第二节 三相异步电动机的电磁转矩和机械特性

第二节 三相异步电动机的电磁转矩和机械特性
第二节 三相异步电动机的电磁转矩和机械特性

第二节三相异步电动机的电磁转矩和机械特性

三相异步电动机转轴上产生的电磁转矩是决定电动机输出的机械功率大小的一个重要因素,也是电动机的一个重要的性能指标。

一、三相异步电动机的转矩特性

1、电磁转矩的物理表达式

三相异步电动机的工作原理告诉我们,电磁转矩是旋转磁场与转子绕组中感应电流相互作用产生的,设旋转磁场每极的磁通量用Φ表示,它等于气隙中磁感应强度平均值与每极面积的乘积。Φ表示了旋转磁场的强度。设转子电流用I2表示。根据电磁力定律,电磁转矩T em应与Φ成正比、与I2也成正比,即T em∝Φ·I2。此外转子绕组是一个感性电路,转子电流I2滞后于感应电动势E2,它们之间的相位差角是。考虑到电动机的电磁转矩对外做机械功,与有功功率相对应。因此电磁转矩T em还与转子电路的功率因数cos有关,即与转子电流的有功分量I2cos(与E2同相位的电流分量)成正比。

总结以上分析,可列出异步电动机的电磁转矩方程

式中KT是一个与电动机本身结构有关的系数。该公式是分析异步电动机转矩特性的重要依据。

2、转矩特性

电磁转矩与转差率之间的关系T em=(S)称为电动机的转矩特性。可以推得

式中KT’、转子电阻R2、转子不动时的感抗X20都是常数,且X20远大于R2。由于上式用电机定、转子绕组中的电阻、电抗等参数反映电磁转矩T em和转差率S之间的关系,所以上式又称之为电磁转矩的参数表达式。

由转矩的表达式(4-5)可知,转差率一定时,电磁转矩与外加电压的平方成正比,即T em∝U12。因此,电源电压有效值的微小变动,将会引起转矩的很大变化。

当电源电压U1为定值时,电磁转矩T em是转差率S的单值函数。图4-13画出了异步电动机的转矩特性曲线。

二、三相异步电动机的机械特性

当电源电压U1和转子电路参数为定值时,转速n和电磁转矩T的关系n=f(T)称为三相异步电动机的机械特性。机械特性曲线可直接从转矩特性曲线变换获得。将图4-15中的转矩特性曲线顺时针转动90°,并将s换成n就可以得到三相异步电动机的机械特性曲线,如图4-16所示。

1、四个工作点

在机械特性曲线中要抓住以下几个工作点。

●额定工作点C

三相异步电动机额定状态下运行,转速n=nN,s=sN,轴上的输出转矩即为带动轴上的额定机械负载的额定转矩TN,额定转矩TN为与额定功率PN和额定转速nN关系可用下式表示:

式中PN——电动机轴上输出的额定功率(kW)

nN——电动机额定转速(r/min)

TN——电动机上的输出的额定转矩(N?m)

在忽略电动机本身的机械损耗转矩(如轴承摩擦等)的情况下,可以认为电磁转矩TemN

与轴上的输出的额定转矩相等,经推导有

式中P2——电动机轴上输出的机械功率(kW);

n——电动机转速(r/min)。

2)临界工作点B

从曲线中可以看出,曲线的形状以B点为界,AB段与BC段的变化趋势是完全不同的,B点就是一个临界点,并且B点对应的电磁转矩即为电机的最大转矩Tm,B点对应的转差率sm 为临界转差率。

可以证明,产生最大转矩时的临界转差率Sm为

从上两式可见,

●Tm与电源电压U1的平方成正比。

不同U1时的机械特性曲线如图4-15所示。由图可见,对于同一负载转矩T2,当电源电压U1下降时,电动机转速也随之下降。如果电源电压U1继续下降,使负载转矩T2超过电动机的最大转矩Tm时,电动机将停止转动,转速n=0。这时电动机电流马上升高到额定电流的若干倍,电动机将因过热而烧毁,这种现象称为“闷车”或“堵转”。

●最大转矩Tm与转子电阻R2无关,但临界转差率Sm与转子电阻R2成正比。

改变R2能使Sm随之改变,例如增加R2,n=( T em)曲线便向下移动(如图4-16)。

(3)为了保证电动机在电源电压发生波动时,仍能够可靠运行,一般规定最大转矩Tm 应为额定转矩TN的数倍,用λm表示,称为过载系数,即

(4-12)

过载系数λm表示了电动机允许的短时过载运行能力,是异步电动机的一个重要指标。λm越大,电动机适应电源电压波动的能力和短时过载的能力就越强。一般三相异步电动机的过载系数λm为1.8~2.5。

●起动工作点A

电动机起动瞬间,n= 0,s=1,所对应的电磁转矩Tst称为起动转矩。Tst与电源电压U1的平方以及转子电阻R2成正比。

显然,只有在Tst大于负载转矩T2时,电动机才能起动。Tst越大,电动机带负载起动的能力就越强,起动时间也越短。Tst与TN的比值称为起动系数,用Kst表示,即

(4-13)

一般笼形转子异步电动机的Kst约为0.8~2。

由图4-16可见,改变转子电阻R2,可使起动转矩Tst=Tm,这在生产上具有实际的意义。例如绕线转子异步电动机起动时,通过在转子电路中串入适当电阻,不仅可以减小转子电流,还可以起到增加起动转矩的作用。

●理想空载转速点D

曲线与纵坐标的交点即为理想空载转速点D,此时对应的n=n1为同步转速,s=0,电磁转矩T em=0。但实际运行时,由于存在风阻、摩擦等损耗,所以实际转速略低于同步转速n1,故称D点为理想空载转速点。

2、稳定工作区与非稳定工作区

如图4-14所示,机械特性曲线可分为两部分:BD部分(0Sm)称为不稳定区。电动机稳定运转只限于曲线的BD段。电动机在0

如果电动机在稳定运行中,负载阻转矩增加超过了最大转矩,电动机的运行状态将沿着机械特性曲线的BD部分下降越过B点而进入不稳定区,导致电动机停止运转。因此,最大转矩又称崩溃转矩。

由机械曲线可推知:

