命题逻辑

合集下载

逻辑学:命题逻辑

逻辑学:命题逻辑
2018年8月17日星期五 7
第二章 命题逻辑
第二节 复合命题及其推理
负命题
负命题由否定联结词(如“并非”)联结支命题而形成的复合命 题。例如: (1)并非选修逻辑的学生都是文科生。 (2)这个班的学生不都学英语。 (3)如果它是三角形,则内角和等于180°,这个观点不对。 注:负命题的支命题可以是简单命题,也可以是复合命题。
20语句
任何命题都是通过语句来表达的,但语句和命题并非一一对应:
首先,有的语句不能直接表达命题,如: •(1)西南大学在重庆吗? •(2)请把门关上! 一般来讲:陈述句与反诘句可以直接表达命题。 其次,同一命题可以用不同的语句来表达,如: “所有的鸟都会飞”与“没有鸟不会飞”表达了相同的命题。 此外,同一命题可用不同的民族语言的语句来表达。 再次,同一语句,可以表达不同的命题,如: 小张将书还给小王,因为他要回家了。
真值表的作用
•p •T •F •¬p F T
根据这个真值表,也可以给f(p)=p这个一元真值函数作如下定义: p为真当且仅当p为假; p为假当且仅当p为真。
2018年8月17日星期五
10
负命题
根据负命题的逻辑性质,可对¬p再否定得到¬¬p,其真值与 p相同,真值表如下:
•p •T •F •¬p •F •T •¬¬p •T •F
2018年8月17日星期五 4
命题的分类
简单命题
非模态命题 命 题
模态命题 复合命题
2018年8月17日星期五
5
命题分析的层次
将联结词所联结的命题作为一个完整的单位来看待


——研究关于联结词的推理(命题逻辑)
——研究关于量项和联项的推理(传统词项逻辑)

命题逻辑ppt课件

命题逻辑ppt课件
结合词的优先顺序为: , , , , ; 1:假设出现的结合词同级,又无括号时,那么
按从左到右的顺序运算; 2:假设遇有括号时,应该先进展括号中的运算.
留意: 本书中运用的 括号全为圆括号〔〕.
2.2 命题公式
命题变项与合式公式 公式的赋值 真值表 命题的分类
重言式 矛盾式 可满足式
命题变项与合式公式
随堂练习
1:写出命题、简单命题的定义。 2:用符号定义五个结合词及其各自取值情况。 3:写出蕴涵式的定义,分析前件与后件的关系,
列出对应的言语表达方式。 4:写出遇到析取结合词二义性时的判别方式及对应
符号表示。 5:列出下面公式的真值表,阐明各公式的层次
(p q) ((p q) (q p)) (p q) (p q) 6:写出命题公式的定义
pq r
pq
000
0
001
0
010
1
011
1
100
1
101
1
110
1
111
1
r (pq)r
1
1
0
1
1
1
0
0
1
1
0
0
1
1
0
0
公式的类型
定义2.9 设A为一个命题公式 (1) 假设A在它的各种赋值下取值均为真,那么称A为重言 式(也称永真式) (2) 假设A在它的各种赋值下取值均为假,那么称A为矛盾 式(也称永假式) (3) 假设A至少存在一组赋值是成真赋值,那么称A为可满 足式
3.析取式与析取结合词“∨〞
定义2.3 设 p,q为二命题,复合命题“p或q 〞称作p与q的析取式,记作p∨q,∨称作 析取结合词,并规定
p∨q为假当且仅当p与q同时为假. 例即将:p以∨下命q题为符真号化当且仅当p与q至少有一个为真。 此处(1)定2或义4是的素析数.取式p∨q表示的是一种相容性

命题逻辑基本推理公式

命题逻辑基本推理公式

命题逻辑基本推理公式(1) P∧Q⇒P .(2)¬( P→Q)⇒P .(3)¬(P→Q)⇒¬Q.(4) P⇒P ∨Q.(5)¬P⇒P →Q.(6) Q⇒P →Q.(7) ¬P∧(P∨Q) ⇒Q.选言推理否定式(8) P∧(P→Q) ⇒Q. 假言推理肯定前件式(9) ¬Q∧(P→Q) ⇒¬P .假言推理否定后件式(10) (P→Q)∧(Q→R) ⇒P→R. 三段论(11) (P↔ Q)∧(Q↔R) ⇒P↔R. 双条件三段论(12) (P→R)∧(Q→R)∧( P ∨Q) ⇒R. 二难推理(13) (P→Q)∧(R→S) ∧(P ∨R)⇒Q∨S. 二难推理(14) (P→Q)∧(R→S) ∧¬(Q∨¬S)⇒¬P ∨¬R. 破坏二难推理(15) (Q→R) ⇒(( P∨Q)→(P ∨R)) .(16) (Q→R) ⇒(( P→Q)→(P→R)) .使用真值表法证明这些推理公式是容易的。

