编号19:命题及其关系——四种命题
四种命题及其关系

四种命题及其关系本节课主要讲解了命题的概念及其结构,命题是能够判断真假的陈述句,其中真命题为真实陈述,假命题为虚假陈述。
需要注意的是,不是任何语句都是命题,只有能够判断真假的陈述句才是命题。
命题通常可以改写成“若p,则q”的形式,其中p为命题的条件,q为命题的结论。
类型二:四种命题及其关系本节课还介绍了四种命题及其关系,包括原命题、逆命题、否命题和逆否命题。
其中,逆命题和否命题是互为逆命题的,逆否命题和原命题是互为逆否命题的。
需要注意的是,四种命题之间的真假关系并不总是有必然联系,只有互为逆否命题的两个命题同真同假。
因此,在判断命题真假时需要仔细分析其结构和关系。
本课程介绍了命题的概念和结构,以及四种命题及其关系。
命题是能够判断真假的陈述句,其中真命题为真实陈述,假命题为虚假陈述。
需要注意的是,只有能够判断真假的陈述句才是命题,而命题通常可以改写成“若p,则q”的形式,其中p 为命题的条件,q为命题的结论。
四种命题包括原命题、逆命题、否命题和逆否命题,其中逆命题和否命题是互为逆命题的,逆否命题和原命题是互为逆否命题的。
需要注意的是,四种命题之间的真假关系并不总是有必然联系,只有互为逆否命题的两个命题同真同假。
因此,在判断命题真假时需要仔细分析其结构和关系。
判断下列语句中哪些是命题,是命题的判断其是真命题还是假命题。
1) 末位是5的整数能被5整除。
2) 平行四边形的对角线相等且互相平分。
3) 两直线平行,则斜率相等。
4) 在三角形ABC中,若∠A=∠B,则sinA=sinB。
5) 余弦函数是周期函数吗?举一反三:变式1】判断下列语句是否为命题?若是,判断其真假。
1) x>1;2) 当x=1时,x>1;3) 你是男生吗?4) 求证:π是无理数。
变式2】下列语句中是命题的是()A。
|x+a|B。
{0}∈NC。
元素与集合D。
真子集变式3】判断下列语句是否是命题。
1) 这是一棵大树。
2) sin30°=1/2.3) x+1>0;4) 梯形是平行四边形。
四种命题及其关系

对所有x, 存在某x, 对任何x 对所有x, 存在某 , 对任何x, 成立 不成立 不成立 P且 q
┐p或┐q 或
P或 q
┐p且┐q 且
条
原命题 逆命题 否命题
件
结论
两直线平行 同位角相等
同位角相等, 同位角相等, 两直线平行, 两直线平行,
同位角不相等, 两直线不平行 同位角不相等,
两直线不平行, 逆否命题 两直线不平行, 同位角不相等 互为逆否命题:一个命题的条件 结论分别是另一个 互为逆否命题:一个命题的条件和结论分别是另一个 条件和 命题的结论的否定 条件的否定, 结论的否定和 命题的结论的否定和条件的否定, 互为逆否命题。 这两个命题叫做互为逆否命题 这两个命题叫做互为逆否命题。 其中一个命题叫做原命题。 原 命 题:其中一个命题叫做原命题。 另一个命题叫做原命题的逆否命题。 逆否 命 题:另一个命题叫做原命题的逆否命题。 逆否命题:若 逆否命题 若┐q ,则┐ p 则 原命题: p,则 原命题:若p,则q
条
原命题 逆命题 否命题
件
结论
若f(x)是正弦函数,则f(x)是周期函数; f(x)是正弦函数 是正弦函数, f(x)是周期函数 是周期函数; 若f(x)是周期函数,则f(x)是正弦函数; f(x)是周期函数 是周期函数, f(x)是正弦函数 是正弦函数; 若f(x)不是正弦函数,则f(x)不是周期函数; f(x)不是正弦函数 不是正弦函数, f(x)不是周期函数 不是周期函数;
例: “若x2+y2≠0,则x,y至少有一个不为0” ≠0, 至少有一个不为0” 是命题A的否命题,写出命题A及其逆命题、 是命题A的否命题,写出命题A及其逆命题、 逆否命题并判断它们的真假。 逆否命题并判断它们的真假。
命题 四种命题及其相互关系(最新)

若 p, 若 q, 若┐p, 若┐q,
则 q 则 p 则┐q 则┐ p
1:要写出一个命题的另外三个命题关键是分清命题的题设 和结论(即把原命题写成“若P则q”的形式)
注意:三种命题中最难写 的是否命题。
2:(1)“或”的否定为“且”,(2)“且”的否 定为“或”, (3)“都”的否定为“不都”。
例1 写出下列命题的逆命题、否命题和逆否命题,并判 断它们的真假:
3:写出下列命题的逆命题、否命题、逆否命题。 2 2 (1)原命题: 若 a b 则 a b 真命题 2 2 假命题 答:逆命题: 若 a b 则 a b 2 2 否命题: 若 a b 则 a b 假命题 2 2 真命题 逆否命题: 若 a b 则 a b 假 (2)原命题:若一个数是负数,则它的平方是0; 假 逆命题:若一个数的平方是0,则它是负数; 否命题:若一个数不是负数,则它的平方不是0;假 逆否命题:若一个数的平方不是0,则它不是负数. 假 试判断上面命题的真假.