(1)异步电动机稳定运行的条件是S

(2)如果从空载到满载时转速变化很小,就称该电动机具有硬机械特性。上述表明,三相异步电动机具有硬机械特性。

(3)需要说明的是,上述负载是不随转速而变化的恒转矩负载,如机床刀架平移机构等,它不能在S〉Sm区域稳定运行;但风机类负载,因其转矩与转速的平方成正比,经分

析,可以在S〉Sm区域稳定运行。

正确理解异步电动机电磁转矩的不同表达式

正确理解异步电动机电磁转矩的不同表达式 摘要:电磁转矩是三相异步电动机的最重要的物理量,电磁转矩对三相异步电动机的拖 动性能起着极其重要的作用,直接影响着电动机的起动、调速、制动等性能。正确理解电磁转矩的物理表达式,参数表达式和实用表达式,是正确分析电动机运行特性的关键。正确运用电磁转矩的不同表达式,是正确计算电磁转矩和合理选择电动机的关键。 关键词:理解 电磁转矩 表达式 以交流电动机为原动机的电力拖动系统为交流电力拖动系统。三相异步电动机由于结构简单,价格便宜,且性能良好,运行可靠,故广泛应用于各种拖动系统中。电磁转矩对三相异步电动机的拖动性能起着极其重要的作用,直接影响着电动机的起动、调速、制动等性能,其常用表达式有以下三种形式。 一、电磁转矩的物理表达式 由三相异步电动机的工作原理分析可知,电磁转矩T 是由转子电流I2 与旋转磁场相互作用而产生的,所以电磁转矩的大小与旋转磁通Φ及转子电流的乘积成正比。转子电路既有电阻又有漏电抗,所以转子电流I 2可以分解为有功分C 量I 2OS ?2和无功分量I 2Sin ?2 两部分。因为电磁转矩T 决定了电动机输出的机械功率即有功功率的大小,所以只有电流的有功分量I 2COS ?2才能产生电磁转矩,故电动机的电磁转矩为 T=C T φm I 2COS ?2 (1) 式中,T —电磁转矩(N*m ) φm —每极磁通(Wb ) C T —异步电机的转矩常数 上述电磁转矩表达式很简洁,物理概念清晰,可用于定性分析异步电动机电磁转矩T 与 φm 和I 2 COS ?2之间的关系。 二、电磁转矩的参数表达式 在具体应用时,电流I 2 和COS ?2 都随转差率S 而变化,因而不便于分析异步电动机 的各种运行状态,下面导出电磁转矩的参数表达式。 转子绕组中除了电阻R 2外,也存在着漏感抗X s2,且X s2 =SX 20 ,因此转子每相绕组内的 阻抗为 () 2 202 22 22 22SX R X R Z s +=+= (2) 旋转磁场在转子每相绕组中的感应电动势的有效值为E 2,且E 2=SE 20 , E 20为转子不动时的转子感应电动势,而转子每相绕组的电流 () 220222022 2SE R SE Z E I += = (3)

第四章三相异步电动机试题和答案解析

第四章 三相异步电动机 一、 填空(每空1分) 1. 如果感应电机运行时转差率为s ,则电磁功率,机械功率和转子铜耗之间的比例是 2:P :e Cu P p Ω= 。 答 s :s)(1:1- 2. ★当三相感应电动机定子绕组接于Hz 50的电源上作电动机运行时,定子电流的频率为 ,定子绕组感应电势的频率为 ,如转差率为s ,此时转子绕组感应电势的频率 ,转子电流的频率为 。 答 50Hz ,50Hz ,50sHz ,50sHz 3. 三相感应电动机,如使起动转矩到达最大,此时m s = ,转子总电阻值约为 。 答 1, σσ21X X '+ 4. 。 5. ★感应电动机起动时,转差率=s ,此时转子电流2I 的值 , 2cos ? ,主磁通比,正常运行时要 ,因此起动转 矩 。 答 1,很大,很小,小一些,不大 6. ★一台三相八极感应电动机的电网频率Hz 50,空载运行时转速为735转/分,此时转差率为 ,转子电势的频率为 。当转差率为时,转子的转速为 ,转子的电势频率为 。 答 ,1Hz , 720r/min ,2Hz 7. 三相感应电动机空载时运行时,电机内损耗包括 , , ,和 ,电动机空载输入功率0P 与这些损耗相平衡。 答 定子铜耗,定子铁耗,机械损耗,附加损耗 8. 三相感应电机转速为n ,定子旋转磁场的转速为1n ,当1n n <时为 运行状态;当1n n >时为 运行状态;当n 与1n 反向时为 运行状态。 答 电动机, 发电机,电磁制动 9. 增加绕线式异步电动机起动转矩方法有 , 。 答 转子串适当的电阻, 转子串频敏变阻器 10. — 11. ★从异步电机和同步电机的理论分析可知,同步电机的空隙应比异步电机的空气隙要 ,其原因是 。 答 大,同步电机为双边励磁

电机特性曲线

? ? ? ? ? ? 电气控制与PLC网络教学资源当前位置: 电气控制与PLC网络教学资源> 学习情境> 项目一货物升降机的继电-接触器控制> 正 文 1.1.3三相异步电动机的工作特性 作者: Admin | 来源:| 点击: 517 | 发布时间: 2007-10-07 异步电动机的转矩特性动画演示 一、三相异步电动机的转矩特性 异步电动机的电磁转矩T是由载流导体在磁场中受电磁力的作用而产生的,它使电动机旋转。 式中U1——定子绕组相电压有效值,单位是伏特(V); f1——定子电源频率,单位是赫兹(Hz); s——电动机的转差率;

R2——转子绕组一相电阻,单位是欧姆(Ω); X20——转子不动时一相感抗,单位是欧姆(Ω); C——与电机结构有关的比例常数。 为了分析方便,将异步电动机的电磁转矩T代替电动机的输出转矩T2 由于电动机的转子参数R2及X20是一定的,电源频率f1也是一定的,故当电源电压U1一定时,上式即表明异步电动机的电磁转矩T只与转差率s有关,因此可用函数式T=f(s)表示,称为异步电动机的转矩特性,画出其图象则称为转矩特性曲线,如图1-13所示。 图1-13异步电动机的转矩特性曲线

二、异步电动机的机械特性 1.电动机的额定转矩的实用计算式 旋转机械的机械功率等于转矩和转动角速度的乘积,对于电动机而言,就有 P2=T2Ω(1-4) 当电动机的输出转矩T2用牛·米(N·m)作单位,旋转角速度Ω用弧度/秒(rad/s)作单位时,输出功率P2的单位是瓦特。 在电动机中计算转矩时输出功率P2的单位是千瓦(kW),转速n的单位是转/分(r/min),所以可以将计算公式简化,如在额定状态下转矩公式为 式中T N——电动机的额定转矩,单位是牛·米(N·m); P N——电动机的额定功率,单位是千瓦(kW); n N——电动机的额定转速,单位是转/分(r/min).

