江苏省海头高级中学高二数学《34逻辑联结词2》》学案 苏教版必修5
高中数学 第1章 常用逻辑用语 1.2 简单的逻辑联结词学案 苏教版选修2-1-苏教版高二选修2-1

1.2 简单的逻辑联结词[学习目标] 1.了解联结词“且”“或”“非”的含义.2.会用联结词“且”“或”“非”联结或改写某些数学命题,并判断新命题的真假.3.通过学习,明白对条件的判定应该归结为判断命题的真假.知识点一“p且q”“p且q”就是用联结词“且”把命题p和命题q联结起来,得到的新命题,记作p∧q. 知识点二“p或q”“p或q”就是用联结词“或”把命题p和命题q联结起来,得到的新命题,记作p∨q. 知识点三命题的否定一般地,对一个命题p全盘否定,就得到一个新命题,记作非p,读作“非p”或“p的否定”.知识点四含有逻辑联结词的命题的真假判断p q p∨q p∧q 非p真真真真假真假真假假假真真假真假假假假真思考(1)逻辑联结词“或”与生活用语中的“或”的含义是否相同?(2)命题的否定与否命题有什么区别?答案(1)生活用语中的“或”表示不兼有,而在数学中所研究的“或”则表示可兼有但不一定必须兼有.(2)命题的否定只否定命题的结论,而否命题既否定命题的条件,又否定命题的结论.题型一p∧q命题及p∨q命题例1 分别写出下列命题构成的“p∧q”“p∨q”的形式,并判断它们的真假.(1)p:函数y=3x2是偶函数,q:函数y=3x2是增函数;(2)p:三角形的外角等于与它不相邻的两个内角的和,q:三角形的外角大于与它不相邻的任何一个内角;(3)p:3是无理数,q:3是实数;(4)p:方程x2+2x+1=0有两个相等的实数根,q:方程x2+2x+1=0两根的绝对值相等.解(1)p∧q:函数y=3x2是偶函数且是增函数;∵p真,q假,∴p∧q为假.p∨q:函数y=3x2是偶函数或是增函数;∵p真,q假,∴p∨q为真.(2)p∧q:三角形的外角等于与它不相邻的两个内角的和且大于与它不相邻的任何一个内角;∵p真,q真,∴p∧q为真.p∨q:三角形的外角等于与它不相邻的两个内角的和或大于与它不相邻的任何一个内角;∵p真,q真,∴p∨q为真.(3)p∧q:3是无理数且是实数;∵p真,q真,∴p∧q为真.p∨q:3是无理数或是实数;∵p真,q真,∴p∨q为真.(4)p∧q:方程x2+2x+1=0有两个相等的实数根且两根的绝对值相等;∵p真,q真,∴p∧q为真.p∨q:方程x2+2x+1=0有两个相等的实数根或两根的绝对值相等;∵p真,q真,∴p∨q为真.反思与感悟(1)判断p∧q形式的命题的真假,首先判断命题p与命题q的真假,然后根据真值表“一假则假,全真则真”进行判断.(2)判断p∨q形式的命题的真假,首先判断命题p与命题q的真假,只要有一个为真,即可判定p∨q形式命题为真,而p与q均为假命题时,命题p∨q为假命题,可简记为:有真则真,全假为假.跟踪训练1 指出下列命题的构成形式及构成它们的简单命题:(1)李明是男生且是高一学生.(2)方程2x2+1=0没有实数根.(3)12能被3或4整除.解(1)是“p且q”形式.其中p:李明是男生;q:李明是高一学生.(2)是“非p ”形式.其中p :方程2x 2+1=0有实根.(3)是“p 或q ”形式.其中p :12能被3整除;q :12能被4整除. 题型二 非p 命题例2 写出下列命题的否定形式. (1)面积相等的三角形都是全等三角形; (2)若m 2+n 2=0,则实数m 、n 全为零; (3)若xy =0,则x =0或y =0.解 (1)面积相等的三角形不都是全等三角形. (2)若m 2+n 2=0,则实数m 、n 不全为零. (3)若xy =0,则x ≠0且y ≠0.反思与感悟 非p 是对命题p 的全盘否定,对一些词语的正确否定是写非p 的关键,如“都”的否定是“不都”,“至多两个”的反面是“至少三个”、“p ∧q ”的否定是“非p ∨非q ”等.跟踪训练2 写出下列命题的否定,并判断其真假. (1)p :y = sin x 是周期函数; (2)p :3<2;(3)p :空集是集合A 的子集; (4)p :5不是75的约数.解 (1) 非p :y = sin x 不是周期函数.命题p 是真命题,非p 是假命题; (2) 非p :3≥2.命题p 是假命题,非p 是真命题;(3) 非p :空集不是集合A 的子集.命题p 是真命题,非p 是假命题; (4) 非p :5是75的约数.命题p 是假命题,非p 是真命题. 题型三 p ∨q 、p ∧q 、非p 命题的综合应用例3 已知命题p :方程x 2+2ax +1=0有两个大于-1的实数根,命题q :关于x 的不等式ax 2-ax +1>0的解集为R ,若“p ∨q ”与“非q ”同时为真命题,求实数a 的取值范围.解 命题p :方程x 2+2ax +1=0有两个大于-1的实数根,等价于⎩⎪⎨⎪⎧Δ=4a 2-4≥0,x 1+x 2>-2,x 1+1x 2+1>0,⇔⎩⎪⎨⎪⎧a 2-1≥0,-2a >-22-2a >0,,解得a ≤-1.