析:(3)中的表述作适当改变,也可以写成“若p,则q”的形式。
若两个平面垂直于同一条直线,则这两个平面平行。
例3 将下列命题改Leabharlann “若p,则q”的形式,并判断真假。
(1)垂直于同一条直线的两条直线平行。 (2)负数的立方是负数。
(3)对等角相等。
解:(1)若两条直线垂直于同一条直线,则这两条直线平行。假命题 (2)若一个数是负数,则这个数的立方是负数。 真命题 (3)若两个角是对顶角,则这两个角相等。真命题
高二数学 选修
1.1.1-1.1.3
命题 四种命题 与四种命题间的相互关系
思考
下列语句的表述形式有什么特点?你能判断 它们的真假吗? • (1) 12>5; • (2) 3是12的约数; 语句都是陈述句, • (3) 0.5是整数; • (4)对顶角相等; 并且可以判断真假。 • (5)3 能被2整除; • (6)若x2=1,则x=1.
四种命题及其关系

四种命题及其关系一、四种命题的概念1. 原命题- 定义:若用p表示条件,q表示结论,则原命题为“若p,则q”,例如“若x = 1,则x^2=1”。
2. 逆命题- 定义:将原命题的条件和结论互换得到的命题,即“若q,则p”。
对于上面的例子,其逆命题为“若x^2=1,则x = 1”。
3. 否命题- 定义:将原命题的条件和结论都进行否定得到的命题,即“若¬ p,则¬q”。
对于“若x = 1,则x^2=1”,其否命题为“若x≠1,则x^2≠1”。
4. 逆否命题- 定义:将逆命题的条件和结论都进行否定得到的命题,即“若¬ q,则¬p”。
对于“若x = 1,则x^2=1”,其逆否命题为“若x^2≠1,则x≠1”。
二、四种命题之间的关系1. 原命题与逆命题- 关系:原命题的条件和结论是逆命题的结论和条件,它们之间是互逆的关系。
原命题为真时,逆命题不一定为真。
例如原命题“若a = 0,则ab=0”是真命题,其逆命题“若ab = 0,则a = 0”是假命题(因为当b = 0时,a可以不为0)。
2. 原命题与否命题- 关系:原命题与否命题是互否的关系,原命题为真时,否命题不一定为真。
例如原命题“若x>2,则x>1”是真命题,其否命题“若x≤slant2,则x≤slant1”是假命题。
3. 原命题与逆否命题- 关系:原命题与逆否命题是同真同假的关系。
例如原命题“若a = b,则a^2=b^2”是真命题,其逆否命题“若a^2≠ b^2,则a≠ b”也是真命题;原命题“若x = 1且y = 2,则x + y=3”是真命题,其逆否命题“若x + y≠3,则x≠1或y≠2”也是真命题。
4. 逆命题与否命题- 关系:逆命题与否命题是互为逆否的关系,所以它们也是同真同假的关系。
例如对于原命题“若p,则q”,其逆命题“若q,则p”和否命题“若¬ p,则¬q”,若逆命题为真,则否命题也为真;若逆命题为假,则否命题也为假。
四种命题以及相互关系

原命题若p 则q 否命题若┐p 则┐q逆命题若q 则p逆否命题若┐q 则┐p互为逆否互逆否互为逆否互互逆否互四种命题的形式1、命题什么叫命题?其中,判断为真的语句,叫真命题,判断为假的语句,叫假命题。
命题的构造?〔条件+结论〕假如…,那么…。
问题1:我是你的教师。
真X >15 不是命题 全等三角形的面积相等。
真 3是10的约数吗? 不是命题 两直线平行,同位角相等。
真 上课请不要讲话 不是命题 注:〔1〕疑问句,祈使句,感慨句不是命题。
〔2〕要判断一个语句是不是命题,关键是能不能判断真假。
〔3〕判断命题真假的方法有:逻辑推理法、要证明命题是假命题,只需要举出满足条件,不满足结论的例子即可;要证明命题为真,就需要证明满足命题的条件,就一定能推出命题的结论。
2、推出关系假如α成立可以推出β成立,那么就说由α可以推出β,记作:α=>β,换言之,α=>β表示以α为条件、β为结论的命题是真命题。
假如α成立不能推出β成立,记作:α≠>β,换言之,α≠>β表示以α为条件、β为结论的命题是假命题。
3、四种命题形式问题2:判断以下命题的真假,你能发现各命题之间有什么关系?①假如两个三角形全等,那么它们的面积相等; 〔假如α,那么β〕 ②假如两个三角形的面积相等,那么它们全等; 〔假如β,那么α〕 ③假如两个三角形不全等,那么它们的面积不相等; 〔假如α,那么β〕 ④假如两个三角形的面积不相等,那么它们不全等; 〔假如β,那么α〕 注:1 两个命题为互逆命题或互否命题,它们的真假性没有关系2两个命题为互为逆否命题,它们的真假性一样3假设原命题为真,它的逆命题和否命题可以为真也可以为假;4在同一个命题的四种命题中,真命题的个数要么是0个,要么是2个,要么是4个。
例1.写出命题“假设a=0,那么ab=0〞的逆命题、否命题、逆否命题,并判断各命题的真假。
例2.写出命题“两直线平行,同位角相等〞的逆命题、否命题、逆否命题,并判断各命题的真假。