若从语义上给予直观说明也是不难的. 如公式(2), ¬(P →Q) ⇒P . 公式( 3), ¬(P →Q)⇒Q. 意思是说, 若P →Q 不成立( 取假), 必有 P 为真, 还有 Q 为假. 这从P →Q 的定义可知, 因只有当 P = T 而 Q = F 时, P →Q = F. 又如公式( 7), ¬P ∧(P ∨Q)⇒Q. 意思是说, P 不对, 而P ∨Q 又对, 必然有 Q 对.公式( 8) , P ∧(P →Q) ⇒Q 常称作假言推理, 或称作分离规则, 是最常使用的推理公式。

公式(10) , (P →Q) ∧(Q→R)⇒P →R 常称作三段论。

日常语言运用:(1) 此人既呆又笨为真,则此人笨为真。

(2)(3)并非“犯错蕴涵失败“,即是说,”如果犯错,那么失败“为假命题,则必有犯错且不失败的例子。

第2章_1节-命题逻辑基本概念

第2章_1节-命题逻辑基本概念


定义2.4 设p,q为两个 命题“如果p,则q” 称作p与q的蕴涵式, 记作 pq,并称p是 蕴涵式的前件,q为蕴 涵式的后件,称蕴 涵联接词.其真值表为 : p q pq 0 0 1 0 1 1 1 0 0 1 1 1
pq也可表示为: (1)只要p,就q; (2)因为p,所以q (3)p仅当q; (4)只有q,才p; (5)除非q,才平; (6)除q,否则非p; (7)假如没有q,就没有p.
离散数学
主讲教师:易静
1
2.1 命题逻辑基本概念
关键知识点: • 命题与真值 •联结词(¬ , , , , , ) •命题公式(重言式,矛盾式,可满足式) •重要等值式 •重要推理规则 •个体,个体域与谓词 •全称量词与存在量词
2
命题与真值
命题:所表达的判断是真(正确)或假(错误)但不能可 真可假的陈述句。通常用p,q,r等表示(即命题符号化) 命题的真值:作为命题所表达的判断只有两个结果:正确 和错误,此结果称为命题的真值。 命题是正确的,称此命题的真值为真;命题是错误 的,称此命题的真值为假。 在数理逻辑中,命题的真值的真和假,有时分别用 1和0来表达,也有时分别用T(True)和F(False)来表 达。本书用1和0来表达。(即真值的符号化) 真命题:真值为真的命题 假命题:真值为假的命题 例如, p:2+2=4, q:3是偶数 它们都是命题, p是真命题, q是假命题.


定义2.2 设p,q为二 命题,复合命题“p并 且q”(或“p与q”) 称为p与q的合取式, 记作pq,称作合取 联接词. 其真值表为:
p 0 0 1 1 q 0 1 0 1 pq 0 0 0 1
也可表示联接词: “既......,又.......”, “不但......而 且......”, “虽然......但 是.......”, “一面......一 面.......”等

命题逻辑(联言、选言、负命题)