YLJ系列力矩电机简介

YLJ系列力矩电机简介 YLJ、YDLJ系列力矩三相异步电动机是一种具有软机械特性和宽调速的范围的 特种电机。当负载增加时,电动机的转速能自动的随之降低,而输出力矩增加,保持与负载平衡。力矩电机的堵转转矩高,堵转电流小,能承受一定时间的堵转运行。由于转子电阴高,损耗大,所产生的热量也大,特别在低速运行和堵转时更为严重,因此,电机在后端盖上装有独立的轴流或离心式风机(输出力矩较小100机座号及以下除外),作强迫通风冷却,力矩电机配以可控硅控制装置,可进行调压调速,调速范围可达1:4,转速变化率≤10%。本系列电机的特性使其适用于卷绕,开卷、堵转和调速等场合及其他用途,被广泛应用于纺织、电线电缆、金属加工、造纸、橡胶、塑料以及印刷机械等工业领域。 应用范围 一、卷绕: 在电线电缆、纺织、金属加工、造纸等加工时,卷绕是一个十分重要的工序。产品卷绕时卷筒的直径逐渐增大,在整个过程中保持被卷产品的张力不变十分重要,因为张力过大会将线材的线径拉细甚至拉断,或造成产品的厚薄不均匀,而张力过小则可造成卷绕松驰。为使在卷绕过程中张力保持不变,必须在产品卷绕到卷盘上的盘径增大时驱动卷筒的电机的输出力矩也增大,同时为保持卷绕产品线速度不变,须使卷盘的转速随之降低,力矩电动机的机械特性恰好能满足这一要求。图一、为卷绕工序示意图、典型力矩电机转矩-转速特性与卷绕张力的匹配曲线。在力矩电机1/3~2/3N0转速范围内(卷径比1:2)二条曲线相交的阴影部份,卷绕特性最为理想,这时P=F·V=常数即T·n=常数(P:功率、F:张力、V线速度、T:力矩、n:电机转速)。对于卷径比1:3、1:4或更大时,在一定程度上也能达到控制张力的要求,只是精度稍差,对卷径比大且张力控制精度要求较高的场合,可选用双速或三速力矩电机来达到。 通常每台设备生产的品种和规格较多,在材料和规格变化时,所要求的张力和转速也不同,这时可利用调压装置调节电机端电压,即可达到增减电机输出力矩的目的。图二、为不同电压力矩电机特性曲线族,此时输出力矩与电压的关系为 TαU2。 力矩电机卷绕时具有优点: 1.从空盘到满盘过程中张力保持稳定。 2.张力调节方便,一次调节后能正确重复。 3.结构可靠,维护方便,控制,操作简便, 成本低。 二、开卷(制动恒功率特性) 开卷亦称松卷、放卷、放线等,见图三。在工业生产中,有时需要把卷绕在滚筒上的产品输送到下一个工序。在输送过程中,要求施于产品一个与传动方向相反的张力,同时要求随着筒径的变化,而保持产品传动的线速度和反张力恒定,这就要求电机具有制动恒功率特性。利用力矩电机在制动状态的机械特性,见图四,把已成卷的产品松开后再加工,可防止产品在开卷过程中因时松时紧而影响质量。其原理同于卷绕时一样分析。 三、无级调速 力矩电机的机械特性很软,当负载增加时,电机的转速降低,输出力矩增加,而输出力矩是正比于电压的平方。如果负载固定,则电机的转速将随电压变化而变化,如图五所示。因此在负载恒定的装置上,只要通过调压装置改变电机的输入

电机输出扭矩计算公式

电动机输出转矩 转矩(英文为torque ) 使机械元件转动的力矩称为转动力矩,简称转矩。机械元件在转矩作用下都会产生一定程度的扭转变形,故转矩有时又称为扭矩。转矩是各种工作机械传动轴的基本载荷形式,与动力机械的工作能力、能源消耗、效率、运转寿命及安全性能等因素紧密联系,转矩的测量对传动轴载荷的确定与控制、传动系统工作零件的强度设计以及原动机容量的选择等都具有重要的意义。此外,转矩与功率的关系T=9549P/n 电机的额定转矩表示额定条件下电机轴端输出转矩。转矩等于力与力臂或力偶臂的乘积,在国际单位制(SI)中,转矩的计量单位为牛顿?米(N?m),工程技术中也曾用过公斤力?米等作为转矩的计量单位。电机轴端输出转矩等于转子输出的机械功率除以转子的机械角速度。直流电动机堵转转矩计算公式TK=9.55KeIK 。 三相异步电动机的转矩公式为: S R2 M=C U12 公式[2 ] R22+(S X20)2 C:为常数同电机本身的特性有关;U1 :输入电压; R2 :转子电阻;X20 :转子漏感抗;S:转差率 可以知道M∝U12 转矩与电源电压的平方成正比,设正常输入电压时负载转矩为M2 ,电压下降使电磁转矩M下降很多;由于M2不变,所以M小于M2平衡关系受到破坏,导致电动机转速的下降,转差率S上升;它又引起转子电压平衡方程式的变化,使转子电流I2上升。也就是定子电流I1随之增加(由变压器关系可以知道);同时I2增加也是电动机轴上送出的转矩M又回升,直到与M2相等为止。这时电动机转速又趋于新的稳定值。 转矩的类型 转矩可分为静态转矩和动态转矩。 静态转矩是值不随时间变化或变化很小、很缓慢的转矩,包括静止转矩、恒定转矩、缓变转矩和微脉动转矩。 静止转矩的值为常数,传动轴不旋转; 恒定转矩的值为常数,但传动轴以匀速旋转,如电机稳定工作时的转矩; 缓变转矩的值随时间缓慢变化,但在短时间内可认为转矩值是不变的; 微脉动转矩的瞬时值有幅度不大的脉动变化。 动态转矩是值随时间变化很大的转矩,包括振动转矩、过渡转矩和随机转矩三种。振动转矩的值是周期性波动的;过渡转矩是机械从一种工况转换到另一种工况时的转矩变化过程;随机转矩是一种不确定的、变化无规律的转矩。 根据转矩的不同情况,可以采取不同的转矩测量方法。 转矩=9550*功率/转速 同样 功率=转速*转矩/9550 平衡方程式中:功率的单位(kW);转速的单位(r/min);转矩的单位(N.m);9550是计算系数。