高考数学四种命题及其相互关系知识点汇总

高考数学四种命题及其相互关系知识点汇总数学课本中出现的四种命题的内容经常在高考选择题中考察,下面是店铺给大家带来的高考数学四种命题及其相互关系知识点汇总,希望对你有帮助。
高考数学四种命题及其相互关系知识点(一)1、四种命题:一般地,用p和q分别表示原命题的条件和结论,用或分别表示p和q的否定,四种命题的形式是:(1)原命题:若p则q;(2)逆命题:若q则p;(3)否命题:若则;(4)逆否命题:若则。
2、四种命题的真假关系:一个命题与它的逆否命题是等价的,其逆命题与它的否命题也是等价的;3、四种命题的相互关系:注意:1、区别“否命题”与“命题的否定”,若原命题是“若p则q”,则这个命题的否定是“若p则非q”,而它的否命题是“若非p则非q”。
2、互为逆否命题同真假,即“等价”高考数学四种命题及其相互关系知识点(二)【若则命题】命题的常见形式为“若p则q”,其中p叫做命题的条件,q叫做命题的结论.【逆命题】对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题.其中一个命题称为原命题(originalproposition),另一个称为原命题的逆命题(inverseproposition).也就是说,如果原命题为“若p,则q”,那么它的逆命题为“若q,则p”.【否命题】对于两个命题,如果一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,那么这两个命题称为互否命题.其中一个命题称为原命题,另一个称为原命题的否命题(negativeproposition).也就是说,如果原命题为“若p,则q”,那么它的否命题为“若,则”.【逆否命题】对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题(inverseandnegativeproposition).也就是说,如果原命题为“若p,则q”,那么它的逆否命题为“若,则”.。
高中数学 第一章 常用逻辑用语 1.1 命题及其关系 1.1.2 四种命题 1.1.3 四种命题间的
1.1.2 四种命题1.1.3 四种命题间的相互关系学习目标:1.了解四种命题的概念,能写出某命题的逆命题、否命题和逆否命题.(重点)2.知道四种命题之间的相互关系以及真假性之间的联系.(易混点)3.会利用命题的等价性解决问题.(难点)[自主预习·探新知]1.四种命题的概念及表示形式名称定义表示形式互逆命题对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个叫做原命题的逆命题.原命题为“若p,则q”;逆命题为“若q,则p”互否命题对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的否命题原命题为“若p,则q”;否命题为“若p,则q”互为逆否命题对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题原命题为“若p,则q”;逆否命题为“若q,则p”2.四种命题间的相互关系(1)四种命题之间的关系(2)四种命题间的真假关系原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假由上表可知四种命题的真假性之间有如下关系:①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.思考:(1)“a=b=c=0”的否定是什么?(2)在原命题,逆命题、否命题和逆否命题四个命题中.真命题的个数会是奇数吗?[提示](1)“a=b=c=0”的否定是“a,b,c至少有一个不等于0”.(2)真命题的个数只能是0,2,4,不会是奇数.[基础自测]1.思考辨析(1)命题“若p,则q”的否命题为“若p,则q”.( )(2)同时否定原命题的条件和结论,所得的命题是否命题.( )(3)命题“若A∩B=A,则A∪B=B”的逆否命题是“若A∪B≠B,则A∩B≠A”.[答案](1)×(2)√(3)√2.命题“若一个数是负数,则它的相反数是正数”的逆命题是( )A.“若一个数是负数,则它的相反数不是正数”B.“若一个数的相反数是正数,则它是负数”C.“若一个数不是负数,则它的相反数不是正数”D.“若一个数的相反数不是正数,则它不是负数”B[根据逆命题的定义知,选B.]3.命题“若m=10,则m2=100”与其逆命题、否命题、逆否命题这四个命题中,真命题是( )【导学号:97792008】A.原命题、否命题B.原命题、逆命题C.原命题、逆否命题D.逆命题、否命题C[原命题正确,则逆否命题正确,逆命题不正确,从而否命题不正确.故选C.][合作探究·攻重难]四种命题把下列命题改写成“若p,则q”的形式,并写出它们的逆命题、否命题和逆否命题.