最优化模型

合集下载

多目标最优化数学模型

多目标最优化数学模型

第六章 最优化数学模型§1 最优化问题1.1 最优化问题概念 1.2 最优化问题分类1.3 最优化问题数学模型 §2 经典最优化方法 2.1 无约束条件极值 2.2 等式约束条件极值 2.3 不等式约束条件极值 §3 线性规划 3.1 线性规划 3.2 整数规划§4 最优化问题数值算法 4.1 直接搜索法 4.2 梯度法 4.3 罚函数法§5 多目标优化问题 5.1 多目标优化问题 5.2 单目标化解法 5.3 多重优化解法 5.4 目标关联函数解法 5.5 投资收益风险问题第六章 最优化问题数学模型 §1 最优化问题1.1 最优化问题概念 (1)最优化问题在工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各部门各领域的实际工作中,我们经常会遇到求函数的极值或最大值最小值问题,这一类问题我们称之为最优化问题。

而求解最优化问题的数学方法被称为最优化方法。

它主要解决最优生产计划、最优分配、最佳设计、最优决策、最优管理等求函数最大值最小值问题。

最优化问题的目的有两个:①求出满足一定条件下,函数的极值或最大值最小值;②求出取得极值时变量的取值。

最优化问题所涉及的内容种类繁多,有的十分复杂,但是它们都有共同的关键因素:变量,约束条件和目标函数。

(2)变量变量是指最优化问题中所涉及的与约束条件和目标函数有关的待确定的量。

一般来说,它们都有一些限制条件(约束条件),与目标函数紧密关联。

设问题中涉及的变量为n x x x ,,,21 ;我们常常也用),,,(21n x x x X 表示。

(3)约束条件在最优化问题中,求目标函数的极值时,变量必须满足的限制称为约束条件。

例如,许多实际问题变量要求必须非负,这是一种限制;在研究电路优化设计问题时,变量必须服从电路基本定律,这也是一种限制等等。

在研究问题时,这些限制我们必须用数学表达式准确地描述它们。

数学建模~最优化模型(课件)

数学建模~最优化模型(课件)

投资组合优化
在风险和收益之间寻求平衡,通 过优化投资组合实现最大收益。
03
非线性规划模型
非线性规划问题的定义
目标函数
一个或多个非线性函数,表示 要最小化或最大化的目标。
约束条件
决策变量的取值受到某些限制 ,通常以等式或不等式形式给 出。
决策变量
问题中需要求解的未知数,通 常表示为x1, x2, ..., xn。
这是一种常用的求解整数规划问题的算法,通过不断将问题分解为更 小的子问题,并确定问题的下界和上界,逐步逼近最优解。
割平面法
该方法通过添加割平面来限制搜索区域,从而逼近最优解。
迭代改进法
该方法通过不断迭代和改进当前解,逐步逼近最优解。
遗传算法
这是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传机 制来寻找最优解。
定义域
决策变量的取值范围,通常是 一个闭区间或开区间。
非线性规划问题的求解方法
梯度法
利用目标函数的梯度信息,通过迭代方法寻 找最优解。
共轭梯度法
结合梯度法和牛顿法的思想,通过迭代方法 寻找最优解。
牛顿法
利用目标函数的二阶导数信息,通过迭代方 法寻找最优解。
信赖域方法
在每次迭代中,通过限制搜索步长来保证求 解的稳定性。
02
线性规划模型
线性规划问题的定义
01
02
03
线性规划问题
在给定一组线性约束条件 下,求一组线性函数的最 大值或最小值的问题。
约束条件
包括资源限制、物理条件 等,通常以等式或不等式 形式给出。
目标函数
需要最大化或最小化的线 性函数,通常表示为决策 变量的线性组合。
线性规划问题的求解方法

数学建模最优化模型

数学建模最优化模型

数学建模最优化模型随着科学与技术的不断发展,数学建模已经成为解决复杂实际问题的一种重要方法。

在众多的数学建模方法中,最优化模型是一种常用的方法。

最优化模型的目标是找到最佳解决方案,使得一些目标函数取得最大或最小值。

最优化模型的基本思想是将实际问题抽象为一个数学模型,该模型包含了决策变量、约束条件和目标函数。

决策变量是需要优化的变量,约束条件是对决策变量的限制条件,目标函数是优化的目标。

最优化模型的求解方法可以分为线性规划、非线性规划和整数规划等。

线性规划是最优化模型中最基本的一种方法,其数学模型可以表示为:max/min c^T xs.t.Ax<=bx>=0其中,c是目标函数的系数向量,x是决策变量向量,A是约束条件的系数矩阵,b是约束条件的右边向量。