弱磁运行下异步电动机调速系统的转矩及功率特性

ISSN 1000-0054CN 11-2223/N 清华大学学报(自然科学版)J T sing hua Un iv (Sci &Tech),2011年第51卷第7期 2011,V o l.51,N o.71/26873-878 弱磁运行下异步电动机调速系统的转矩及功率特性 杨 耕1, 郑 伟1, 陆 城2, 陈伯时3 (1.清华大学自动化系,北京100084;2.台达能源技术(上海)有限公司,上海201209; 3.上海大学机电学院,上海200072) 收稿日期:2010-06-04 基金项目:国家自然科学基金项目(60674096)作者简介:杨耕(1957)),男(汉),四川,教授。 E -mail:yan ggeng@mail.tsin https://www.360docs.net/doc/2219040710.html, 摘 要:在弱磁调速下,异步电动机变频系统电磁转矩控制的非线性特性、以及系统最大输出电压和电流的限制,使得转矩和功率控制比较复杂。该文分析了弱磁调速区间内最大电磁转矩与电动机参数、系统电压电流约束之间的关系,给出了改善控制性能所需的系统最大电磁转矩和最大功率随定子同步频率以及最大电流约束变化的定量关系。实物实验验证了这些特性。 关键词:感应电动机;弱磁控制;转矩特性;弱磁区域中图分类号:T M 301;T M 346文献标志码:A 文章编号:1000-0054(2011)07-0873-06 Torque and power characteristics of induction motor drive in flux weakening region YANG G en g 1,ZHE NG Wei 1,LU Chen g 2,CH EN Boshi 3(1.Department of Automation,T singhua University, Beijin g 100084,China; 2.Delta Electronics (Shanghai)Co.,Ltd. Shanghai 201209,China;3.S chool of Mechatronics Engineering and Automation, S hanghai University,Shanghai 200072,China)Abstract:In the flux -weakening operation regi on of an inverter -induction m otor drive,th e control of electromagnetic torque (EM T)and pow er becomes complicated,due to the nonlinear characteris tic of th e EM T and output voltage/current con strain ts of the drive.For th e con trol performance im provement,this paper describ es th e fun ction of th e max imum EM T about the m otor param eters an d th e voltage/current cons traints,and pres ents th e algorithms of th e m aximum E M T and th e electromotive pow er along w ith the variation of stator frequ ency as w ell as the current limitations.T est res ults verify the algorithm s.Key words:induction m otor; flux w eak ening control; tor qu e characteristic;flux w eakening region 一般认为,异步电动机在额定频率以上的弱磁运行具有恒功率调速的特性[1-3] ,但在交流变频器驱动电机运行时,由于变频器最大输出电压和最大输出电流的限制(以下简称为电压电流限制),此时的 调速特性远比一般所述的/恒功率特性0复杂。然而,从系统实现的角度出发,如果采用具有转矩控制内环的结构,由于弱磁运行时电磁转矩控制环和磁 链控制环之间不再解耦,系统需要实时求取电压电流限制下随速度变化的电磁转矩指令以及励磁电流指令。此时的系统控制框图可用图1表示,励磁电流指令的求取如图中阴影部分所示,需要求解一个由多个变量构成的超越方程。由于算法十分复杂, 基于现有的实时控制器难以实现。 图1 具有转矩闭环的典型弱磁控制方法示意 迄今,韩国学者Kim 和Sul 提出的转矩最大化的弱磁调速方法[4-5]最具影响力。该方法的基本结构仍然同图1,其基本思想是:假定调速过程中弱磁变化缓慢,从而可以基于转子磁场定向条件下的电机模型分析问题;首先基于系统电压、电流限制给出弱磁调速范围内对应同步频率所能产生最大电磁转矩的励磁电流曲线;然后在实时系统中依此曲线给出励磁电流指令,同时根据最大电流限制和励磁电流对转矩电流指令进行限幅。该方法避免了超越方程的实时求解,也保证了在缓慢弱磁过程中系统对最大电流和最大母线电压最大程度地利用,因

三相异步电动机的机械特性习题

10.3 节 一、填空题 1、异步电动机的电磁转矩是由和共同作用产生的。 2、三相异步电动机最大电磁转矩的大小与转子电阻r2 值关,起动转矩的大小与转子电阻r2 关。 (填有无关系) 3、一台线式异步电动机带恒转矩负载运行,若电源电压下降,则电动机的旋转磁场转速,转差率,转速,最大电磁转矩,过载能力,电磁转矩。 4、若三相异步电动机的电源电压降为额定电压的0.8 倍,则该电动机的起动转矩T st =?T stN 。 5、一台频率为f1= 60Hz 的三相异步电动机,接在频率为50Hz 的电源上(电压不变),电动机的最大转矩为原来的,起动转矩变为原来的。 6、若异步电动机的漏抗增大,则其起动转矩,其最大转矩。 7、绕线式异步电动机转子串入适当的电阻,会使起动电流,起动转矩。 二、选择题 1、设计在f1= 50Hz 电源上运行的三相异步电动机现改为在电压相同频率为60Hz 的电网上,其电动机的()。 (A)T st 减小,T max 减小,I st 增大(B)T st 减小,T max 增大,I st 减小 (C)T st 减小,T max 减小,I st 减小(D)T st 增大,T max 增大,I st 增大 2、适当增加三相绕线式异步电动机转子电阻r2时,电动机的()。 (A)I st 减少, T st 增加, T max 不变, s m 增加(B)I st 增加, T st 增加, T max 不变, s m 增加 (C)I st 减少, T st 增加, T max 增大, s m 增加(D)I st 增加, T st 减少, T max 不变, s m 增加 3、一台运行于额定负载的三相异步电动机,当电源电压下降10%,稳定运行后,电机的电磁转矩()。(A)T em =T N (B)T em = 0.8T N (C)T em = 0.9T N (D)T em >T N 4、一台绕线式异步电动机,在恒定负载下,以转差率s 运行,当转子边串入电阻r = 2r2',测得转差率将为 ()(r 已折算到定子边)。 (A)等于原先的转差率s (B)三倍于原先的转差率s (C)两倍于原先的转差率s (D)无法确定 5、异步电动机的电磁转矩与( )。 (A)定子线电压的平方成正比;(B)定子线电压成正比; (C)定子相电压平方成反比;(D)定子相电压平方成正比。 6、一般电动机的最大转矩与额定转矩的比值叫过载系数,一般此值应( )。 (A)等于1 (B)小于1 (C)大于1 (D)等于0 三、问答题