(1)相似三角形对应的角相等;(2)当x>3时,x2-4x+3>0;(3)正方形的对角线互相平分.[解](1)原命题:若两个三角形相似,则这两个三角形的三个角对应相等;逆命题:若两个三角形的三个角对应相等,则这两个三角形相似;否命题:若两个三角形不相似,则这两个三角形的三个角对应不相等;逆否命题:若两个三角形的三个角对应不相等,则这两个三角形不相似.(2)原命题:若x>3,则x2-4x+3>0;逆命题:若x2-4x+3>0,则x>3;否命题:若x≤3,则x2-4x+3≤0;逆否命题:若x2-4x+3≤0,则x≤3.(3)原命题:若一个四边形是正方形,则它的对角线互相平分;逆命题:若一个四边形对角线互相平分,则它是正方形;否命题:若一个四边形不是正方形,则它的对角线不互相平分;逆否命题:若一个四边形对角线不互相平分,则它不是正方形.[规律方法] 1.写出一个命题的逆命题,否命题,逆否命题的方法(1)写命题的四种形式时,首先要找出命题的条件和结论,然后写出命题的条件的否定和结论的否定,再根据四种命题的结构写出所求命题.(2)在写命题时,为了使句子更通顺,可以适当地添加一些词语,但不能改变条件和结论.2.写否命题时应注意一些否定词语,列表如下:原词语等于(=)大于(>)小于(<)是都是至多有一个否定词语不等于(≠)不大于(≤)不小于(≥)不是不都是至少有两个原词语至少有一个至多有n个任意的任意两个所有的能否定词语一个也没有至少有(n+1)个某一个(确定的)某两个某些不能1.(1)命题“若y =kx ,则x 与y 成正比例关系”的否命题是( )【导学号:97792009】A .若y ≠kx ,则x 与y 成正比例关系B .若y ≠kx ,则x 与y 成反比例关系C .若x 与y 不成正比例关系,则y ≠kxD .若y ≠kx ,则x 与y 不成正比例关系D [条件的否定为y ≠kx ,结论的否定为x 与y 不成比例关系,故选D.] (2)命题“若ab ≠0,则a ,b 都不为零”的逆否命题是________.若a ,b 至少有一个为零,则ab =0 [“ab ≠0”的否定是“ab =0”,“a ,b 都不为零”的否定是“a ,b 中至少有一个为零”,因此逆否命题为“若a ,b 至少有一个为零,则ab =0”.]四种命题的关系及真假判断(1)对于原命题:“已知a 、b 、c ∈R ,若a >b ,则ac 2>bc 2”,以及它的逆命题、否命题、逆否命题,在这4个命题中,真命题的个数为( )A .0个B .1个C .2个D .4个(2)判断命题“若a ≥0,则x 2+x -a =0有实根”的逆否命题的真假. [思路探究] (1)只需判断原命题和逆命题的真假即可. (2)思路一 写出原命题的逆否命题→判断其真假 思路二 原命题与逆否命题同真同假即等价关系→判断原命题的真假→得到逆否命题的真假[解析] (1)当c =0时,ac 2>bc 2不成立,故原命题是假命题,从而其逆否命题也是假命题;原命题的逆命题为“若ac 2>bc 2,则a >b ”是真命题,从而否命题也是真命题,故选C.[答案] C(2)法一:原命题的逆否命题:若x 2+x -a =0无实根,则a <0. ∵x 2+x -a =0无实根,∴Δ=1+4a <0,解得a <-14<0,∴原命题的逆否命题为真命题.法二:∵a ≥0,∴4a ≥0,∴对于方程x 2+x -a =0,根的判别式Δ=1+4a >0,∴方程x2+x-a=0有实根,故原命题为真命题.∵原命题与其逆否命题等价,∴原命题的逆否命题为真命题.[规律方法]判断命题真假的方法1解决此类问题的关键是牢记四种命题的概念,正确地写出所涉及的命题,判定为真的命题需要简单的证明,判定为假的命题要举出反例加以验证.2原命题与它的逆否命题同真同假,原命题的否命题与它的逆命题同真同假,故二者只判断一个即可.[跟踪训练]2.判断下列四个命题的真假,并说明理由.(1)“若x+y=0,则x,y互为相反数”的否命题;(2)“若x>y,则x2>y2”的逆否命题;(3)“若x≤3,则x2-x-6>0”的否命题;(4)“对顶角相等”的逆命题.[解](1)命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,则逆命题为真命题,因为原命题的逆命题和否命题具有相同的真假性,所以“若x+y=0,则x,y互为相反数”的否命题是真命题.(2)令x=1,y=-2,满足x>y,但x2<y2,所以“若x>y,则x2>y2”是假命题,因为原命题与其逆否命题具有相同的真假性,所以“若x>y,则x2>y2”的逆否命题也是假命题.(3)该命题的否命题为“若x>3,则x2-x-6≤0”,令x=4,满足x>3,但x2-x-6=6>0,不满足x2-x-6≤0,则该否命题是假命题.(4)该命题的逆命题为“相等的角是对顶角”是假命题,如等边三角形的任意两个内角都相等,但它们不是对顶角.