命题q :关于x 的不等式ax2-ax +1>0的解集为R ,等价于a =0或⎩⎪⎨⎪⎧a >0,Δ<0.由于⎩⎪⎨⎪⎧a >0Δ<0⇔⎩⎪⎨⎪⎧a >0,a 2-4a <0,解得0<a <4,所以0≤a <4.因为“p ∨q ”与“非q ”同时为真命题,即p 真且q 假,所以⎩⎪⎨⎪⎧a ≤-1,a <0或a ≥4,解得a ≤-1.故实数a 的取值范围是(-∞,-1].反思与感悟 由真值表可判断p ∨q 、p ∧q 、非p 命题的真假,反之,由p ∨q ,p ∧q ,非p 命题的真假也可判断p 、q 的真假情况.一般求满足p 假成立的参数范围,应先求p 真成立的参数的范围,再求其补集.跟踪训练3 已知命题p :方程x 2+ax +1=0有两个不等的实根;命题q :方程4x 2+2(a -4)x +1=0无实根,若“p 或q ”为真,“p 且q ”为假,求实数a 的取值范围. 解 ∵“p 或q ”为真,“p 且q ”为假,∴p 与q 一真一假, 由a 2-4>0得a >2或a <-2. 由4(a -4)2-4×4<0得2<a <6.①若p 真q 假,则有⎩⎪⎨⎪⎧a >2或a <-2,a ≤2或a ≥6,∴a <-2或a ≥6; ②若p 假q 真,则有⎩⎪⎨⎪⎧-2≤a ≤2,2<a <6,通过分析可知不存在这样的a .综上,a <-2或a ≥6.1. 命题p :“x >0”是“x 2>0”的必要不充分条件,命题q :△ABC 中,“A >B ”是“sin A >sin B ”的充要条件,则下列四个命题正确的是________.(填序号) ①p 真q 假 ②p ∧q 为真 ③p ∨q 为假④p 假q 真答案 ④解析 命题p 假,命题q 真. 2.给出下列命题: ①2>1或1>3;②方程x 2-2x -4=0的判别式大于或等于0; ③25是6或5的倍数;④集合A ∩B 是A 的子集,且是A ∪B 的子集. 其中真命题的个数为________. 答案 4解析 ①由于2>1是真命题,所以“2>1或1>3”是真命题;②由于方程x 2-2x -4=0的Δ=4+16>0,所以“方程x 2-2x -4=0的判别式大于或等于0”是真命题;③由于25是5的倍数,所以命题“25是6或5的倍数”是真命题;④由于A ∩B ⊆A ,A ∩B ⊆A ∪B ,所以命题“集合A ∩B 是A 的子集,且是A ∪B 的子集”是真命题.3.已知命题p 1:函数y =2x-2-x在R 上为增函数,p 2:函数y =2x +2-x 在R 上为减函数.则在命题①p 1∨p 2,②p 1∧p 2,③(非p 1)∨p 2和④p 1∧(非p 2)中,为真命题的是________. 答案 ①④解析 p 1是真命题,则非p 1为假命题;p 2是假命题,则非p 2为真命题; ∴①p 1∨p 2是真命题,②p 1∧p 2是假命题,∴③(非p 1)∨p 2为假命题,④p 1∧(非p 2)为真命题. ∴为真命题的是①④.4.已知命题p :1∈{x |(x +2)(x -3)<0},命题q :∅={0},则下列判断正确的是________. ①p 假q 真 ②“p ∨q ”为真 ③“p ∧q ”为真 ④“非p ”为真 答案 ②解析 由(x +2)(x -3)<0得-2<x <3, ∵1∈(-2,3),∴p 真. ∵∅≠{0},∴q 为假, ∴“p ∨q ”为真.5.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称,则下列判断正确的是________.①p 为真 ②綈p 为假 ③p ∧q 为假 ④p ∨q 为真答案 ③解析 函数y =sin 2x 的最小正周期为2π2=π,故p 为假命题;x =π2不是y =cos x 的对称轴,命题q 为假命题,故p ∧q 为假.1.正确理解逻辑联结词是解题的关键,日常用语中的“或”是两个中任选一个,不能都选,而逻辑联结词中的“或”是两个中至少选一个. 2.判断含逻辑联结词的命题的真假的步骤: (1)逐一判断命题p ,q 的真假.(2)根据“且”“或”的含义判断“p ∧q ”,“p ∨q ”的真假.p ∧q 为真⇔p 和q 同时为真, p ∨q 为真⇔p 和q 中至少一个为真.3.若命题p 为真,则“非p ”为假;若p 为假,则“非p ”为真,类比集合知识,“非p ”就相当于集合p 在全集U 中的补集∁U p .因此(非p )∧p 为假,(非p )∨p 为真. 4.命题的否定只否定结论,否命题既否定结论又否定条件,要注意区别.。
【范文】苏教版高二数学必修五全册教案