相异步电动机_习题参考答案

三相异步电动机习题参考 1 在额定工作情况下的三相异步电动机,已知其转速为960r/min ,试问电动机的同步转速是多少?有几对磁极对数?转差率是多大? 解:∵ n N =960(r/min) ∴n 1=1000(r/min) p=3 04.01000 960100011=-=-=n n n s N 2 有一台六极三相绕线式异步电动机,在f=50HZ 的电源上带额定负载动运行,其 转差率为,求定子磁场的转速及频率和转子磁场的频率和转速。 解:六极电动机,p =3 定子磁场的转速即同步转速n 1=(60×50)/3=1000(r/min) 定子频率f 1=50Hz 转子频率f 2=sf 1=×50=1Hz 转子转速n =n 1(1-s )=1000=980(r/min) 3 Y180L-4型电动机的额定功率为22kw ,额定转速为1470r/min ,频率为50HZ ,最大电磁转矩为。 试求电动机的进载系数入? 解:1431470 22955095502=?=?=N N N n P T 2.2143 6.314===N m T T λ 4 已知Y180M-4型三相异步电动机,其额定数据如下表所示。 求:(1)额定电流I N ; (2)额定转差率S N ; (3)额定转矩T N ;最大转矩T M 、启动转矩Tst 。 解:(1)额定电流I N ==N N N N U P η?cos 31=91.086.03803105.18????=(A) (2)额定转差率S N =(1500-1470)/1500=

(3)额定转矩T N =9550×1470=120 最大转矩T M =×120=264 启动转矩Tst=×120=240 5 Y225-4型三相异步电动机的技术数据如下:380v 、50HZ 、△接法、定子输入功率P 1N =、定子电流I 1N =、转差率S N =,轴上输出转矩T N =,求:(1)电动机的转速n 2,(2)轴上输出的机械功率P 2N ,(3)功率因数N ?cos (4)效率ηN 。 解:(1)从电动机型号可知电动机为4极电机,磁极对数为p =2,由 1 21n n n s -= 所以 1480)013.01(1500)1(12=-?=-=s n n (r/min) (2)∵N N m n P T 29550? = ∴45955014804.29095502=?==N m N n T P (KW ) (3) ∵N L L N Cos I U P ?3 1= ∴88.02 .8438031075.4833 1=???==L L N N I U P Cos ? (4)923.075.484512===N N N P P η 6 四极三相异步电动机的额定功率为30kw ,额定电压为380V ,三角形接法,频率为50HZ 。在额定负载下运动时,其转差率为,效率为90%,电流为,试求:(1)转子旋转磁场对转子的转速;(2)额定转矩;(3)电动机的功率因数。 解:(1)转子旋转磁场对转子的转速n 2=Sn 1=×1500=30 (r/min) (2)额定转矩T N =9550×30/1470= (3)电动机的功率因数88.09 .05.573803103033 =????==N L L N N I U P Cos η? 7 上题中电动机的T st /T N =,I st /I N =7,试求:(1)用Y-△降压启动时的启动电流和启动转矩;(2)当负载转矩为额定转矩的60%和25%时,电动机能否启动? 解:(1)用Y-△降压启动时的启动电流I ST =7×3=134(A) 用Y-△降压启动时的启动转矩T st=×3=(Nm) (2)因为 T st=, 当负载转矩为额定转矩的60%时, 由于T st 小于负载转矩,电动机不能启动。 当负载转矩为额定转矩的25%时,由于T st 大于负载转矩,电动机可以启动。

直流力矩电动机

1.3 直流力矩电动机 1.3.1 概述 在某些自动控制系统中,被控对象的运动速度相对来说是比较低的。例如某一种防空雷达天线的最高旋转速度为90°/s,这相当于转速15 r/min。一般直流伺服电动机的额定转速为1500 r/min或3000 r/min,甚至6000 r/min,这时就需要用齿轮减速后再去拖动天线旋转。但是齿轮之间的间隙对提高自动控制系统的性能指标很有害,它会引起系统在小范围内的振荡和降低系统的刚度。因此,我们希望有一种低转速、大转矩的电动机来直接带动被控对象。 直流力矩电动机就是为满足类似上述这种低转速、大转矩负载的需要而设计制造的电动机。它能够在长期堵转或低速运行时产生足够大的转矩,而且不需经过齿轮减速而直接带动负载。它具有反应速度快、转矩和转速波动小、能在很低转速下稳定运行、机械特性和调节特性线性度好等优点。特别适用于位置伺服系统和低速伺服系统中作执行元件,也适用于需要转矩调节、转矩反馈和一定张力的场合(例如在纸带的传动中)。 1.3.2 结构特点 直流力矩电动机的工作原理和普通的直流伺服电动机相同,只是在结构和外形尺寸的比例上有所不同。一般直流伺服电动机为了减少其转动惯量,大部分做成细长圆柱形。而直流力矩电动机为了能在相同的体积和电枢电压下产生比较大的转矩和低的转速,一般做成圆盘状,电枢长度和直径之比一般为0.2 左右;从结构合理性来考虑,一般做成永磁多极的。为了减少转矩和转速的波动,选取较多的槽数、换向片数和串联导体数。 总体结构型式有分装式和内装式两种,分装式结构包括定子、转子和刷架三大部件,机壳和转轴由用户根据安装方式自行选配;内装式则与一般电机相同,机壳和轴已由制造厂装配好。 图1 - 28 直流力矩电动机的结构示意图 1.3.3 为什么直流力矩电动机转矩大、转速低 如上所述,力矩电动机之所以做成圆盘状,是为了能在相同的体积和控制电压下产

