自动控制原理_吴怀宇_课后习题_第三章

合集下载

自动控制原理课后习题答案,第三章(西科技大学)

自动控制原理课后习题答案,第三章(西科技大学)
提示: • 阶跃响应为 解: d
c(t ) 1
1
e
n t
1
2
sin(d t )(t 0)
1.6,
1 2
1.25,n 1.2 1.6 1.25 2, 0.6
n
d
1 2


s% e
1 2
tp 1.96s d
10 K 斜坡输入时: K v lim sG ( s ) s 0 10 1 ess 1 Kv 0.25 得:10 1 2.5K 稳态误差:
与二阶系统的典型形式对比,有
10 1 2n 10K
得:K=1.6,= 0.3,n=4
闭环传递函数为
(2)
则辅助方程的解为
s1.2 1
s3.4 5 j
劳斯表第一列出现了负数,系统不稳定。第一列元素符号变 化一次,可知系统存在一个s右半平面的特征根。系统有一 共轭纯虚根±5 j。
K (0.5s 1) 3-11 已知单位反馈系统的开环传函为G ( s) 2 s(s 1)(0.5s s 1) 试确定系统稳定时的K值范围。
系统稳定的 K 范围为 0 < K < 1.708。
100 3-15 已知单位反馈系统的开环传递函数 G பைடு நூலகம் s ) s ( s 10) 试求:
(1) 位置误差系数Kp,速度误差系数Kv和加速度误差系数Ka; (2) 当参考输入 r(t) = 1+ t + at2 时,系统的稳态误差。
解:(1)
-50
48
0 0 0 8 96 8 48 2 96 8 ( 50 ) 2 0 2 24 50 s 8 8 0 s1 24 96 8 ( 50 ) 112 .7 24 0 s -50

自动控制原理第三章课后习题答案(最新)汇总

自动控制原理第三章课后习题答案(最新)汇总

3-1设系统的微分方程式如下:(1)0.2c(t) 2r(t)单位脉冲响应:C(s) 10/s g(t) 103t3 3tc(t) 1 e cos4t e si n4t413-2 温度计的传递函数为 —,用其测量容器内的水温,1min 才能显示出该温度的Ts 198%的数值。

若加热容器使水温按 10(C/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数由一阶系统阶跃响应特性可知: c(4T) 98 o o ,因此有 4T 1 min ,得出T 0.25 min 。

视温度计为单位反馈系统,则开环传递函数为(s)1K 1TG(s)—1(s) Tsv 1用静态误差系数法,当r(t) 10t 时,e ss10 10T 2.5 C oK(2) 0.04c(t)0.24c(t) c(t)r(t)试求系统闭环传递函数① 部初始条件为零。

解:(s),以及系统的单位脉冲响应 g(t)和单位阶跃响应 c(t)。

已知全(1)因为 0.2sC(s)2R(s) 闭环传递函数(s)C(s) 10R(s) s单位阶跃响应c(t) C(s) 10/s 2c(t) 10t t 0(2) (0.04s 20.24s 1)C(s) R(s)C (s )闭环传递函数(s)C(s) R(s)120.04s0.24s 1单位脉冲响应:C(s)120.04s 2 0.24s 1g(t)25 e 33tsi n4t单位阶跃响应h(t) C(s)25 s[(s 3)216]1 s 6 s (s 3)216(s)1 Ts 1解法二依题意,系统误差疋义为e(t) r(t) c(t),应有e(s)E(s)1 C(s)R(s)11 TsR(s) Ts 1 Ts 13-3 已知二阶系统的单位阶跃响应为c(t) 10 12.5e 1.2t sin(1.6t 53.1o)试求系统的超调量c%、峰值时间t p和调节时间t'si n( 1n t )t p Jl- 1.96(s■1 2n1.63.5 3.5t s 2.92(s)n 1.2或:先根据c(t)求出系统传函,再得到特征参数,带入公式求解指标。

自动控制原理-吴怀宇-课后习题-第三章

自动控制原理-吴怀宇-课后习题-第三章

第三章3-1已知系统脉冲响应 1.25()0.0125t k t e -=,试求系统闭环传递函数()s Φ。

解:由系统的脉冲响应 1.25()0.0125t k t e -=得 0.0125() 1.25C s s =+ 又 ()1R s = 则()0.01251()() 1.2580100C s s R s s s Φ===++ 3-3单位反馈系统的开环传递函数4()(5)G s s s =+,求单位阶跃响应h(t)和调节时间t s 。