苏教版高二数学必修五全册教案本资料为woRD文档,请点击下载地址下载全文下载地址第八课时等比数列教学目标:灵活应用等比数列的定义及通项公式,深刻理解等比中项概念,掌握等比数列的性质;提高学生的数学素质,增强学生的应用意识.教学重点:.等比中项的理解与应用.2.等比数列定义及通项公式的应用.教学难点:灵活应用等比数列定义、通项公式、性质解决一些相关问题.教学过程:Ⅰ.复习回顾等比数列定义,等比数列通项公式Ⅱ.讲授新课根据定义、通项公式,再与等差数列对照,看等比数列具有哪些性质?若a,A,b成等差数列a=a+b2,A为等差中项.那么,如果在a与b中间插入一个数G,使a,G,b成等比数列,……则即Ga=bG,即G2=ab反之,若G2=ab,则Ga=bG,即a,G,b成等比数列∴a,G,b成等比数列G2=ab总之,如果在a与b中间插入一个数G,使a,G,b成等比数列,那么称这个数G为a与b的等比中项.即G=±ab,另外,在等差数列中,若m+n=p+q,则am+an=ap +aq,那么,在等比数列中呢?由通项公式可得:am=a1qm-1,an=a1qn-1,ap=a1qp -1,aq=a1•qq-1不难发现:am•an=a12qm+n-2,ap•aq=a12qp+q-2若m+n=p+q,则am•an=ap•aq下面看应用这些性质可以解决哪些问题?[例1]在等比数列{an}中,若a3•a5=100,求a4.分析:由等比数列性质,若m+n=p+q,则am•an =ap•aq可得:解:∵在等比数列中,∴a3•a5=a42又∵a3•a5=100,∴a4=±10.[例2]已知{an}、{bn}是项数相同的等比数列,求证{an•bn}是等比数列.分析:由等比数列定义及通项公式求得.解:设数列{an}的首项是a1,公比为p;{bn}的首项为b1,公比为q.则数列{an}的第n项与第n+1项分别为a1pn-1,a1pn 数列{bn}的第n项与第n+1项分别为b1qn-1,b1qn.数列{an•bn}的第n项与第n+1项分别为a1•pn-1•b1•qn-1与a1•pn•b1•qn,即为a1b1n-1与a1b1n∵an+1an•bn+1bn=a1b1(pq)na1b1(pq)n-1=pq它是一个与n无关的常数,∴{an•bn}是一个以pq为公比的等比数列.特别地,如果{an}是等比数列,c是不等于0的常数,那么数列{c•an}是等比数列.[例3]三个数成等比数列,它们的和等于14,它们的积等于64,求这三个数.解:设m,G,n为此三数由已知得:m+n+G=14,m•n•G=64,又∵G2=m•n,∴G3=64,∴G=4,∴m+n=10 ∴m=2n=8或m=8n=2即这三个数为2,4,8或8,4,2.评述:结合已知条件与定义、通项公式、性质,选择解题捷径.Ⅲ.课堂练习课本P50练习1,2,3,4,5.Ⅳ.课时小结本节主要内容为:若a,G,b成等比数列,则G2=ab,G叫做a与b的等比中项.若在等比数列中,m+n=p+q,则am•an=ap•aqⅤ.课后作业课本P52习题5,6,7,9等比数列.已知数列{an}为等比数列,且an>0,a2a4+2a3a5+a4a6=25,那么a3+a5的值等于()A.5B.10c.15D.202.在等比数列中,a1=1,q∈R且|q|≠1,若am=a1a2a3a4a5,则m等于()A.9B.10c.11D.123.非零实数x、y、z成等差数列,x+1、y、z与x、y、z+2分别成等比数列,则y等于()A.10B.12c.14D.164.有四个数,前三个数成等比数列,其和为19,后三个数成等差数列,其和为12,求此四数.5.在数列{an}和{bn}中,an>0,bn>0,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列,a1=1,b1=2,a2=3,求an∶bn的值.6.设x>y>2,且x+y,x-y,xy,yx能按某种顺序构成等比数列,试求这个等比数列.7.有四个数,前三个数成等比数列,后三个数成等差数列,首末两项的和为21,中间两项的和为18,求这四个数.等比数列答案.已知数列{an}为等比数列,且an>0,a2a4+2a3a5+a4a6=25,那么a3+a5的值等于()A.5B.10c.15D.20分析:要确定一个等比数列,必须有两个独立条件,而这里只有一个条件,故用先确定基本量a1和q,再求a3+a5的方法是不行的,而应寻求a3+a5整体与已知条件之间的关系.解法一:设此等比数列的公比为q,由条件得a1q•a1q3+2a1q2•a1q4+a1q3•a1q5=25即a12q42=25,又an>0,得q>0∴a1q2=5解法二:∵a2a4+2a3a5+a4a6=25由等比数列性质得a32+2a3a5+a52=25即2=25,又an>0,∴a3+a5=5评述:在运用方程思想方法的过程中,还要注意整体观念,善于利用等比数列的性质,以达到简化解题过程、快速求解的目的.2.在等比数列中,a1=1,q∈R且|q|≠1,若am=a1a2a3a4a5,则m等于()A.9B.10c.11D.12解:∵am=a1a2a3a4a5=a15q1+2+3+4=a15q10=a15q11-1又∵a1=1,∴am=q11-1,∴m=11.