线性规划的目标是找到最优的决策变量向量x,使得目标函数的值最大或最小。

非线性规划是最优化模型中更为复杂的一种方法,其数学模型可以表示为:max/min f(x)s.t.g_i(x)<=0,i=1,2,...,mh_i(x)=0,i=1,2,...,p其中,f(x)是目标函数,g_i(x)是不等式约束条件,h_i(x)是等式约束条件。

非线性规划的求解过程通常需要使用迭代的方法,如牛顿法、拟牛顿法等。

整数规划是最优化模型中另一种重要的方法,其数学模型在线性规划的基础上增加了决策变量的整数限制。

max/min c^T xs.t.Ax<=bx>=0x是整数整数规划的求解通常更为困难,需要使用特殊的算法,如分支定界法、割平面法等。

最优化模型在实际问题中有着广泛的应用,如资源调度、生产计划、路线选择、金融投资等。

通过建立数学模型并求解,可以得到最优的决策方案,提高效益和效率。

总结起来,最优化模型是数学建模的重要方法之一、通过建立数学模型,将实际问题转化为数学问题,再通过求解方法找到最佳解决方案。

最优化模型包括线性规划、非线性规划和整数规划等方法,应用广泛且效果显著。

最优化模型(第五讲)

最优化模型(第五讲)

数学建模讲义主讲人:穆学文西安电子科技大学数学系Email:xdmuxuewen@ 最优化模型---最优化方法的概念参考书目1. 陈宝林。

最优化理论与算法。

清华大学出版社.2. 谢金星,薛毅。

优化建模与lindo/lingo优化软件. 清华大学出版社. 背景知识基本概念及其应用最优化问题举例最优化方法的概念优化问题的数学模型及其分类 最优解与极值点常用的数学软件§1背景知识•运筹学理论的一部分•最早起源于中国古代¾公元前6世纪孙武所著的《孙子兵法》¾孙膑“斗马术”,田忌与齐王赛马,博弈论¾运筹帷幄之中,决胜千里之外”。

这千古名句也可以说是对张良运筹思想的赞颂和褒奖。

•国外起源与发展¾1896年,V.Pareto首次从数学角度提出多目标优化问题,引进了Pareto最优的概念。

¾1935-38年,英国为了正确地运用新研制的雷达系统来对付德国飞机的空袭,在皇家空军中组织了一批科学家,进行新战术试验和战术效率评价的研究,并取得了满意的效果。

他们把自己从事的这种工作命名为“Operational Research”(背景知识(续)Operational Research(运筹学,或直译为作战研究)。

¾1939年,苏联的Л.В.Канторович总结了他对生产组织的研究,写了《生产组织与计划中的数学方法》一书,是线性规划应用于工业生产问题的经典著作¾1947年,G.B.Dantzig提出了单纯形方法后,线性规划便迅速形成为一个独立的分支。

并逐级发展起来。

¾英国运筹学会1948年成立(1948-53年是运筹学俱乐部,1953年11月起改名为学会)。

¾二次大战胜利后,美英各国不但在军事部门继续保留了运筹学的研究核心,而且在研究人员、组织的配备及研究范围和水平上,都得到了进一步的扩大和发展,同时筹学方法也向政府和业等部门扩展背景知识(续)运筹学方法也向政府和工业等部门扩展。

非线性最优化模型

非线性最优化模型

案例二:生产调度优化的应用
总结词
生产调度优化是利用非线性最优化模型来安排生产计划 ,以提高生产效率和降低生产成本。
详细描述
生产调度问题需要考虑生产线的配置、工人的排班、原 材料的采购等多个因素。非线性最优化模型能够综合考 虑这些因素,并找到最优的生产调度方案,提高生产效 率,降低生产成本,并确保生产计划的可行性。
04
非线性最优化模型的实例分析
投资组合优化模型
投资组合优化模型
通过非线性最优化方法,确定最佳投资组合配置,以实现预期收 益和风险之间的平衡。
目标函数
最大化预期收益或最小化风险,通常采用夏普比率、詹森指数等 作为评价指标。
约束条件
包括投资比例限制、流动性约束、风险控制等。
生产调度优化模型
01
生产调度优化模型
非线性最优化模型
• 非线性最优化模型概述 • 非线性最优化模型的分类 • 非线性最优化模型的求解方法 • 非线性最优化模型的实例分析 • 非线性最优化模型的挑战与展望 • 非线性最优化模型的应用案例
01
非线性最优化模型概述
定义与特点
定义
非线性最优化模型是指用来描述具有 非线性特性的系统或问题的数学模型 。
多目标非线性优化模型
多目标
多目标非线性优化模型中存在多个目标函数,这些目标函 数之间可能存在冲突。
01
求解方法
常用的求解方法包括权重法、帕累托最 优解法、多目标遗传算法等,这些方法 通过迭代过程逐步逼近最优解。
02
03
应用领域
多目标非线性优化模型广泛应用于各 种领域,如系统设计、城市规划、经 济分析等。
通过非线性最优化方法,合理安 排生产计划和调度,以提高生产 效率和降低成本。