解:由开环传递函数4()(5)G s s s =+得闭环传递函数为2()4()1()54G s s G s s s Φ==+++则 单位阶跃响应24()()()(54)H s s R s s s s =Φ=++ 拉氏反变换得:441()133t t h t e e --=-+ ∵24()54s s s Φ=++ ∴24,25n n ωζω== 解得:2, 1.25n ωζ== 若取5%∆=,则得 31.2s nt s ζω≈=若取2%∆=,则得 41.6s nt s ζω≈=3-6机器人控制系统结构图如下图所示,试确定参数K 1 ,K 2,使系统阶跃响应的峰值时间0.5p t s =,超调量2%δ=。

解:由图可得 系统闭环传递函数1221()()1()K K G s s G s s as K Φ==+++对照二阶系统的数学模型有212,2,1n n K a K ωζω===又0.52%p t e δ==== 解得10.04,0.78n ωζ== 则1215.67,100.71,1a K K ===3-7设上题所示系统的单位阶跃响应如下图所示,试确定系统参数K 1 ,K 2和a 。

解:由图可知1()3,,0.13p p h t δ∞=== 又∵ 系统单位阶跃响应为:1221()()()()K K H s s R s s s as K =Φ=++∴20()lim ()3130.1p s p h sH s K et δ→∞=======解得33.3,0.3n ωζ==代入21,2n n K a ωζω== 有 1222,1106.5,3a K K ===3-8已知系统的特征方程,试判别系统的稳定性,并确定在s 右半平面根的个数及纯虚根。

自动控制原理第三章课后习题答案汇总.

自动控制原理第三章课后习题答案汇总.

3-1 i 殳来统的墩专力桿式旬卜:(1) 0.2c(t) =2r(t)(2)0.04c(t) 0.24c(t) c(t) = r(t)试求系统闭环传递函数 ①(s),以及系统的单位脉冲响应 部初始条件为零。

解:(1) 因为 0.2sC(s) =2R(s)闭环传递函数_ 1_ 20.04s0.24s 1Ts 198%的数值。

若加热容器使水温按 10OC/min 的速度匀速上升,问温度计的稳态指示误差有 多大?Ts 1由一阶系统阶跃响应特性可知: c(4T)二98oo ,因此有 4T =1 min ,得出 T = 0.25 min 。

视温度计为单位反馈系统,则开环传递函数为单位脉冲响应: C(s)=10/s g(t) -10 t _0单位阶跃响应 c(t) C(s) =10/s 2c(t) = 10t(2)(0.04s 2 0.24s 1)C(s)二 R(s)C(s)R(s) 0.04s 20.24s 1单位脉冲响应: C(s)= 0.04s0.24s 1g(t)用宀n4t3单位阶跃响应 h " Wk 2; 16]s 6s (s 3)216g(t)和单位阶跃响应 c(t)。

已知全 闭环传递函数13-2 温度计的传递函数为 — ,用其测量容器内的水温,1min 才能显示出该温度的解法一 依题意,温度计闭环传递函数1G(s) 口G(s“4」 1 —①(s) Ts「K=”TV=1用静态误差系数法,当 r(t^10 t 时,10e ss 二—=10T = 2.5 C 。

K3-3 已知二阶系统的单位阶跃响应为c(t) =10-12.5e」.2t si n(1.6t 53.1o)试求系统的超调量b%、峰值时间t p和调节时间t s。

1 严+ y----解:c(t) =1 _ ---- e ~ sin(p 1 _U2豹n t + P)2 '二cos :二cos53.1° 二0.6t s 二 3.5 =3.2 =2.92(S)5n 1.2或:先根据c(t)求出系统传函,再得到特征参数,带入公式求解指标。

自动控制原理第三章习题参考答案

自动控制原理第三章习题参考答案

Y (s) 1 1 600 ( s) 12 ( ) 2 R( s ) s 10 s 60 s 70 s 600
n 600 24.5
70 70 1.43 2 n 2 24 .5
3-7 简化的飞行控制系统结构图如下,试选择参数K1和Kt, 使系统的ωn=6,ξ=1
S2+5=0
S3 16/3 S2 5
S1 10 S0 25
s1, 2 5 j
有1对纯虚根,系统临界稳定。
3-13单位反馈系统的开环传递函数为:
K (0.5s 1) G( s) 2 s( s 1)(0.5s s 1)
确定使系统稳定的K值范围。 解:闭环传递函数为:
K (0.5s 1) ( s) 0.5s 4 1.5s 3 2 s 2 (1 0.5 K ) s K K ( s 2) 4 s 3s 3 4 s 2 ( 2 K ) s 2 K
K 速度误差系数: P lim sG ( s ) 10
s 0
速度误差:
1 e ss 0.1 Kp
3-11 已知系统的特征方程为:
3s 4 10 s 3 5s 2 s 2 0
用劳斯判据确定系统的稳定性 解:列劳斯列表 S4 3 5 2
S3 10
S2 4.7 S1 -3.26
1
2
S0 2 第1列符号变化两次, 说明有两个正根,系统不稳定。
3-12 已知Βιβλιοθήκη 统的特征方程如下,试求系统在S右半平面的根 数及虚根值。
(1) s 3s 12 s 24 s 32 s 48 0
5 4 3 2
S5 1 S4 3 S3 4 S2 12

