΔE转动
h (ν电子 ν振动 ν转动 )
hc /( λ电子 λ振动 λ转动 )
E电 1 ~ 20ev 紫外 可见吸收光谱 E振 0.05 ~ 1ev 红外吸收光谱 E转 0.005 ~ 0.05ev 远红外吸收光谱
基团本身在紫外-可见光区不产生吸收,但是当它与生色团连接 后, 使生色团的吸收带向长波移动,且吸收强度增大。
-OH、-OR、-NHR、-SH、-Cl、-Br、-I C. 红移(red shift or bathochromic shift)
生色团的吸收带向长波移动的效应成为红移。
D. 蓝移(hypsochromic shift)
二.价电子跃迁类型
紫外吸收光谱是由分子中价电子的跃 迁而产生的。紫外吸收光谱决定于分 子中价电子的分布和结合情况。
HC O
n
s
Hp
A.σ→σ*:一般发生在远紫外线区,10 ~200nm
B. π→π*:发生在近紫外线区 ~200nm
C. n→σ*:发生在远、近紫外线区之间
150nm~250nm
D. n →π* :发生在近紫外线区与可见光区之间,
正己烷 230 329
CHCl3 238 315
CH3OH 237 309
H2O 243 305
极限波长
课堂炼习
1. 能产生颜色的基团是生色团? 2. 概念及引起红移和蓝移的因素由那些? 3. 溶剂的选择?
一. Lambert – Beer 定律
1.光吸收定律的表达式及其含义
A=- lgT = - lg( It / I0)= ε b c 2. 摩尔吸光系数ε
池而后到达检测器。产生交流信号。无需参比池。
双波长分光光度法的特点
1. 可以消除光源不稳定引,起的误差 2. 可以消除因参比溶液的组成不同而引起的误差 3. 可以消除浑浊背景的影响 4. 可以消除样品池不同而引起的误差 5. 可以消除显色剂背景深的影响,并提高灵敏度 6. 可以同时测定互相有干扰的多个组分,提高选择性 7. 可以测定高含量组分 8. 可以实现导数分析
定性和定量分析
1、定性分析 2、定量分析
定性鉴别 纯度检查和杂质限量测定
单组分的定量方法 多组分的定量方法
1、单组分的定量方法
示差分光光度法 测量原理:当试样中组份的浓度过大时,则A值很大,会产生读数误差。此时 若以一浓度略小于试样组份浓度作参比,则有:
Ax lcx (待测物浓度) As lcs ("空白"浓度) A Ax As l(cx cs ) lc
最佳的吸光度范围:A=0.2~0.8
仪器
紫外-可见分光光度计
1、组成:紫外-可见光度计仪器由光源、单色器、吸收池和检测器四部分组成。
光源
0.575
单色 器
检测 显
器
示
吸收 池
①、光源 对光源基本要求:足够光强、稳定、连续辐射且强度随波长变化小。
1. 钨丝灯及卤素灯:320~2500 nm,多用在可见光区; 2. 氢灯和氘灯:180~375nm,多用在紫外区。
5.最佳的吸光度测量范围
由L-B定律: A lg T bc
微分后得: d lg T 0.434 dT bdc
T
将上两式相比,并将 dT 和 dc 分别换为T 和 c,得
c 0.434 T c T lg T
当相对误差 c/c 最小时,求得T=0.368 或 A=0.434。即当A=0.434 时,吸 光度读数误差最小!