多目标最优化模型

多目标最优化模型
可视化分析:多目标最优化模型可以通过可视化技术展示各目标之间的关联和影 响,使得分析结果更加直观易懂。
缺点
计算复杂度高
求解速度慢
难以找到全局最优 解
对初始解依赖性强
多目标最优化模 型的发展趋势
算法改进
进化算法:如遗传算法、粒子群算法等,在多目标优化问题中表现出色,能够找到多个非支配解。
机器学习算法:如深度学习、强化学习等,在处理大规模、高维度多目标优化问题时具有优势,能 够自动学习和优化目标函数。
金融投资
风险管理:多目标最 优化模型用于确定最 优投资组合,降低风 险并最大化收益。
资产配置:模型用于 分配资产,以实现多 个目标,例如最大化 收益和最小化风险。
投资决策:模型帮助 投资者在多个投资机 会中选择最优方案, 以实现多个目标。
绩效评估:模型用于评 估投资组合的绩效,以 便投资者了解其投资组 合是否达到预期目标。
混合算法:将多种算法进行融合,形成新的优化算法,以适应不同类型和规模的多目标优化问题。
代理模型:利用代理模型来近似替代真实的目标函数,从而加速多目标优化问题的求解过程。
应用拓展
人工智能领域的应用
金融领域的应用
物流领域的应用
医疗领域的应用
未来研究方向
算法改进:研究更高效的求解多目标最优化问题的算法 应用拓展:将多目标最优化模型应用于更多领域,如机器学习、数据挖掘等 理论深化:深入研究多目标最优化理论,提高模型的可解释性和可靠性 混合方法:结合多种优化方法,提高多目标最优化模型的性能和适用范围
资源分配
电力调度:多目标最优化模型用于协调不同区域的电力需求和供应,实现电力资源的 合理分配。
金融投资:多目标最优化模型用于确定投资组合,以最小风险实现最大收益,优化金 融资源分配。

最优化模型

最优化模型
时 间 所需营业员人数 28 人 15 人 24 人 25 人 19 人 31 人 28 人
星期日 星期一 星期二 星期三 星期四 星期五 星期六
2、模型
决策变量:设x j为第j天开始休息的人数( j 1, 2,, 7)
目标函数: min x1 x2 x3 x4 x5 x6 x7 约束条件: x1 x2 x3 x4 x5 28 x2 x3 x4 x5 x6 15 x3 x4 x5 x6 x7 24 x4 x5 x6 x7 x1 25 x5 x6 x7 x1 x2 19 x6 x7 x1 x2 x3 31 x7 x1 x2 x3 x4 28 x1 , x2 , x3 , x4 , x5 , x6 , x7 0, 整数

例(挑选球员问题)某篮球教练要从8名业余队员中 挑选3名队员参加专业球队,使平均身高达到最高。 队员的号码、身高及所擅长的位置如下。要求:中 锋1人;后卫1人;前锋1人,但1号、3号与6号队员 中必须保留1人给业余队。
号码 1 2 3 4 5 6 7 8 身高(米) 1.92 1.91 1.90 1.86 1.85 1.83 1.80 1.79 位置 中锋 中锋 前锋 前锋 前锋 后卫 后卫 后卫 挑选变量 x1 x2 x3 x4 x5 x6 x7 x8


例(选址问题)设有n个市场,第j个市场的位置为(aj,bj), 对某种货物的需要量为qj, j=1,…,n,现计划建立m个仓库, 第i个仓库的容量为ci,i=1,…,m,试确定仓库的位置,使各 仓库到各市场的运输量与路程乘积之和最小. 解:设第i个仓库的位置为(xi,yi),运输量为wij.
min n m w ( x a ) 2 ( y b ) 2 i j i j j 1 i 1 ij n s.t. j 1 wij ci i 1, 2, , m m i 1 wij q j j 1, 2, , n wij 0 i 1, 2, , m j 1, 2, , n

最优化模型.

最优化模型.