等价命题的应用1.当一个命题的条件与结论以否定形式出现时,为了研究方便,我们可以研究哪一个命题?提示:一个命题与其逆否命题等价,我们可研究其逆否命题.2.在证明“若m2+n2=2,则m+n≤2”时,我们也可以证明哪个命题成立.提示:根据一个命题与其逆否命题等价,我们也可以证明“若m+n>2,则m2+n2≠2”成立.(1)命题“对任意x∈R,ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是________.(2)证明:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.【导学号:97792010】[思路探究] (1)根据其逆否命题求解.(2)证明其逆否命题成立.[解析](1)∵命题“对任意x∈R,ax2-2ax-3>0不成立”等价于“对任意x∈R,ax2-2ax-3≤0恒成立”,若a=0,则-3≤0恒成立,∴a=0符合题意.若a≠0,由题意知{a<0Δ=4a2+12a≤0,即{a<0-3≤a≤0,∴-3≤a<0综上知,a的取值范围是-3≤a≤0.[答案][-3,0](2)证明原命题的逆否命题为“已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若a+b<0,则f(a)+f(b)<f(-a)+f(-b)”.若a+b<0,则a<-b,b<-a.又∵f(x)在(-∞,+∞)上是增函数,∴f(a)<f(-b),f(b)<f(-a),∴f(a)+f(b)<f(-a)+f(-b).即原命题的逆否命题为真命题.∴原命题为真命题.[规律方法] 1.若一个命题的条件或结论含有否定词时,直接判断命题的真假较为困难,这时可以转化为判断它的逆否命题.2.当证明一个命题有困难时,可尝试证明其逆否命题成立.3.证明:若a2-4b2-2a+1≠0,则a≠2b+1.[证明]“若a2-4b2-2a+1≠0,则a≠2b+1”的逆否命题为“若a=2b+1,则a2-4b2-2a+1=0”.∵a=2b+1,∴a2-4b2-2a+1=(2b+1)2-4b2-2(2b+1)+1=4b2+1+4b-4b2-4b-2+1=0.∴命题“若a=2b+1,则a2-4b2-2a+1=0”为真命题.由原命题与逆否命题具有相同的真假性可知,原命题得证.[当堂达标·固双基]1.命题“若a∉A,则b∈B”的逆命题是( )A.若a∉A,则b∉B B.若a∈A,则b∉BC.若b∈B,则a∉A D.若b∉B,则a∉AC[“若p,则q”的逆命题是“若q,则p”,所以本题的逆命题是“若b∈B,则a∉A”.]2.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是( ) A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3A[同时否定命题的条件与结论,所得命题就是原命题的否命题,故选A.]3.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为 ( )A.1 B.2 C.3 D.4B[原命题是真命题,从而其逆否命题是真命题,其逆命题是“若a>-6,则a>-3”,是假命题,从而其否命题也是假命题,故真命题的个数是2.]4.命题“若m>1,则mx2-2x+1=0无实根”的等价命题是________.【导学号:97792011】若mx2-2x+1=0有实根,则m≤1[原命题的等价命题是其逆否命题,由定义可知其逆否命题为:“若mx2-2x+1=0有实根,则m≤1”.]5.已知命题p:“若ac≥0,则二次不等式ax2+bx+c>0无解”.(1)写出命题p的否命题;(2)判断命题p的否命题的真假.[解] (1)命题p的否命题为:“若ac<0,则二次不等式ax2+bx+c>0有解”.(2)命题p的否命题是真命题.判断如下:因为ac<0,所以-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根⇒ax2+bx+c>0有解,所以该命题是真命题.。
命题及其关系
3.(2009·重庆)命题“若一个数是负数,则它的平方是正数”的逆命题是( A.“若一个数是负数,则它的平方不是正数” B.“若一个数的平方是正数,则它是负数” C.“若一个数不是负数,则它的平方不是正数” D.“若一个数的平方不是正数,则它不是负数” 答案:B
)
4.“ω=2”是“函数y=sin(ωx+φ)的最小正周期为π”的( A.充分非必要条件 C.充分必要条件 B.必要非充分条件 D.既不充分也不必要条件
解答:(1)逆命题是:若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0为真命题.