自动控制原理课后答案

自动控制原理课后答案
第三章习题主要问题
3-3 判断使系统稳定的K的范围:放大系数可否为复数 ? 3-11(2) 过阻尼系统,求ts(用欠阻尼公式?) 3-11(1) 主导极点分析(偶极子,模比(wn)>5)
计算ts的时候,需指明Δ是5%还是2%
3-14 计算稳态误差 3-17 计算复合控制
自动控制原理习题分析第三章3-1(1)
自动控制原理习题分析第三章3-17
自动控制原理习题分析第三章3-17
自动控制原理习题分析第三章3-17
自动控制原理习题分析第三章3-17

自动控制原理习题分析第三章3-1(1)
自动控制原理习题分析第三章3-1(4)
自动控制原理习题分析第三章3-2(3)
自动控制原理习题分析第三章3-2(3)
自动控制原理习题分析第三章3-2(4)
自动控制原理习题分析第三章3-2(4)
自动控制原理习题分析第三章3-3(2)
自动控制原理习题分析第三章3-3(2)
自动控制原理习题分析第三章3-6
自动控制原理习题分析第三章3-6
自动控制原理习题分析第三章3-8
自动控制原理习题分析第三章3-8
自动控制原理习题分析第三章3-9
自动控制原理习题分析第三章3-9
自动控制原理习题分析第三章3-11(1)
自动控制原理习题分析第三章3-11(1)
自动控制原理习题分析第三章3-11(1)
自动控制原理习题分析第三章3-11(1)
自动控制原理习题分析第三章3-11(2)
自动控制原理习题分析第三章3-14
自动控制原理习题分析第三章3-14
自动控制原理习题分析第三章3-14
自动控制原理习题分析第三章3-14
自动控制原理习题分析第三章3-17

自动控制原理习题及其解答 第三章

自动控制原理习题及其解答 第三章

第三章例3-1 系统的结构图如图3-1所示。

已知传递函数 )12.0/(10)(+=s s G 。

今欲采用加负反馈的办法,将过渡过程时间t s减小为原来的0.1倍,并保证总放大系数不变。

试确定参数K h 和K 0的数值。

解 首先求出系统的传递函数φ(s ),并整理为标准式,然后与指标、参数的条件对照。

一阶系统的过渡过程时间t s 与其时间常数成正比。

根据要求,总传递函数应为)110/2.0(10)(+=s s φ即HH K s K s G K s G K s R s C 1012.010)(1)()()(00++=+= )()11012.0(101100s s K K K HHφ=+++=比较系数得⎪⎩⎪⎨⎧=+=+1010110101100H HK K K 解之得9.0=H K 、100=K解毕。

例3-10 某系统在输入信号r (t )=(1+t )1(t )作用下,测得输出响应为:t e t t c 109.0)9.0()(--+= (t ≥0)已知初始条件为零,试求系统的传递函数)(s φ。

解 因为22111)(ss s s s R +=+=)10()1(10109.09.01)]([)(22++=+-+==s s s s s s t c L s C 故系统传递函数为11.01)()()(+==s s R s C s φ 解毕。

例3-3 设控制系统如图3-2所示。

试分析参数b 的取值对系统阶跃响应动态性能的影响。

解 由图得闭环传递函数为1)()(++=s bK T Ks φ系统是一阶的。

动态性能指标为)(3)(2.2)(69.0bK T t bK T t bK T t s r d +=+=+= 因此,b 的取值大将会使阶跃响应的延迟时间、上升时间和调节时间都加长。