答案:c3.非零实数x、y、z成等差数列,x+1、y、z与x、y、z+2分别成等比数列,则y等于()A.10B.12c.14D.16解:由已知得2y=x+zy2=(x+1)zy2=x(z+2)2y=x+zy2=(x+1)zz=2x2y=3xy2=(x+1)2xy=12答案:B4.有四个数,前三个数成等比数列,其和为19,后三个数成等差数列,其和为12,求此四数.解:设所求的四个数分别为a,x-d,x,x+d则(x-d)2=ax①a+(x-d)+x=19②(x-d)+x+(x+d)=12③解得x=4,代入①、②得(4-d)2=4aa-d=11解得a=25d=14或a=9d=-2故所求四个数为25,-10,4,18或9,6,4,2.5.在数列{an}和{bn}中,an>0,bn>0,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列,a1=1,b1=2,a2=3,求an∶bn的值.分析:关键是求出两个数列的通项公式.根据条件,应注意两个数列之间的联系及相互转换.解:由题意知:2bn=an+an+1①an+12=bnbn+1②∴an+1=bnbn+1,an=bnbn-1代入①得2bn=bnbn+1+bnbn-1即2bn=bn+1+bn-1∴{bn}成等差数列,设公差为d又b1=2,b2=a22b1=92,∴d=b2-b1=322-2=22∴bn=2+22(n-1)=22(n+1),bn=12(n+1)2,当n≥2时,an=bnbn-1=n(n+1)2③且a1=1时适合于③式,故anbn=nn+1.评述:对于通项公式有关系的两个数列的问题,一般采用消元法,先消去一个数列的项,并对只含另一个数列通项的关系进行恒等变形,构造一个新的数列.6.设x>y>2,且x+y,x-y,xy,yx能按某种顺序构成等比数列,试求这个等比数列.分析:先由x>y>2,可知x-y<x+y<xy,下来只需讨论yx和x-y的大小关系,分成两种情况讨论.解:∵x>y>2,x+y>x-y,xy>x+y,而yx<1<x -y当yx<x-y时,由yx,x-y,x+y,xy顺次构成等比数列.则有yx•xy=(x-y)(x+y)(x+y)2=(x-y)xy解方程组得x=7+52,y=5+722∴所求等比数列为22,2+322,12+1722,70+9922.当yx>x-y时,由x-y,yx,x+y,xy顺次构成等比数列则有yx•xy=(x+y)2yx(x+y)=(x-y)xy 解方程组得y=112,这与y>2矛盾,故这种情况不存在.7.有四个数,前三个数成等比数列,后三个数成等差数列,首末两项的和为21,中间两项的和为18,求这四个数.分析一:从后三个数入手.解法一:设所求的四个数为(x-d)2x,x-d,x,x+d,根据题意有(x-d)2x+(x+d)=21(x-d)+x=18,解得x =12d=6或x=274d=92274∴所求四个数为3,6,12,18或754,454,274,94.分析二:从前三数入手.范文解法二:设前三个数为xq,x,xq,则第四个数为2xq -x.依题设有xq+2xq-x=21x+xq=18,解得x=6q=2或x=454q=35故所求的四个数为3,6,12,18或754,454,274,94.分析三:从首末两项的和与中间两项的和入手.解法三:设欲求的四数为x,y,18-y,2-x,由已知得:y2=x(18-y)2(18-y)=y+(21-x),解得x=3y =6或x=754y=454∴所求四数为3,6,12,18或754,454,274,94.学习永无止境。
苏教版2018-2019高二数学新学案选修2-1:第一章 常用逻辑用语 §4 4.1~4.2

§4 逻辑联结词“且”“或”“非”4.1 逻辑联结词“且”4.2 逻辑联结词“或”学习目标 1.了解联结词“且”“或”的含义.2.会用联结词“且”“或”联结或改写某些数学命题,并判断其命题的真假.知识点一 “且”思考 观察三个命题:①5是10的约数;②5是15的约数;③5是10的约数且是15的约数,它们之间有什么关系?答案 命题③是将命题①②用“且”联结得到的新命题.梳理 (1)定义:一般地,用联结词“且”把命题p和命题q联结起来,就得到一个新命题“p且q”.(2)当p,q都是真命题时,p且q是真命题;当p,q两个命题中有一个命题是假命题时,p且q是假命题.将命题p和命题q以及p且q的真假情况绘制为命题“p且q”的真值表如下:p q p且q真真真真假假假真假假假假命题“p且q”的真值表可简单归纳为“同真则真”.知识点二 “或”思考 观察三个命题:①3>2;②3=2;③3≥2,它们之间有什么关系?答案 命题③是命题①②用逻辑联结词“或”联结得到的新命题.梳理 (1)定义:一般地,用联结词“或”把命题p和命题q联结起来,就得到一个新命题“p或q”.