命题逻辑(联言、选言、负命题)
任何命题都是通过语句来表达的,但语句和命 题并非一一对应: 首先,有的语句不能直接表达命题。 其次,同一命题可以用不同的语句来表达,如: ‚所有的鸟。 此外,同一命题可用不同的民族语言的语句来 表达。
再次,同一语句,可以表达不同的命题。
命题和判断
• 判断:就是被断定者断定了的命题。 • 判断的主要特征:有所断定。
想想看
• 两个女学生走进一餐厅,翻开桌上的菜单,突 然眼前一亮,‚看,熊掌!每盘20元,来两盘 怎么样?‛‚人们都说熊掌名贵,价钱也不贵, ok!‛一会儿,她们吃完了,叫来招待员结帐, 招待员开出帐单:‚一共4025元‛‚什么?你 没搞错吧?‛学生几乎吓晕了。‚熊掌每盘 2000元,你看菜单。‛学生仔细一看,果然是 2000元,中间没有小数点。这下她们急得要哭 了。这时老板出来了,看了几眼付不起钱的学 生,‚没钱,就将证件留下。‛她们乖乖的将 证件交出。学生会出面交涉,老板斩钉截铁说: ‚一分也不能少,如果三天之内不把钱付清, 便立即向法院起诉。……学生只好自认倒霉, 一律师知道了,帮他们追回了所被敲诈的钱。 如何讨?
• 规则: 肯定前件就要肯定后件,否定后件就要否定前件 否定前件就要否定后件,肯定后件就要肯定前件 • 推理蕴涵式为: • (p↔q)∧p →q • (p↔q)∧q →p • (p↔q)∧ p → q • (p↔q)∧ q →p • 某甲犯了罪当且仅当某甲应受刑罚处罚; • 某甲是案犯当且仅当某乙是案犯;
• 负判断由支命题和联结词‚并非‛构成。负 命题的逻辑联结词‚并非‛可以用否定词 ‚‛来表示。 • 日常用语中,负命题的联结词还可以表达为 ‚没有‛、‚不‛、‚这是假的‛、‚这是 错误的‛等。被否定的命题称为支命题,它 可以是简单命题,也可以复合命题。 • 负命题的形式:并非p,也可表示为: p • 负命题的真假表:当支命题为真时,负命题 为假;当支命题为假时,负命题为真。

命题逻辑-

命题逻辑-

4.2有效推理得形式证明
• 自然演绎系统形式证明就是建立在 推理规则基础之上得。这些规则大 约可分为四部分:一就是基本推导 规则,二就是等值替换规则,三就是 条件证明规则,四就是间接证明规 则。
一、基本推导规则:
根据合取式得逻辑特征:
组合式 简记为∧+
根据析取式得逻辑特征:
选言三段论
简记∨-
根据蕴涵式得逻辑特征:
• 例2.判定命题公式“(p∧q) →r”与“p∨(q →r)”就是否逻辑等值。
2.1命题公式之间得逻辑等值
• 如果两个公式就是等值得,那么以这两个公 式为子公式构造一个等值式:
• (﹁p∨ ﹁ q )(﹁ (p∧q))。 • 这个等值式就是恒真得,由此可推知,一个等
值式就是重言式,那么她得两个子公式逻辑 等值。
• 证:① (A∨B)→C
P \A→C
• ② (A∨B) ∨ C
①Impl
• ③ ( A ∧ B) ∨ C
②DeM
• ④ ( A ∨C) ∧( B ∨ C ) ③Dist
• ⑤ A ∨C
④∧-
• ⑥A →C
⑤Impl
作业
• 一、运用真值表方法,判定下列命题就是不 就是等值命题。
• l、如果这匹马儿不吃饱草,那么这匹马儿不 能跑。
• 3.德摩根律 ¬(p∧q) ¬p∨¬q;

¬(p∨q) ¬p∧¬q。
• 4、分配律 p∧(q∨r) (p∧q)∨(p∧r)

p∨(q∧r) (p∨q) →(p∨r)
• 5、实质蕴涵(p→q) ( p ∨ q)
• 6.假言易位 (p→q) ( q → p )
• 7、移出律 (p∧q) →r p→(q →r)

命题逻辑

命题逻辑

假命题 真命题 不是命题 不是命题 不是命题 不是命题 命题,但真值现在不知道 不是命题,悖论
6
命题符号: 用来表示命题符号。
通常用小写英文字母 p, q, r, …, pi, qi, ri (i1)表示命题。 例如,令 p:2 是有理数,则 p 的真值为0, q:2 + 5 = 7,则 q 的真值为1 命题符号分类:
0 v(A ) 1
若v(B ) 1且v(C ) 0
else
7、若A为等价式(B C) ,则
1 v(A ) 0
若v(B ) v(C )
else
成真赋值:当v(A)=1时,称v满足A,记为v 成假赋值:当v(A)=0时,称v不满足A,记为v 例、A=pq v(p)=1,v(q)=0, v(A)=1 v(p)=0,v(q)=0, v(A)=0
36
判断下列各组公式是否等值: (1) p(qr) 与 (pq) r p q r 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 qr 1 1 0 1 1 1 0 1 p(qr) 1 1 1 1 1 1 0 1 pq (pq)r 1 1 1 1 1 1 0 1
这些联结词有明确的含义,注意与自然语言对应词的联系与区别 !
否定词符号
设p是一个命题, p称为p的否定式。 p是真的当且仅当p是假的。 p 1 p 0
0
例、 p: 上海是一个大城市。 p:上海不是一个大城市。
1
合取词符号
设p,q是两个命题,命题 “p并且q”称为p,q的合取, 记以pq,读作p且q。 pq是真的当且仅当p和q都是真的。 例、 p:22=5, q:雪是黑的 pq:22=5并且雪是黑的