解毕。

例 3-12 设二阶控制系统的单位阶跃响应曲线如图3-34所示。

试确定系统的传递函数。

解 首先明显看出,在单位阶跃作用下响应的稳态值为3,故此系统的增益不是1,而是3。

自动控制原理参考答案-第3章

自动控制原理参考答案-第3章

×100% = 35%
⇒ ξ = 0.32 ,又 t p =
π
ωn 1 − ξ 2 2 ⇒ K = ωn = 1.96 ; a = 2ξωn = 0.896
= 2.36 ⇒ ωn = 1.4 ;
题 3-5:某速度给定控制系统的动态结构图如题 3-5 图所示。在给定输入量为
r(t) = 10v 直流电压时要求期望的转速输出量为 c(t) = 1000r / min 。试问:稳态反馈
π ωn 1 − ξ
3
2
=
2 3 π = 0.73 ; 15
(∆ = 0.05) 或 ts = 4
ξωn
= 1.2
ξωn
= 1.6
(∆ = 0.02)
题 3-3: 题 3-3 图所示为一位置随动控制系统的动态结构图,输出量为电动机拖
动对象的旋转角度。将速度量反馈回输入端比较环节后构成负反馈内环,速度反 馈系数为τ。试计算:
胡尔维茨行列式 D = 0 5 0 1
10 0 6
0 − 10 10
0 0 0
D2 = 30 D3 = −300 D4 = −1800
0 0 5 0 − 10 D5 = 18000 胡尔维茨行列式非正定,系统不稳定. 题 3-7:已知三个控制系统的特征方程式如下,试应用劳斯稳定判据判定系统 的稳定性;对不稳定的系统要求指出不稳定的极点数;对存在不稳定虚根的要求
4 37
12 K − 40 100 K 70 K − 100
164 K − 1080 100 K 劳斯表: 37 11480 K 2 − 228900 K + 108000 1 s 164 K − 1080 0 s 100 K 若系统稳定则: 164 K − 1080 ⎧ >0 ⎪ 37 ⎪ 2 ⎪11480 K − 228900 K + 108000 >0 ⎨ 164 K − 1080 ⎪ 100 K > 0 ⎪ ⎪ ⎩ ⇒ k > 19.46 题 3-10:已知单位负反馈控制系统的开环传递函数为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章3-1已知系统脉冲响应 1.25()0.0125tk t e-=,试求系统闭环传递函数()s Φ。

解:由系统的脉冲响应 1.25()0.0125tk t e -=得0.0125() 1.25C s s=+ 又 ()1R s = 则()0.01251()() 1.2580100C s s R s s s Φ===++ 3-3单位反馈系统的开环传递函数4()(5)G s s s =+,求单位阶跃响应h(t)和调节时间t s 。

解:由开环传递函数4()(5)G s s s =+得闭环传递函数为2()4()1()54G s s G s s s Φ==+++则 单位阶跃响应24()()()(54)H s s R s s s s =Φ=++拉氏反变换得:441()133t t h t e e --=-+ ∵24()54s s s Φ=++ ∴24,25n n ωζω== 解得: 2, 1.25n ωζ==若取5%∆=,则得 31.2s nt s ζω≈=若取2%∆=,则得 41.6s nt s ζω≈=3-6机器人控制系统结构图如下图所示,试确定参数K 1 ,K 2,使系统阶跃响应的峰值时间0.5p t s =,超调量2%δ=。

解:由图可得 系统闭环传递函数1221()()1()K K G s s G s s as K Φ==+++对照二阶系统的数学模型有212,2,1n n K a K ωζω===又0.52%p t eδ==== 解得10.04,0.78n ωζ== 则1215.67,100.71,1a K K ===3-7设上题所示系统的单位阶跃响应如下图所示,试确定系统参数K 1 ,K 2和a 。

解:由图可知1()3,,0.13p p h t δ∞=== 又∵ 系统单位阶跃响应为:1221()()()()K K H s s R s s s as K =Φ=++ ∴20()lim ()3130.1p s p h sH s K et δ→∞=======解得 33.3,0.33n ωζ== 代入21,2n n K a ωζω== 有 1222,1106.5,3a K K ===3-8已知系统的特征方程,试判别系统的稳定性,并确定在s 右半平面根的个数及纯虚根。

(1)5432()22411100D s s s s s s =+++++=(2)5432()3122432480D s s s s s s =+++++=(3)54()220D s s s s =+--=(4)5432()2244825500D s s s s s s =+++--=解(1)各项系数均大于零,满足稳定的必要条件,列劳斯阵列如下5s1 2 114s 2 4 10 3s 0ε→ 62s 412εε-→-∞10 1s 6 0s10第一列元素符号改变两次,所以系统不稳定,且有两个s 右半平面的根。