(2)当p,q两个命题有一个命题是真命题时,p或q是真命题;当p,q两个命题都是假命题时,p或q是假命题.将命题p和命题q以及p或q的真假情况绘制为命题“p或q”的真值表如下:p q p或q真真真真假真假真真假假假命题“p或q”的真值表可简单归纳为“假假才假”.1.逻辑联结词“且”“或”只能出现在命题的结论中.(×)2.“p且q为假命题”是“p为假命题”的充分条件.(×)3.当p,q都为假命题时,p且q才为假命题.(×)4.若p:sin x≥2,q:任意x∈R,x2-x+1>0,则p或q为假命题.(×)类型一 含有“且”“或”命题的构成命题角度1 简单命题与复合命题的区分例1 指出下列命题的形式及构成它的命题.(1)向量既有大小又有方向;(2)矩形有外接圆或有内切圆;(3)2≥2.考点 “且”“或”的概念题点 把命题写成“p且q”或“p或q”的形式解 (1)是p且q形式命题.其中p:向量有大小,q:向量有方向.(2)是p或q形式命题.其中p:矩形有外接圆,q:矩形有内切圆.(3)是p或q形式命题.其中p:2>2,q:2=2.反思与感悟 不含有逻辑联结词的命题是简单命题;由简单命题与逻辑联结词“或”“且”构成的命题是复合命题.判断一个命题是简单命题还是复合命题,不能仅从字面上看它是否含有“或”“且”等逻辑联结词,而应从命题的结构来看是否用逻辑联结词联结两个命题.如“四边相等且四角相等的四边形是正方形”不是“且”联结的复合命题,它是真命题,而用“且”联结的命题“四边相等的四边形是正方形且四角相等的四边形是正方形”是假命题.跟踪训练1 命题“菱形对角线垂直且平分”为________形式复合命题.考点 “且”的概念题点 把命题写成“p且q”的形式答案 p且q命题角度2 用逻辑联结词构造新命题例2 分别写出下列命题的“p且q”“p或q”形式的命题.(1)p:梯形有一组对边平行,q:梯形有一组对边相等;(2)p:-1是方程x2+4x+3=0的解,q:-3是方程x2+4x+3=0的解.考点 “且”“或”的概念题点 把命题写成“p且q”或“p或q”的形式解 (1)p或q:梯形有一组对边平行或有一组对边相等.p且q:梯形有一组对边平行且有一组对边相等.(2)p或q:-1或-3是方程x2+4x+3=0的解.p且q:-1和-3是方程x2+4x+3=0的解.反思与感悟 用逻辑联结词“或”“且”联结p,q构成新命题时,在不引起歧义的前提下,可以把p,q中的条件或结论合并.跟踪训练2 指出下列命题的形式及构成它的简单命题.(1)96是48与16的倍数;(2)不等式x 2-x -2>0的解集是{x |x <-1或x >2}.考点 “且”“或”的概念题点 把命题写成“p 且q ”或“p 或q ”的形式解 (1)p 且q :p :96是48的倍数;q :96是16的倍数.(2)p 或q :p :不等式x 2-x -2>0的解集是{x |x <-1},q :不等式x 2-x -2>0的解集是{x |x >2}.类型二 “p 且q ”和“p 或q ”形式命题的真假判断例3 分别指出“p 或q ”“p 且q ”的真假.(1)p :函数y =sin x 是奇函数;q :函数y =sin x 在R 上单调递增;(2)p :直线x =1与圆x 2+y 2=1相切;q :直线x =与圆x 2+y 2=1相交.12考点 “p 且q ”和“p 或q ”形式命题真假性判断题点 判断“p 且q ”和“p 或q ”形式命题的真假解 (1)∵p 真,q 假,∴“p 或q ”为真,“p 且q ”为假.(2)∵p 真,q 真,∴“p 或q ”为真,“p 且q ”为真.反思与感悟 形如p 或q ,p 且q 命题的真假根据真值表判定.跟踪训练3 分别指出由下列各组命题构成的“p 或q ”“p 且q ”形式的命题的真假.(1)p :是无理数,q :π不是无理数;3(2)p :集合A =A ,q :A ∪A =A ;(3)p :函数y =x 2+3x +4的图像与x 轴有公共点,q :方程x 2+3x -4=0没有实数根.考点 “p 且q ”和“p 或q ”形式命题真假性判断题点 判断“p 且q ”和“p 或q ”形式命题的真假解 (1)∵p 真,q 假,∴“p 或q ”为真,“p 且q ”为假.(2)∵p 真,q 真,∴“p 或q ”为真,“p 且q ”为真.(3)∵p 假,q 假,∴“p 或q ”为假,“p 且q ”为假.类型三 已知复合命题的真假求参数范围例4 已知p :方程x 2+mx +1=0有两个不相等的负根,q :方程4x 2+4(m -2)x +1=0无实数根,若p 或q 为真,p 且q 为假,求m 的取值范围.考点 “p 或q ”“p 且q ”形式命题真假性的判断题点 由“p 或q ”“p 且q ”形式命题的真假求参数的取值范围解 因为p :方程x 2+mx +1=0有两个不相等的负根,所以Error!