《离散数学》命题逻辑

《离散数学》命题逻辑
由原子命题组合而成的命题称为复合 命题(compound proposition)。
例如:
和 e 都是无理数。 6和8至少有一个是合数。 说刘老师讲课不好是不正确的。 不下雨我就去买书。
7
命题与命题联结词
将命题连接起来的方式叫做命题联结词
( proposition connective ) 或 命 题 运 算 符
3
命题与命题联结词
逻辑
如何表示? 如何“操作”?
非真即假的陈述句称为命题(proposition)。 一个命题如果是对的或正确的,则称为真命
题,其真值为“真”(true),常用T或1表示; 一个命题如果是错的或不正确的,则称为假
命题,其真值为“假”(false),常用F或0表示。
4
命题与命题联结词
32
命题公式及其分类
为简化公式的形式,作如下规定:
(1) 优先级 , (∧, ∨), (, ) (2) 公式 (~p) 的括号可以省略,写成 ~p (3) 整个公式最外层的括号可以省略
例1
(((p)∧q)(q∨p)) p∧q q∨p
例2
p∧q∨r 不是 命题公式 应写作 (p∧q)∨r 或 p∧(q∨r)
例 判断下列句子哪些是命题,哪些不是
这门课程题为“离散数学”。 这门“离散数学”讲得好吗? X 这门“离散数学”讲得真好! X 请学习“离散数学” 。 X 5是素数。 太阳从西方升起。 如果明天晴,而且我有空,我就去踢球。 天王星上没有生命。 x + 3 > 5。 X 5 本命题是假的。X
俞伯牙和钟子期是好朋友。 俞伯牙是好朋友 ∧ 钟子期是好朋友 俞伯牙 ∧ 钟子期是好朋友 Friend (俞伯牙,钟子期)
23
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2 命题公式及分类
定义1.6 按下列规则构成的符号串称为命题演算的 合式公式,也称为命题公式,简Байду номын сангаас公式。
⑴单个命题常项或变项p,q,r,…,pi,qi,ri,…,0,1是
合式公式;
⑵如果A是合式公式,那么(¬A)是合式公式; ⑶如果A和B是合式公式,那么(A∧B)、(A∨B)、 (A→B)和(A↔B)是合式公式;
• 例4:将下列各命题符号化
1. 只要不下雨,我就骑自行车上班. 2. 只有不下雨,我才骑自行车上班. 3. 若2+2=4,则太阳从东方升起. 4. 若2+2≠4,则太阳从东方升起. 5. 若2+2=4,则太阳从西方升起. 6. 若2+2≠4,则太阳从西方升起.
5. 等价联结词
定义1.5 设p和q均为命题, 其复合命题p↔q称为等价式, p↔q读作:“p当且仅当q”。 ↔为等价联结词。p↔q为真当 且仅当p和q的真值相同。
• 简单命题(原子命题):不能分解为更简单的陈述句。 • 简单命题又称为命题常项或命题常元。对于真值可以变化的简单陈述句称
为命题变项或命题变元。 • 复合命题:由联结词把几个原子命题联结起来的命题。
表示法:
表示法
例子
有关概念
简单命题 p,q,r,…, p: 2是素数 pi,qi,ri,… q:雪是黑色的
B.
•命题联结词 常用的逻辑联结词有五种:否定联结词、合取
联结词、析取联结词、蕴涵联结词和等价联结词。
1. 否定联结词
定义1.1 设p为命题,则p的 否 定 是 一 个 复 合 命 题 , 记 作 : ¬p , 读作“非p”或“p的否定”。 ¬ 为否定联结词。¬p为真当且仅当p
为假。 【例】否定下列命题。
3. 析取联结词
定义1.3 设p和q均为命 p
题,则p和q的析取是一个复 0 合命题,记作p∨q,读作“p 0 或q”或者“p析取q”。 ∨ 为析取联结词。p∨q为真当 1 且仅当p与q中至少一个为真。 1
表1.3
q p∨q
0
0
1
1
0
1
1
1
“∨”与汉语中的“或”相似,但又不相同。汉语中的或 有可兼或与不可兼或(排斥或)的区分。
命题符号化:将命题 的符号放在该命题的 前面
命题常项 同上 (常元)
命题变项 同上 (变元)
复合命题 p∧q
同上
真值确定的简单命题
p: x+y>5
真值可以变化的简单 陈述句
2是素数和偶数
注:一个符号表示的是命题常项还是命题变项由上下文决定。
例2:将下列各命题符号化 1. 3不是偶数. 2. 2是素数和偶数. 3. 林芳学过英语或日语. 4. 如果角A和角B是对顶角,则角A等于角
p:王强是一名大学生。 ¬p:王强不是一名大学生。
表1.1
p ¬p
0
1
1
0
2. 合取联结词
定义1.2 设p和q均为命题, p 则p和q的合取是一个复合命题, 记 作 p∧q , 读 作 “ p 与 q” 或 0 “p合取q”。 ∧为合取联结词。 0 p∧q为真当且仅当p和q同时为 1
真。
1
表1.2
例1: 1. 2是素数。 2. 雪是黑色的。 3. 2+3=5 。 4. 明年十月一日是晴天。 5. 这朵花多好看呀! 6. 3能被2整除. 7. 明天下午有会吗? 8. 请关上门! 9. x+y>5 。 10. 地球外的星球上也有人。
命题判断的关键: 1.是否是陈述句; 2.真值是否是唯一的。
表1.5
p q p↔q
001 010 100
111
【例】 p:张华是三好学生。 q:张华德、智、体全优秀。
p↔q:张华是三好学生当且仅当德、智、