用反证法证明:假设a+b<0,则a<-b,b<-a.
∵f(x)是(-∞,+∞)上的增函数,则f(a)<f(-b),f(b)<f(-a),
∴f(a)+f(b)<f(-a)+f(-b),这与题设相矛盾,所以逆命题为真.
变式2.已知a、b是实数,求证:a4-b4-2b2=1成立的充分条件是a2-b2=1.该条件
是否为必要条件?试证明你的结论. 证明:∵a2-b2=1,∴a4-b4-2b2=(a2-b2)(a2+b2)-2b2=(a2+b2)-2b2= a2-b2=1. 即a4-b4-2b2=1成立的充分条件是a2-b2=1. 另一方面又a4-b4-2b2=1,即为a4-(b4+2b2+1)=0.a4-(b2+1)2=0, (a2-b2-1)(a2+b2+1)=0,又a2+b2+1≠0,∴a2-b2-1=0,即a2-b2=1. 因此a2-b2=1既是a4-b4-2b2=1的充分条件,也是a4-b4-2b2=1的必要条件.
(2)如果p⇒q,q⇒p,则p是q的 充要条件 (sufficient and necessary condition). 4.反证法与证命题的逆否命题 反证法首先 否定结论,即假定结论不成立 .由此出发直至推出 与题设、定义 、 定理相矛盾 ;证命题的逆否命题,即由 结论 的否定推出 题设 的 否定 .
四种命题的关系及其真假判断
+ b2 = 0 否命题: 否命题: a 2 + b 2 ≠ 0,则a, b不全为0 若 逆否命题: 逆否命题:若a, b不全为0,则a 2 + b 2 ≠ 0
真 真 真
注意: 注意:“a,b全为0”的否定应该是:a,b不全为0 全为0”的否定应该是: 0”的否定应该是 不全为0 (2)逆命题: 若x 2 )逆命题:
⇔
逆否命题
逆命题
⇔
否命题
因而四种命题真假的个数一定为偶数, 个或2个或 因而四种命题真假的个数一定为偶数,即0个或 个或 个. 个或 个或4个
四种命题的关系及真假判断
课堂小结: 课堂小结: 1、理解四种命题之间的相互关系; 、理解四种命题之间的相互关系; 2、理解一个命题的真假与其他三个命题真假间的关系; 、理解一个命题的真假与其他三个命题真假间的关系; 3、能根据原命题的真假判断其他三个命题的真假。 、能根据原命题的真假判断其他三个命题的真假。 4、互为逆否命题的等价性。 、互为逆否命题的等价性。
四种命题的关系及真假判断
学习目标: 学习目标: 1、理解四种命题之间的相互关系; 、理解四种命题之间的相互关系; 2、理解一个命题的真假与其他三个命题真假间的关系; 、理解一个命题的真假与其他三个命题真假间的关系; 3、能根据原命题的真假判断其他三个命题的真假。 、能根据原命题的真假判断其他三个命题的真假。 4、互为逆否命题的等价性。 、互为逆否命题的等价性。
c>0时 a>b, ac>bc“写出它的逆命题 写出它的逆命题、 2、设原命题是“当 c>0时,若a>b,则ac>bc“写出它的逆命题、否命题与 设原命题是“
注意:本题中的“ 注意:本题中的“当c>0时”是大前提,不论在写逆命题、否命题或逆否命 时 是大前提,不论在写逆命题、 题时都应该把它写在最前面;而本题原命题的条件p时 题时都应该把它写在最前面;而本题原命题的条件 时:若a>b,结 , 论是: 论是:ac>bc.
四种命题 四种命题间的相互关系
否命题:若 m·n≥0,则方程 mx2-x+n=0 没有实数 根,假命题.