所以m >2.因为q :方程4x 2+4(m -2)x +1=0无实数根,所以Δ<0,即16(m-2)2-16<0,所以16(m2-4m+3)<0,所以1<m<3.因为p或q为真,p且q为假,所以p为真,q为假或者p为假,q为真.即Error!或Error!解得m≥3或1<m≤2.所以m的取值范围为{m|m≥3或1<m≤2}.引申探究本例中若将“p且q为假”改为“p且q为真”,求实数m的取值范围.解 同例得当p为真命题时,m>2,当q为真命题时,1<m<3.因为p或q为真,p且q为真,所以p,q均为真命题,即Error!解得2<m<3,所以m的取值范围为(2,3).反思与感悟 应用逻辑联结词求参数范围的四个步骤(1)分别求出命题p,q为真时对应的参数集合A,B;(2)讨论p,q的真假;(3)由p,q的真假转化为相应的集合的运算;(4)求解不等式或不等式组得到参数的取值范围.跟踪训练4 已知p:(x+2)(x-3)≤0,q:|x+1|≥2,若“p且q”为真,则实数x的取值范围是________.考点 “p且q”形式命题真假性的判断题点 由“p且q”形式命题的真假求参数的取值范围答案 [1,3]解析 由(x+2)(x-3)≤0,解得-2≤x≤3.由|x+1|≥2,解得x≥1或x≤-3.∵“p且q”为真,∴Error!解得1≤x≤3,则实数x的取值范围是[1,3].1.已知p:2+3=5,q:5<4,则下列判断正确的是( )A .p 为假命题B .q 为真命题C .p 或q 为真命题D .p 且q 为真命题考点 “p 且q ”“p 或q ”形式命题真假性的判断题点 判断“p 且q ”“p 或q ”形式命题的真假答案 C解析 由题意,知p 为真命题,q 为假命题.2.由下列各组命题构成的新命题“p 或q ”“p 且q ”都为真命题的是( )A .p :4+4=9,q :7>4B .p :a ∈{a ,b ,c },q :{a }⊆{a ,b ,c }C .p :15是质数,q :8是12的约数D .p :2是偶数,q :2不是质数考点 “p 且q ”“p 或q ”形式命题真假性的判断题点 判断“p 且q ”“p 或q ”形式命题的真假答案 B3.已知命题p ,q ,若p 为真命题,则( )A .p 且q 必为真B .p 且q 必为假C .p 或q 必为真D .p 或q 必为假考点 “p 且q ”“p 或q ”形式命题真假性的判断题点 判断“p 且q ”“p 或q ”形式命题的真假答案 C解析 p 或q ,一真则真,故必有p 或q 为真.4.已知p :函数y =sin x 的最小正周期为,q :函数y =sin2x 的图像关于直线x =π对称,π2则p 且q 是________命题.(填“真”或“假”)考点 “p 且q ”形式命题真假性的判断题点 判断“p 且q ”形式命题的真假答案 假解析 由题意,知命题p 为假命题,命题q 也是假命题,故p 且q 是假命题.5.已知命题p :函数f (x )=(x +m )(x +4)为偶函数;命题q :方程x 2+(2m -1)x +4-2m =0的一个根大于2,一个根小于2,若p 且q 为假,p 或q 为真,求实数m 的取值范围.考点 “p 且q ”“p 或q ”形式命题真假性的判断题点 由“p 且q ”“p 或q ”形式命题的真假求参数的取值范围解 若命题p 为真,则由f (x )=x 2+(m +4)x +4m ,得m +4=0,解得m =-4.设g (x )=x 2+(2m -1)x +4-2m ,其图像开口向上,若命题q为真,则g(2)<0,即22+(2m-1)×2+4-2m<0,解得m<-3.由p且q为假,p或q为真,得p假q真或p真q假.若p假q真,则m<-3且m≠-4;若p真q假,则m无解.所以实数m的取值范围为(-∞,-4)∪(-4,-3).1.判断不含有逻辑联结词的命题构成形式关键是:弄清构成它的命题条件、结论.2.对用逻辑联结词联结的复合命题的真假进行判断时,首先找出构成复合命题的简单命题,判断简单命题的真假,然后分析构成形式,根据构成形式判断复合命题的真假.一、选择题1.“p 且q 是真命题”是“p 或q 是真命题”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件考点 “p 或q ”“p 且q ”形式命题真假性的判断题点 判断“p 或q ”“p 且q ”形式命题的真假答案 A解析 p 且q 是真命题⇒p 是真命题,且q 是真命题⇒p 或q 是真命题;p 或q 是真命题⇏p 且q 是真命题.2.命题p :函数y =log a (ax +2a )(a >0且a ≠1)的图像必过定点(-1,1),命题q :如果函数y =f (x )的图像关于(3,0)对称,那么函数y =f (x -3)的图像关于原点对称,则有( )A .“p 且q ”为真B .