电机学概念以及公式总结

一、直流电机 A. 主要概念 1. 换向器、电刷、电枢接触压降2U b 2. 极数和极对数 3. 主磁极、励磁绕组 4. 电枢、电枢铁心、电枢绕组 5. 额定值 6. 元件 7. 单叠、单波绕组 8. 第1节距、第2节距、合成节距、换向器节距 9. 并联支路对数a 10. 绕组展开图 11. 励磁与励磁方式 12. 空载磁场、主磁通、漏磁通、磁化曲线、每级磁通 13. 电枢磁场 14. (交轴、直轴)电枢反应及其性质、几何中性线、物理中性线、移刷 15. 反电势常数C E、转矩常数C T 16. 电磁功率P em 电枢铜耗p Cua 励磁铜耗p Cuf 电机铁耗p Fe 机械损耗p mec 附加损耗p ad 输出机械功率P2 可变损耗、不变损耗、空载损耗

17. 直流电动机(DM )的工作特性 18. 串励电动机的“飞速”或“飞车” 19. 电动机的机械特性、自然机械特性、人工机械特性、硬特性、软特性 20. 稳定性 21. DM 的启动方法:直接启动、电枢回路串电阻启动、降压启动 22. DM 的调速方法:电枢回路串电阻、调励磁、调端电压 23. DM 的制动方法:能耗制动、反接制动、回馈制动 B. 主要公式: 发电机:P N =U N I N (输出电功率) 电动机:P N =U N I N ηN (输出机械功率) 反电势: 60E a E E C n pN C a Φ== 电磁转矩: em a 2T a T T C I pN C a Φπ== 直流电动机(DM )电势平衡方程:a a E a a U E I R C Φn I R =+=+ DM 的输入电功率P 1 : 12 ()()a f a f a a a f a a a f em Cua Cuf P UI U I I UI UI E I R I UI EI I R UI P p p ==+=+=++=++=++ 12em Cua Cuf em Fe mec ad P P p p P P p p p =++=+++ DM 的转矩方程:20d d em T T T J t Ω --= DM 的效率:21112 100%100%(1)100%P P p p P P P p η-∑∑= ?=?=-?+∑

第二节 三相异步电动机的电磁转矩和机械特性

第二节三相异步电动机的电磁转矩和机械特性 三相异步电动机转轴上产生的电磁转矩是决定电动机输出的机械功率大小的一个重要因素,也是电动机的一个重要的性能指标。 一、三相异步电动机的转矩特性 1、电磁转矩的物理表达式 三相异步电动机的工作原理告诉我们,电磁转矩是旋转磁场与转子绕组中感应电流相互作用产生的,设旋转磁场每极的磁通量用Φ表示,它等于气隙中磁感应强度平均值与每极面积的乘积。Φ表示了旋转磁场的强度。设转子电流用I2表示。根据电磁力定律,电磁转矩T em应与Φ成正比、与I2也成正比,即T em∝Φ·I2。此外转子绕组是一个感性电路,转子电流I2滞后于感应电动势E2,它们之间的相位差角是。考虑到电动机的电磁转矩对外做机械功,与有功功率相对应。因此电磁转矩T em还与转子电路的功率因数cos有关,即与转子电流的有功分量I2cos(与E2同相位的电流分量)成正比。 总结以上分析,可列出异步电动机的电磁转矩方程 式中KT是一个与电动机本身结构有关的系数。该公式是分析异步电动机转矩特性的重要依据。 2、转矩特性 电磁转矩与转差率之间的关系T em=(S)称为电动机的转矩特性。可以推得 式中KT’、转子电阻R2、转子不动时的感抗X20都是常数,且X20远大于R2。由于上式用电机定、转子绕组中的电阻、电抗等参数反映电磁转矩T em和转差率S之间的关系,所以上式又称之为电磁转矩的参数表达式。 由转矩的表达式(4-5)可知,转差率一定时,电磁转矩与外加电压的平方成正比,即T em∝U12。因此,电源电压有效值的微小变动,将会引起转矩的很大变化。 当电源电压U1为定值时,电磁转矩T em是转差率S的单值函数。图4-13画出了异步电动机的转矩特性曲线。

三相异步电机的转矩特性与机械特性(精)

三相异步电机的转矩特性与机械特性 1.电磁转矩(简称转矩) 异步电动机的转矩T 是由旋转磁场的每极磁通Φ与转子电流I 2相互作用而产生的。电磁转矩的大小与转子绕组中的电流I 及旋转磁场的强弱有关。 经理论证明,它们的关系是: 22cos T T K I ?=Φ (5-4) 其中 T 为电磁转矩 K T 为与电机结构有关的常数 Φ为旋转磁场每个极的磁通量 I 2为转子绕组电流的有效值 ?2为转子电流滞后于转子电势的相位角 若考虑电源电压及电机的一些参数与电磁转矩的关系,(5-4)修正为: 22122220()T sR U T K R sX '=+ (5-5) 其中 T K '为常数 U 1为定子绕组的相电压 S 为转差率 R 2为转子每相绕组的电阻 X 20为转子静止时每相绕组的感抗 由上式可知,转矩T 还与定子每相电压U 1的平方成比例,所以当电源电压有所变动时,对转矩的影响很大。此外,转矩T 还受转子电阻R 2的影响。图4-15为异步电动机的转矩特性曲线。 2.机械特性曲线 图 5-5 三相异步电动机的机械特性曲线 在一定的电源电压U 1和转子电阻R 2下,电动机的转矩T 与转差率n 之间的n n m (a) T =f (s )曲线