逆否命题:若方程 mx2-x+n=0 没有实数根,则 m·n ≥0,真命题.
(2)逆命题:若一条直线经过圆心,且平分弦所对的 弧,则这条直线是弦的垂直平分线,真命题.
否命题:若一条直线不是弦的垂直平分线,则这条直 线不过圆心或不平分弦所对的弧,真命题.
3.四种命题真假性之间的关系 (1)两个命题互为逆否命题时,它们有相同的真假性; (2)两个命题为互逆命题或互否命题时,它们的真假 性没有关系.
温馨提示 在四种命题中,真命题的个数可能为 0,2,4 个,不 会出现奇数个.
1.下列判断中不正确的是( ) A.命题“若 A∩B=B,则 A∪B=A”的逆否命题 为真命题 B.“矩形的两条对角线相等”的否命题为假命题 C.“已知 a,b,m∈R,若 am2<bm2,则 a<b”的逆 命题是真命题 D.“若 x∈N*,则(x-1)2>0”是假命题
解析:A 中,逆否命题“若 A∪B≠A,则 A∩B≠B” 是真命题,正确;B 中,否命题“不是矩形的四边形的两 条对角线不相等”是假命题,正确;C 中,逆命题“已知 a,b,m∈R,若 a<b,则 am2<bm2”是假命题.所以 C 错误,符合题意.D 中,因为 x=1 时,(1-1)2=0,所以 是假命题,正确.
答案:C
2.命题“若 a>b,则 2a>2b-1”的否命题为 ___________________________________________. 解析:否命题为“若¬ p,则¬ q”,则否命题为“若 a≤b,则 2a≤2b-1”. 答案:“若 a≤b,则 2a≤2b-1”
3.下列命题: ①“等边三角形三内角都为 60°”的逆命题; ②“若 k>0,则 x2+2x-k=0 有实根”的逆否命题; ③“全等三角形的面积相等”的否命题; ④“若 ab≠0,则 a≠0”的否命题; 其中真命题的序号为________. 解析:①逆命题“三内角都为 60°的三角形为等边 三角形”,真命题;②逆否命题“若 x2+2x-k=0 没有实 根,则 k≤0”,因为Δ=4+4k<0,所以 k<-1,满足 k
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.判断命题“若 x+y≤5,则 x≤2 或 y≤3”的真假.
七、课后练习 1.命题“内错角相等,则两直线平行”的否命题为( A.两直线平行,内错角相等 B.两直线不平行,则内错角不相等 C.内错角不相等,则两直线不平行 D.内错角不相等,则两直线平行 2.命题“若 a b ,则 A.若
)
a 1 ”的逆否命题为( b
)
a 1 ,则 a b b
六、回顾反思 本节重点研究了四种命题的概念与表示形式,即如果原命题为:若 p 则 q,则它的逆命题 为:若 q 则 p,即交换原命题的条件和结论即得其逆命题;否命题为:若 p 则 q,即 同时否定原命题的条件和结论,即得其否命题;逆否命题为:若 q 则 p,即交换原命 题的条件和结论,并且同时否定,即得其逆否题;两个互为逆否的命题同真或同假。
题的结论是第二个命题的条件,那么这两个命题叫做互逆命题;如果把其中一个命题叫 做原命题,那么另一个叫做原命题的逆命题. 例如,如果原命题是:⑴同位角相等,两直线平行; 它的逆命题就是:⑵两直线平行,同位角相等. 2. 否命题与逆否命题 即在两个命题中,一个命题的条件和结论分别是另一个命题的条件的否定和结论的 否定,这样的两个命题就叫做互否命题,若把其中一个命题叫做原命题,则另一个就叫 做原命题的否命题. 例如⑶同位角不相等,两直线不平行; ⑷两直线不平行,同位角不相等. 3. 原命题与逆否命题 即在两个命题中,一个命题的条件和结论分别是另一个命题的结论的否定和条件的 否定,这样的两个命题就叫做互为逆否命题,若把其中一个命题叫做原命题,则另一个 就叫做原命题的否命题. 概括地说,设命题⑴为原命题,则命题⑵为逆命题;命题⑶为否命题;命题⑷为逆否命 题. 关于逆命题、否命题与逆否命题,也可以这样表述: ⑴交换原命题的条件和结论,所得的命题是逆命题; ⑵同时否定原命题的条件和结论,所得的命题是否命题; ⑶交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题. 4.四种命题的形式 一般到,我们用 p 和 q 分别表示原命题的条件和 结论,用┐p 和┐q 分别表示 p 和 q 的否定,于是四种 命题的形式就是: 原命题:若 p 则 q; 逆命题:若 q 则 p; 否命题:若┐p 则┐q; 逆否命题:若┐q 则┐p. 五、典例剖析 例 1.写出命题“若 a=0,则 ab=0”的逆命题、否命题、逆否命题,并判断各命题的真假。
说明:原命题为真,它的否命题不一定为真;原命题为真,它的逆否命题一定为真.