“p 或q ”为假C .p 真q 假D .p 假q 真考点 “p 或q ”“p 且q ”形式命题真假性的判断题点 判断“p 或q ”“p 且q ”形式命题的真假答案 C解析 由命题p 知,ax +2a =a ,解得x =-1,故过定点(-1,1),而命题q 为假命题.3.设命题p :函数y =sin2x 的最小正周期为;命题q :函数y =cos x 的图像关于直线x =π2对称,则下列判断正确的是( )π2A .p 为真B .q 为真C .p 且q 为假D .p 或q 为真考点 “p 且q ”形式命题真假性的判断题点 判断“p 且q ”形式命题的真假答案 C解析 函数y =sin2x 的最小正周期为=π,故p 为假命题;x =不是y =cos x 的对称轴,2π2π2命题q 为假命题,故p 且q 为假.故选C.4.p :方程x 2+2x +a =0有实数根,q :函数f (x )=(a 2-a )x 是增函数,若“p 且q ”为假命题,“p 或q ”为真命题,则实数a 的取值范围是( )A .a >0B .a ≥0C .a >1D .a ≥1考点 “p 且q ”“p 或q ”形式命题真假性的判断题点 由“p 且q ”“p 或q ”形式命题的真假求参数的取值范围答案 B解析 ∵方程x 2+2x +a =0有实数根,∴Δ=4-4a ≥0,解得a ≤1.∵函数f (x )=(a 2-a )x 是增函数,∴a 2-a >0,解得a <0或a >1.∵p 且q 为假命题,p 或q 为真命题,∴p ,q 中一真一假.①当p 真q 假时,得0≤a ≤1;②当p 假q 真时,得a >1.由①②,得所求实数a 的取值范围是a ≥0.5.命题p :“x >0”是“x 2>0”的必要不充分条件,命题q :△ABC 中,“A >B ”是“sin A >sin B ”的充要条件,则( )A .p 真q 假B .p 且q 为真C .p 或q 为假D .p 假q 真考点 “p 或q ”“p 且q ”形式命题真假性的判断题点 判断“p 或q ”“p 且q ”形式命题的真假答案 D解析 命题p 假,命题q 真.6.命题p :点P 在直线y =2x -3上;q :点P 在曲线y =-x 2上,则使“p 且q ”为真命题的一个点P 的坐标是( )A .(0,-3) B .(1,2)C .(1,-1)D .(-1,1)考点 “p 且q ”形式命题真假性的判断题点 判断“p 且q ”形式命题的真假答案 C解析 点P (x ,y )满足Error!解得P (1,-1)或P (-3,-9),故选C.7.已知p :x 2-2x -3<0;q :<1,若p 且q 为真,则x 的取值范围是( )1x -2A .(-1,2) B .(-1,3)C .(3,+∞)D .(-∞,2)考点 “p 且q ”形式命题真假性的判断题点 由“p 且q ”形式命题的真假求参数的值答案 A解析 由命题p ,得-1<x <3,当q 为真命题时,得x <2或x >3,因为p 且q 为真命题,所以Error!即-1<x <2.二、填空题8.设p :2x +y =3,q :x -y =6,若p 且q 为真命题,则x =________,y =________.考点 “p 且q ”形式命题真假性的判断题点 由“p 且q ”形式命题的真假求参数的值答案 3 -3解析 若p 且q 为真命题,则p ,q 均为真命题,所以有Error!解得Error!9.若“x ∈[2,5]或x ∈{x |x <1或x >4}”是假命题,则x 的取值范围是________.考点 “p 或q ”形式命题真假性的判断题点 由“p 或q ”形式命题的真假求参数的取值范围答案 [1,2)解析 x ∈[2,5]或x ∈(-∞,1)∪(4,+∞),即x ∈(-∞,1)∪[2,+∞),由于命题是假命题,所以1≤x <2,即x ∈[1,2).10.设p :关于x 的不等式a x >1的解集是{x |x <0},q :函数y =lg(ax 2-x +a )的定义域为R ,如果p 和q 有且仅有一个为真,则a 的取值范围为______________.考点 “p 或q ”形式命题真假性的判断题点 由“p 或q ”形式命题的真假求参数的取值范围答案 ∪(0,12][1,+∞)解析 若p 真,则0<a <1,若p 假,则a ≥1或a ≤0.若q 真,有Error!即a >.12若q 假,则a ≤,又p 和q 有且仅有一个为真,12所以当p 真q 假时,0<a ≤,12当p 假q 真时,a ≥1.综上所述,a ∈∪.(0,12][1,+∞)三、解答题11.判断下列复合命题的真假.(1)等腰三角形顶角的平分线平分底边并且垂直于底边;(2)不等式x 2-2x +1>0的解集为R 且不等式x 2-2x +2≤1的解集为∅.考点 “p 且q ”形式命题真假性的判断题点 判断“p 且q ”形式命题的真假解 (1)这个命题是“p 且q ”形式的复合命题,其中p :等腰三角形顶角的平分线平分底边,q :等腰三角形顶角的平分线垂直于底边,因为p 真q 真,则“p 且q ”为真,所以该命题是真命题.