关系曲线T=f(s)或转速与转矩的关系曲线n=f(T),称为电动机的机械特性曲线,它可根据式(5-4)得出,如图5-5所示。 在机械特性曲线上我们要讨论三个转矩: 1).额定转矩T N 额定转矩T N 是异步电动机带额定负载时,转轴上的输出转矩。 29550N P T n = (5-6) 式中P 2是电动机轴上输出的机械功率,其单位是瓦特,n 的单位是转/分,T N 的单位是牛·米。 当忽略电动机本身机械摩擦转矩T 0时,阻转矩近似为负载转矩T L ,电动机作等速旋转时,电磁转矩T 必与阻转矩T L 相等,即T = T L 。额定负载时,则有T N = T L 。 2).最大转矩T m T m 又称为临界转矩,是电动机可能产生的最大电磁转矩。它反映了电动机的过载能力。 最大转矩的转差率为S m ,此时的S m 叫做临界转差率,见图5-5(a ) 最大转矩Tm 与额定转矩T N 之比称为电动机的过载系数λ,即 λ= Tm / T N 一般三相异步的过载系数在1.8~2.2之间。 在选用电动机时,必须考虑可能出现的最大负载转矩,而后根据所选电动机的过载系数算出电动机的最大转矩,它必须大于最大负载转矩。否则,就是重选电动机。 3).起动转矩T st , T st 为电动机起动初始瞬间的转矩,即n=0,s =1时的转矩。 为确保电动机能够带额定负载起动,必须满足:T st >T N ,一般的三相异步电动机有T st /T N =1~2.2。 3.电动机的负载能力自适应分析 电动机在工作时,它所产生的电磁转矩T 的大小能够在一定的范围内自动调整以适应负载的变化,这种特性称为自适应负载能力。 2 L T n S I T ↑?↓?↑?↑?↑直至新的平衡。此过程中,2I ↑时,1 I ↑? 电源提供的功率自动增加。

交流力矩电机软机械特性的应用

交流力矩电机软机械特性的应用 仪化瓶片生产中心钱伟 摘要:针对瓶片一装置自清洗系统的工作性质及对其驱动部分的要求,简要探讨了力矩电机软机械特性,提出了力矩电机的选型公式,讨论了力矩电机的最佳工作状态及合理的运用。 关键词:机械特性转矩力矩 前言 在我中心瓶片一装置CP生产线上,自清洗系统运行的正常与否,对生产起着十分重要的作用,自清洗系统如不能正常运行,就会影响真空系统,引起生产的不稳定。以往我们利用直流力矩电机做为其驱动装置,但由于直流力矩电机输出转矩小,自身损耗大(电刷磨损十分厉害),且运行环境不适合,故使用寿命很短,在短短的半年内已报废了四台,在研究了交流力矩电机的机械特性后,我认为其十分适合做为自清洗系统的驱动装置。 1、概述 力矩电机是低转速、大转矩、在精度和准确性要求高的自动控 制系统中直接拖动的一类伺服电动机,也有交直流两大类之分。 三相力矩异步电机,是因其容量以堵转时能在轴上输出转矩(公斤·米)标志而得名。它具有软的机械特性,在负载转矩增加时,能自动降低转速,并增加输出转矩。根据用途和相应的机械特性,可分为卷绕特性(恒功率)和导辊特性(恒转矩)两大类。它是异步电机的一种特殊应用,在结构上和鼠笼式电机有一定的区别,定子绕组和鼠笼电机相同,转子导条和端环是采用高电阻的H62黄铜组成或采用实心转子,在设计上气隙密度较一般鼠笼式电机为小(为鼠笼式电

机的0.3~0.8),因此形成了与普通鼠笼式电机不同的机械特性曲线。气隙磁密低和转子高电阻率又使电机可堵转工作而不被烧坏,有高转矩特性,且能在低于同步转速的任意转速下运行,传动的力能指标低,一般效率和功率因数都小于0.5。 2、力矩电机机械特性 图A中1、2曲线分别是普通鼠笼式电机和力矩电机的机械特性。 M M max max0 (转速) 图 A 图A中:1—一般电机2—力矩电机 n0—同步转速M max—力矩电机堵转转矩 n max—一般电机在最大转矩是的转速 由图A中可看出,对于曲线1只能在稳定区n0—n max区间内运行,也就是说,普通电机的稳定范围很窄。而曲线2可在整个曲线范围内运行,其最大力矩M max出现在n=0处。从曲线还可以看出力矩电机的机械特性很软,当输出负载转矩增大时,电机的转速能自动降低,负载减小时,电机的转速又能自动升高。 一装置所选用的力矩电机属恒功率变速电机,其输出功率P的表

电动机的额定转矩的计算

筑龙网 W W W .Z H U L O N G .C O M 电动机的额定转矩的计算 在额定电压、额定负载下,电动机转轴上产生的电磁转矩称为异步电动机的额定转矩,用T。表示。其数值的多少电动机的铭牌上不标注,一般电动机技术数据资料中也没有。要想知道其大小,可用下述两公式近似计算: 式中 P e ——电动机的额定功率,kW; n e ——电动机的额定转速,r/min。 从上述两式都可看出,额定功率相同的电动机,转速低,转矩就大;又由于转速与磁极数成反比,所以,极数多,转速就低,转矩也 就大。 公式(3—22)和式(3—23)中的电动机的额定功率P e 和额定转速n e ,在电动机的铭牌上均有标注。计算时,需用系数9550或975去除以4或3位数的转速值竹。,既麻烦又费时,并且计算结果也是近似值。电工在实际工作中所要求知的电动机额定转矩,也是近似值。为此,我们看公式(3—23):T e ≈975P e /n e 中的系数975,它很近似地等于6极电动机的额定转速,旧型号J81—6型、28kW;JO 2—82—6型、40kW 电动机及Y200L 一6型、30kW 电动机的额定转速就是975(r/rain)。且糸数975和1000的差是25,25与1000的比是2.5%,恰是电动机转速与旋转磁场转速的转差率l%~6%中间值略偏小些。故将系数

筑龙网 W W W .Z H U L O N G .C O M 975变换为1000,即60f/(p/2),这时n e 近似等于60f/(p/2),则公式(3—23)T e ≈975P e /n e ≈pP e /6。即: 式中 p——电动机的磁极数。 公式(3—24)电动机的额定转矩的单位是千克力米(kgf·m),1kgf·m=9.80665N·m≈10N·m,公式(3—22)和式(3—23)两系数9550与975的关系是9550÷975=9.79≈9.8≈10。这样得出近似公式: 公式(3—25)就是已知电动机容量和磁极数,求算其额定转矩的计算式,其口诀为: 电动机额定转矩,十倍容量磁极数。 三数之积除以六,单位采用牛顿米。 从上述公式(3—24)和式(3—25)可看出,6极电动机的额定转矩极易计算,单位用千克力·米表示时,其数值就是电动机的额定功率千瓦数;若用法定单位牛顿·米,则是10倍额定功率千瓦数。由此可看出公式(3—23)的计算系数975与表3—3所示部分6极异步电动机 的额定转速数值近似相等。故得简算口诀: 电动机额定转矩,六极电机较特殊。 用千克力米表示,电机容量千瓦数。 法定单位牛顿米,千瓦数值添个零。