例 2.把下列命题改写成“若 p 则 q”的形式,并写出它们的逆命题、否命题与逆否命题, 同时指出它们的真假。 (1)两个全等的三角形的三边对应相等; (2)四边相等的四边形是正方形; (3)负数的平方是正数;
说明: “若 p 则 q”形式的命题,也是一种复合命题,其中的 p 与 q,可以是命题,也可 2 2 以是开语句。例如,命题“若 x +y =0,则 x,y 全为 0” ,其中的 p 与 q,就是开语句. 例 3.设原命题是“当 c>0 时,若 a>b,则 ac>bc” ,写出它的逆命题、否命题与逆否命题, 并分别判断它们的真假. 分析: 当 c>0 时” “ 是大前提, 写其他命题时应该保留, 原命题的条件是 a>b, 结论是 ac>bc.
B.若 a ≤ b ,则 D.若
a ≤1 b
C.若 a b ,则 b a
a ≤1,则 a ≤ b b
;
3.写出“若x2+y2=0,则x=0且y=0”的逆否命题: 4.把下列命题写成“若 p 则 q”的形式,并判断其真假. (1)实数的平方是非负数; (2)等底等高的两个三角形是全等三角形; (3)能被 6 整除的数既能被 3 整除也能被 2 整除; (ቤተ መጻሕፍቲ ባይዱ)弦的垂直平分线经过圆心,并平分弦所对的弧. 5.写出命题“若 a 和 b 都是偶数,则 a+b 是偶数”的否命题和逆否命题.
编号 19:命题及其关系——四种命题
主备人 课标要求 冯桂苓 授课人 庄炳灵 授课日期 课型 新授 了解命题的逆命题、否命题与逆否命题的概 念,明白四种命题的关系
教学目标:了解命题的逆命题、否命题与逆否命题的概念,明白四种命题的关系,能求一 般命题的逆命题、否命题、逆否命题.合理进行思维的方法,正确判断命题的真假,初步 形成运用逻辑知识准确地表述问题的数学意识. 教学重点:逆命题、否命题、逆否命题的概念及求法. 教学难点:把命题写成若 P 则 q 的形式。 一、创设情境 在我们日常生活中,经常涉及到逻辑上的问题。无论是进行思考、交流,还是从事 各项工作,都需要用逻辑用语表达自己的思想,需要用逻辑关系进行判断和推理。因此, 正确使用逻辑用语和逻辑关系是现代社会公民应该具备的基本素质。 本章我们将从命题及其关系入手,学习四种命题的相互关系、充分条件和必要条件, 学习逻辑用语,了解数理逻辑的有关知识,体会逻辑用语在表述或论证中的作用,使以 后的论证和表述更加准确、清楚和简洁。在学习过程中我们应避免对逻辑用语的机械记 忆和抽象解释,而应该通过具体、生动的实例来使学生体会常用的逻辑用语,学习使用 常用的逻辑用语,掌握常用逻辑用语,并在使用过程中纠正出现的逻辑错误。 在初中我们已经学过命题的有关概念,下面我们来复习一下: 二、活动尝试 问题 1:下列语句的表述形式有什么特点?你能判断它们的真假吗? ①若 xy=1,则 x、y 互为倒数; ②相似三角形的周长相等; ③2+4=5 ④如果 b ≤-1,那么方程 x 2bx b b 0 有实根;
2 2
⑤若 A B B ,则 B A ; ⑥3 不能被 2 整除; 结论:这些语句都是陈述句,且它们都能判断真假。 一般地,我们用语言、符号或式子表达的,可以判断真假的陈述句,叫做命题;其 中判断为正确的命题,为真命题;判断为不正确的命题,为假命题; 上述命题中①④⑥为真命题,②③⑤为假命题; 三、师生探究 问题 2:判断下列命题的真假,你能发现各命题之间有什么关系? ①如果两个三角形全等,那么它们的面积相等; ②如果两个三角形的面积相,那么它们全等; ③如果两个三角形不全等,那么它们的面积不相等; ④如果两个三角形不相等,那么它们不全等; 结论:命题①④为真,②③为假;①与②、③与④条件和结论互逆,①与③、②与④条 件和结论互否; 四、数学理论 1.原命题与逆命题 即在两个命题中,如果第一个命题的条件(或题设)是第二个命题的结论,且第一个命