全优秀。
• 例5 分析下列各命题的真值
1. 2+2=4当且仅当3是奇数. 2. 2+2=4当且仅当3不是奇数. 3. 2+2≠4当且仅当3是奇数. 4. 2+2≠4当且仅当3不是奇数.
q p∧q
00 10 00 11
【例】设 p:北京成功举办了第29届夏季奥运会。 q:今年10月1日是我国国庆60周年。
则p∧q:北京成功举办了第29届夏季奥运会并且今年10 月1日是我国国庆60周年。
• 例3:将下列各命题符号化 1. 李平既聪明又用功. 2. 李平虽然聪明,但不用功. 3. 李平不但聪明,而且用功. 4. 李平不是不聪明,而是不用功.
•联结词的比较表
p,q为两个命题
注:以上5种联结词也称真值联结词或逻辑联结词或逻辑运 算符。
• 例6:将下列命题符号化
• 小王是游泳冠军或百米赛跑冠军. • 小王现在在宿舍或图书馆里. • 选小王或小李中的一人当班长. • 如果我上街,我就去书店看看,除非我很累. • 王一乐是计算机系的学生,他生于1968或1969年,他是三好学生.
么q”或“若p,则q”。 →为
011
蕴涵联结词。p→q为假当且仅 当p为真且q为假。p称为条件命
1
0
0
题p→q的前件,q称为条件命题 1 1 1
p→q的后件。
【例】 p:小王努力学习。q:小王学习成绩优秀。 p→q:如果小王努力学习,那么他的学习成绩就优秀。
联结词“→”与汉语中的“如果…,那么…”或“若…, 则…”相似,但又是不相同的。
【例】下列两个命题中的“或”,哪个是可兼或?哪个 是不可兼或?
⑴在家里看奥运会或在现场看奥运会。(不可兼或) ⑵灯泡有故障或开关有故障。(可兼或)
注:“∨”是可兼 或。
4. 蕴涵联结词
定义1.4 设p和q均为命题, p与q的蕴涵式是个复合命题, 记为:p→q。读作“如果p,那
表1.4
p q p→ 0 0 q1
命题逻辑
• 数理逻辑是用数学方法来研究推理的形式结构和 推理规律的数学学科。
• 现代数理逻辑可分为逻辑演算、证明论、公理集 合论、递归论和模型论。
• 本课程介绍的是数理逻辑最基本的内容,也是与 计算机科学关系最为密切的:命题逻辑和谓词逻 辑(一阶逻辑)
主要内容
1.1 命题符号化及联结词 1.2 命题公式及分类 1.3 等值演算 1.4 联结词全功能集 1.5 对偶与范式 1.6 推理理论
1.1 命题符号化及联结词
• 命题:能判断真假的陈述句。 • 真值:一个命题表达的判断结果称为命题的真值。
命题的真值有“真”和“假”两种,分别用True、 T、1(真)和False、F、0(假)来表示。真值为真的 命题称为真命题,真值为假的命题称为假命题。 任何命题的真值是惟一的。
• 注: 一切没有判断内容的句子,无所谓是非的句子, 如感叹句、疑问句、祈使句等都不是命题。
相关文档
最新文档