华北电力大学数理学院
School of mathematics & physics
一、简单优化问题
* p 利润U(p)达到最大值的最优价格 满足:
dU dI dC a bq 2bp 0 dp dp dp
得到:
q a p 2 2b
*
最优价格一部分是成本的一半,另一部分与“绝对需求” 成正比,与市场需求对价格的敏感系数成反比。
一、简单优化问题
3、模型求解及其结果分析
需求函数是售价的减函数,通常是根据实际销售
情况定出。现在,假设它是线性函数,即
x f ( p) a bp, a, b 0
其中, a--代表这种产品免费供应(p=0)时的社会需求
量,也称为绝对需求量;
幅度。它反映市场需求对价格的敏感程度。
dx b 表示价格上涨一个单位时销售量下降的 dp
(3) 由于市场需求变化,每千克A1产品的获利增加到30 元,是否应改变生产计划?
二、模型分析 生产计划就是每天生产多少A1和多少A2,获利润最大。或 者是每天用多少桶牛奶生产A1和用多少桶牛奶生产A2,获 利润最大。
当技术参数、价值系数为常数时,此为线性规划模型。
华北电力大学数理学院
School of mathematics & physics
二、数学规划模型
四、模型的建立
目标:设每天收入z元。则 z 24 3x1 16 4 x2
约束条件:
原料限制
劳动时间限制
x1 x2 50
12x1 8x2 480
设备能力限制
3x1 100
决策变量的非负性 x1 , x2 0
华北电力大学数理学院
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
价格p, 即 x f ( p) ,f 称为需求函数;
(3)每件产品成本为q,产量x与成本q无关。
华北电力大学数理学院
School of mathematics & physics
一、简单优化问题
2、模型建立
总收入:I(p)=px 总支出:C(p)=qx 利 润:U= I(p)- C(p)= (p- q)x=(p-q)f(p)
x1 x2 50 s.t132x1x1180x02 480 x
x1, x2 , x 0
(4)
华北电力大学数理学院
School of mathematics & physics
f=[-72 -64 0]';a=[1 1 0;12 8 -1;3 0 0];b=[50,480,100]'; [x,z]=linprog(f,a,b,[],[],[0;0;0],[]) x = 33.3333,16.6667,104.3896 z = -3.4667e+003。收入:s=0时,3466.7
最优化模型概述
最大值或最小值 数学规划:线性规划(整数规划、0-1规划、目
标规划等),非线性规划 动态规划
华北电力大学数理学院
School of mathematics & physics
一、简单优化问题
案例1:产销平衡下的某种产品的最优价格,即使工厂利润最 大的价格。
1、模型假设
(1)售量为x,并与产量相等; (2)每件产品售价为p。在竞争市场的环境中售量x依赖于
得到: p* q a 2 2b
最优价格一部分是成本的一半,另一部分与“绝对需求” 成正比,与市场需求对价格的敏感系数成反比。
华北电力大学数理学院
School of mathematics & physics
一、简单优化问题
最大利润: U ( p*) b( a q )2 2b 2
边界收入: dI a 2bp* bq dp
当技术参数、价值系数为常数时,此为线性规划模型。
华北电力大学数理学院
School of mathematics & physics
二、数学规划模型
三、模型的假设
1、每天用 x1 桶牛奶生产A1,x2 桶牛奶生产A2;x1, x2
可以是任意的实数。 2、劳动时间、设备能力、利润均为与产量无关常数。 即技术参数、价值系数为常数
价格 y1 48元 ,所以企业应买进牛奶用于扩大生产。设再 增加x桶,其他条件不变,则有相应生产计划:
max z 72x1 64x2 35(50 x)
x1 x2 50 x s.t132x1x1180x02 480
x1, x2, x 0
(3)
x =[0.0000, 60.0000, 10.0000]’; z = -3.4900e+003 收入:3840 。即最多每天再多买进10桶!
案例3:奶制品的生产销售计划 一、问题的提出
案例2的A1,A2的生产条件、利润、资源都不变条件下,提高奶制 品深加工技术,增加工厂获利。用2小时和3元加工费,可将1千克A1加 工成0.8千克高级奶制品B1,也可将1千克A2加工成0.75千克高级奶制品 B2,每千克B1可获利44元,每千克B2可获利32元。生产的产品全能售出, 试着为该厂订制一个生产销售计划,使每天获利最大。并进一步讨论以 下问题:
3、生产的产品全能售出。
华北电力大学数理学院
School of mathematics & physics
四、模型的建立
目标:设每天净利润z元。则 z 24 x1 16 x2 44 x3 32 x4 3x5 3x6
约束条件:
原料限制 劳动时间限制 设备能力限制
3、生产的产品全能售出。
华北电力大学数理学院
School of mathematics & physics
二、数学规划模型
四、模型的建立
目标:设每天收入z元。则 z 24 3x1 16 4x2
约束条件:
原料限制
x1 x2 50
劳动时间限制
12 x1 8x2 480
设备能力限制
3x1 100
0<s<2时,
f=[-72 -64 s]';a=[1 1 0;12 8 -1;3 0 0];b=[50,480,100]'; [x,z]=linprog(f,a,b,[],[],[0;0;0],[]) x = 33.3333,16.6667,53.3333
z = -3.4133e+003。收入:3466.7
(1) 若投资30元可增加供应1桶牛奶,投资3元可增加1小时劳动时间, 是否应作这项投资?若每天投资150元,可赚回多少?
(2) 每千克高级奶制品B1,B2的获利经常有10%的波动,对制订的生 产销售计划有无影响?若每千克B1的获利下降10%,计划是否应作调 整?
华北电力大学数理学院
School of mathematics & physics
华北电力大学数理学院
School of mathematics & physics
二、数学规划模型
影子价格y,它由模型(1)的对偶问题决定:
min s bT y ATy c
s.t. y 0
L (2)
其中, y [y1, y2, y3]T 分别为出租(出售)单位资源 b1, b2 , b3 的附加值.
对第i种资源的估价——影子价格(
z* b j
)。在完全市
场经济的条件下,当某种资源的市场价低于影子价格时,
企业应买进该资源用于扩大生产;而当某种资源的市场价
高于企业影子价格时,则企业的决策者应把已有资源卖掉。
附加问题(3)是考虑当费用系数c变化时对最优解和最 优值有没有影响?找出使最优解不变的区间。
华北电力大学数理学院