(2)各项系数均大于零,满足稳定的必要条件,列劳斯阵列如下5s 1 12 32 4s 3 24 48 3s 4 162s 12 48 2()1248P s s =+ 1s 0 '()24P s s = 1s 24 1,22s j =±0s48即系统有一对共轭虚根1,22s j =±,没有s 右半平面的根,系统处于临界稳定状态。

(3)544()22(1)(2)0D s s s s s s =+--=-+= 解得1,,2s j =±±-则系统不稳定,有一对共轭纯虚根j ±,且s 右平面有一个根为1。

(4)543222()224482550(25)(1)(2)0D s s s s s s s s s =+++--=+-+=解得1,5,2s j =±±-则系统不稳定,有一对共轭纯虚根5j ±,且s 右平面有一个根为1。

3-9单位反馈系统的开环传递函数为()(3)(5)KG s s s s =++,为使系统特征根的实部不大于-1,试确定开环增益的取值范围。

解:系统闭环传递函数32()()1()815G s Ks G s s s s KΦ==++++则特征式32()8+15+D s s s s K =+ ∵极点在1s =-之左∴令11s s =-代入D (s )中,得321111()5+2-8+0D s s s s K =+=劳斯阵列表为31s 1 2 21s 5K -811s 185K- 01sK -8系统稳定,则 18058080K K K -⎧>⎪⎪->⎨⎪-+>⎪⎩解得 818K <<3-12已知单位反馈系统的开环传递函数为27(1)()(4)(22)s G s s s s s +=+++,试求当输入信号()r t 分别等于1()t ,t 和2t 时系统的稳定误差。

解:稳态误差01lim ()1()()ss s e sR s G s H s →=+由题意可知27(1)()(4)(22)s G s s s s s +=+++, H(s)=1○1当()1()r t t =时 1()R s s = 则220(4)(22)1lim 0(4)(22)7(1)ss s s s s s e ss s s s s s →+++=⋅=+++++ ○2当()r t t =时 21()R s s = 则2220(4)(22)18lim (4)(22)7(1)7ss s s s s s e s s s s s s s →+++=⋅=+++++ ○3当2()r t t =时 32()R s s= 则2230(4)(22)2lim (4)(22)7(1)ss s s s s s e s s s s s s s →+++=⋅=∞+++++3-13系统结构图如下图所示,已知12()()()1()r t n t n t t ===,试分别计算1(),()r t n t 和2()n t 作用时的稳态误差,并说明积分环节设置位置对减小输入和干扰作用下的稳态误差的影响。

解:○1()r t 作用时121(),(),()1(1)(1)K G s R s H s s T s T s s===++则系统稳态误差:120012(1)(1)1lim ()lim 01()()(1)(1)ss s s s T s T s e sR s G s H s s T s T s K →→++===++++○21()n t 作用时11()N s s= 干扰作用点与误差点之间的传递函数为11()1K G s T s =+则系统稳态误差:11001111lim ()lim ()ss s s T s e sN s G s K K→→+-===--○32()n t 作用时21()N s s=干扰作用点与误差点之间的传递函数为211()1K G s T s S =⋅+ 则系统稳态误差:12002(1)1lim ()lim 0()ss s s T s S e sN s G s K→→+-===-扰动作用下的稳态误差与扰动作用点之后积分环节无关,而与误差信号到扰动作用点之间的前向通道中的积分环节有关,增加积分环节可减小甚至消除稳态误差。

3-15单位反馈系统的开环传递函数为25()(5)G s s s =+(1)求各静态误差系数和2()120.5r t t t =++时的稳态误差ss e 。

(2)当输入作用10s 时的动态误差是多少?解:(1)静态位置误差系数025lim ()()lim(5)p s s k G s H s s s →→===∞+静态速度误差系数025lim ()()lim5(5)v s s sk sG s H s s s →→===+静态加速度误差系数220025lim ()()lim0(5)a s s s k s G s H s s s →→===+ 当2()120.5r t t t =++时23121()R s s s s =++ 稳态误差223001(5)121lim ()lim ()1()()(5)25ss s s s s e sR s G s H s s s s s s→→+==++=∞+++ (2)由已知可得1(5)()1()()(5)25e s s s G s H s s s +Φ==+++∵()()1(0),()()!i i i e ss i i C e t C r t i ∞==Φ=∑ 且2()120.5,'()2,''()1r t t t r t t r t =++=+=∴01211(0),'(0),''(0)052e e e C C C =Φ=Φ==Φ= 故1()(2)5ss e t t =+ 则 当输入作用10s 时,动态误差(10) 2.4ss e =。

相关文档
最新文档