第四章三相异步电动机试题和答案解析

第四章 三相异步电动机 一、 填空(每空1分) 1. 如果感应电机运行时转差率为s ,则电磁功率,机械功率和转子铜耗之间的比例是 2:P :e Cu P p Ω= 。 答 s :s)(1:1- 2. ★当三相感应电动机定子绕组接于Hz 50的电源上作电动机运行时,定子电流的频率为 ,定子绕组感应电势的频率为 ,如转差率为s ,此时转子绕组感应电势的频率 ,转子电流的频率为 。 答 50Hz ,50Hz ,50sHz ,50sHz 3. 三相感应电动机,如使起动转矩到达最大,此时m s = ,转子总电阻值约为 。 答 1, σσ21X X '+ 4. ★感应电动机起动时,转差率=s ,此时转子电流2I 的值 , 2cos ? ,主磁通比,正常运行时要 ,因此起动转矩 。 答 1,很大,很小,小一些,不大 5. ★一台三相八极感应电动机的电网频率Hz 50,空载运行时转速为735转/分,此时转差率为 ,转子电势的频率为 。当转差率为时,转子的转速为 ,转子的电势频率为 。 答 ,1Hz , 720r/min ,2Hz 6. 三相感应电动机空载时运行时,电机内损耗包括 , , ,和 ,电动机空载输入功率0P 与这些损耗相平衡。 答 定子铜耗,定子铁耗,机械损耗,附加损耗 7. 三相感应电机转速为n ,定子旋转磁场的转速为1n ,当1n n <时为 运行状态;当1n n >时为 运行状态;当n 与1n 反向时为 运行状态。

答 电动机, 发电机,电磁制动 8. 增加绕线式异步电动机起动转矩方法有 , 。 答 转子串适当的电阻, 转子串频敏变阻器 9. ★从异步电机和同步电机的理论分析可知,同步电机的空隙应比异步电机的空气隙要 ,其原因是 。 答 大,同步电机为双边励磁 10. ★一台频率为 160Hz f =的三相感应电动机,用在频率为Hz 50的电源上(电压不变),电动机的最大转矩为原来的 ,起动转矩变为原来的 。 答 265??? ??,2 65?? ? ?? 二、 选择(每题1分) 1. 绕线式三相感应电动机,转子串电阻起动时( )。 A 起动转矩增大,起动电流增大; B 起动转矩增大,起动电流减小; C 起动转矩增大,起动电流不变; D 起动转矩减小,起动电流增大。 答 B 2. 一台50Hz 三相感应电动机的转速为min /720r n =,该电机的级数和同步转速为 ( )。 A 4极,min /1500r ; B 6极,min /1000r ; C 8极,min /750r ; D 10极,min /600r 。 答 C 3. ★笼型三相感应电动机的额定状态转速下降%10,该电机转子电流产生的旋转磁动势 相对于定子的转速( )。 A 上升 %10; B 下降%10; C 上升 %)101/(1+; D 不变。 答 D 4. 国产额定转速为min /1450r 的三相感应电动机为( )极电机。

电机转矩计算

第三章 交流笼型电动机软起动设备的工程应用 3.1 交流电动机软起动参数计算基础 3.1.1 交流电动机软起动转矩平衡方程 交流电动机软起动转矩平衡方程也称电动机惯性系统运动方程。 当负载转矩为M L ,电机转速额定值为N 时,电动机惯性系统运动方程为 M B = · · = · (kg ·m) (3-1) 式中M B 加速转矩=M M — M L (kg — m); M M 电机转矩 (kg — m); M L 负载转矩 (kg — m); GD 2电机飞轮转矩+换算到电机轴上的负载飞轮转矩; N 转速(转/分); T 时间(秒); g 重力加速度m 2/s 。 3.1.2 加速、减速时间的确定 由式3-1可知由于由零速加速至速度N 所用的时间t t = ∫N (3-2) 根据式3-2,如能给出加速转矩M B ,则能求出加速时间t 加,而若给出减速转矩,则能求出减速时间t 减。若计算式3-2积分时,以最简单的情况,当阻力矩M L =常量,GD 2 为常量,则 t = (3-3) GD 2 4g 2Л 60 dN dt GD 2 375 dN dt GD 2 375 (M -M C ) (N -0). GD 2 375M B dN dt O

实际上考虑到转矩的变动,转矩M 用其平均值给出。 下面举例说明: 例一:一传送带的传动电机3.7KW,四极电机,归算到电机轴上的转动总惯量GD 2=0.212kg ·m 2,负载转矩最大M Lmax =1.5kg ·m ,最小负载转矩M Lmin =1.2kg ·m ;求电机加、减速时间。 解:求取速度变化差ΔN (其中0.03为转差率) ΔN = (1-0.03)-0 =1450转/分 求取电机电磁转矩M M M M = =2.49kg ·m. 求取加速时间 t 加= =1.07秒 其中系数1.1为实际整定加速系数。 求取减速时间t 减 t 减= =0.13秒 其中系数0.2为减速系数 显然本例讨论的是负载转矩为恒值常数。而对平方转矩负载,可见下例。 例二:平方转矩下的加减速时间计算 由于平方转矩的性质,负载转矩随速度大幅度变化,仅用平均加、减速转矩做为加速时的做功转矩,是不合适。为此提出下面公式: 加速时间t 加= (秒) (3-4) 其中M Amin 最小加速转矩(kg ·m) N max 最高转速(转/分) 减速时间t 减 120×50 4 975×3.7 1450 0.212×1450 375×(2.06×1.1-1.5) GD 2 N max 375?M Amin GD 2 N max 0.212×1750 375(2.06×0.2+1.2)

相关文档
最新文档