School of mathematics & physics
爱因斯坦的一句名言: 想象力比知识更重要!因为
知识是有限的,而想象力包括世 界的一切,是知识的源泉。
最优优化模型
School of mathematics & physics
华北电力大学数理学院
School of mathematics & physics
21 f
0 3360 20 f
4
显然,当-48+2f<=0,-2-(1/4)f<=0时,最优解不变!即
c1 72 8,72 24 64,96 时,最优解不变!
现在 c1 30 3 90 ,所以不用改变生产计划!ematics & physics
决策变量的非负性 x1, x2 0
华北电力大学数理学院
School of mathematics & physics
二、数学规划模型
综上可得: max z 72x1 64x2
x1 x2 50 s.t132x1x1180x02 480
x1, x2 0
max z cT x
s.t.
Ax b x LB
1
1
劳动时间(h)
12
8
设备甲能力(kg)
3
0
设备乙能力(kg)
0
4
资源
50 480 100 inf
根据市场需求,生产的A1,A2产品全部能售出,且每千克A1 产品获利24元,每千克A2产品获利16元。试为该厂订一个 生产计划,使每天获利最大。并进一步讨论以下问题:
华北电力大学数理学院
School of mathematics & physics
华北电力大学数理学院
School of mathematics & physics
解附加问题(2):在每位临时工人的工资不超过每小时2元 的条件下,可以聘用临时工人以增加劳动时间。
设小时工资为s(0=<s<=2)元,其他条件不变的条件下,再 增加x小时,则有相应生产计划:
max z 72x1 64x2 s(480 x)
(1)
华北电力大学数理学院
School of mathematics & physics
二、数学规划模型
五、模型求解及结果分析
[X,z]=LINPROG(f,A,b,Aeq,beq,LB,UB) 用于解:
min f'*x subject to: A*x <= b
Aeq*x = beq. LB <= X <= UB. f=[-72;-64];A=[1 1;12 8;3 0];b=[50;480;100]; [x,z]=linprog(f,A,b,[],[],[0;0],[])
x = 20.0000, 30.0000; z =-3.3600e+003
即按每天用20桶牛奶生产A1,用30桶牛奶生产A2,获最大 收益:z=3360元。
华北电力大学数理学院
School of mathematics & physics
二、数学规划模型
附加问题的讨论:
附加问题(1)和(2)是要不要扩大生产?这取决于
数学模型为:
max U(p)
华北电力大学数理学院
School of mathematics & physics
一、简单优化问题
3、模型求解及其结果分析
需求函数是售价的减函数,通常是根据实际销售 情况定出。现在,假设它是线性函数,即
x f ( p) a bp, a,b 0
其中, a--代表这种产品免费供应(p=0)时的社会需求
二、数学规划模型
(1) 若用35元可以买到1桶牛奶,是否应作这项投资?若 投资,每天最多购买多少桶牛奶?
(2) 若可以聘用临时工人以增加劳动时间,付给临时工 人的工资最多是每小时几元?
相关文档
最新文档