(2)这个命题是“p 且q ”形式的复合命题,其中p :不等式x 2-2x +1>0的解集为R ,q :不等式x 2-2x +2≤1的解集为∅.因为p 假q 假,所以“p 且q ”为假,故该命题为假命题.12.已知p :c 2<c 和q :对任意x ∈R ,x 2+4cx +1>0,若p 或q 为真,p 且q 为假,求实数c 的取值范围.考点 “p 且q ”“p 或q ”形式命题真假性的判断题点 由“p 且q ”“p 或q ”形式命题的真假求参数的取值范围解 由不等式c 2<c ,得0<c <1.由对任意x ∈R ,x 2+4cx +1>0,得(4c )2-4<0,得-<c <.1212由已知,得p 和q 必有一个为真、一个为假.当p 真q 假时,≤c <1;当q 真p 假时,-<c ≤0.1212故实数c 的取值范围是∪(-12,0][12,1)13.设p :函数f (x )=lg(ax 2-4x +a )的定义域为R ;q :设a =(2x 2+x ,-1),b =(1,ax +2),不等式a ·b >0对任意x ∈(-∞,-1)恒成立.如果p 或q 为真命题,p 且q 为假命题,求实数a 的取值范围.考点 “p 或q ”“p 且q ”形式命题真假性的判断题点 由“p 或q ”“p 且q ”形式命题的真假求参数的取值范围解 若p 为真命题,则ax 2-4x +a >0对x ∈R 都成立,当a =0时,f (x )=lg(-4x )的定义域不为R ,不合题意,当a ≠0时.则(-4)2-4a 2<0且a >0,即Error!解得a >2.若q 为真命题,则由a ·b >0对任意x ∈(-∞,-1)恒成立,知2x 2+x -(ax +2)>0,即a >2x -+1对任意x ∈(-∞,-1)恒成立,则a >max .2x (2x -2x +1)令g (x )=2x -+1,可知g (x )在(-∞,-1)上是增函数,当x =-1时取得最大值,g (x )2x max =1.故a ≥1.又p 或q 为真命题,p 且q 为假命题,则p ,q 中一个为真命题,另一个为假命题.若p 真q 假,则Error!无解;若p 假q 真,则Error!则1≤a ≤2.综上,实数a 的取值范围为[1,2].四、探究与拓展14.命题p :1是集合{x |x 2<a }中的元素;命题q :2是集合{x |x 2<a }中的元素.若“p 且q ”是真命题,则a 的取值范围为________.考点 “p 且q ”形式命题真假性的判断题点 “p 且q ”形式命题的真假求参数的取值范围答案 (4,+∞)解析 由p 为真命题,得a >1,由q 为真命题,得a >4.因为p 且q 为真命题,所以Error!解得a >4.15.已知p :(x +1)(x -5)≤0,q :1-m ≤x ≤1+m (m >0).(1)若p 是q 的充分条件,求实数m 的取值范围;(2)若m =5,p 或q 为真命题,p 且q 为假命题,求实数x 的取值范围.考点 “p 且q ”“p 或q ”形式命题真假性的判断题点 由“p 且q ”“p 或q ”形式命题的真假求参数的取值范围解 (1)由(x +1)(x -5)≤0,得-1≤x ≤5,∵p 是q 的充分条件,∴Error!解得m ≥4.(2)当m =5时,q :-4≤x ≤6.根据已知,p ,q 一真一假,当p 真q 假时,Error!无解;当p 假q 真时,Error!解得-4≤x <-1或5<x ≤6.综上,实数x 的取值范围是[-4,-1)∪(5,6].。
【高中】高中数学苏教版选修21第1章常用逻辑用语2word学案

【关键字】高中1.2简单的逻辑联结词[学习目标] 1.了解联结词“且”“或”“非”的含义.2.会用联结词“且”“或”“非”联结或改写某些数学命题,并判断新命题的真假.3.通过学习,使学生明白对条件的判定应该归结为判断命题的真假.[知识链接]1.观察三个命题:①5是10的约数;②5是15的约数;③5是10的约数且是15的约数,它们之间有什么关系?答:命题③是由命题①②用“且”联结得到的新命题,“且”与集合运算中交集的定义A∩B={x|x∈A且x∈B}中“且”的意义相同,叫逻辑联结词,表示“并且”,“同时”的意思.2.观察三个命题:①3>2;②3=2;③3≥2,它们之间有什么关系?答:命题③是由命题①②用逻辑联结词“或”联结得到的新命题.3.观察下列两组命题,看它们之间有什么关系?(1)p:1是素数;q:1不是素数.(2)p:y=tanx是周期函数;q:y=tanx不是周期函数.答:两组命题中,命题q都是命题p的否定.[预习导引]1.逻辑联结词把两个命题联结成新命题的常用逻辑联结词有“或”、“且”、“非”.2.含有逻辑联结词的命题的真假p q 綈p p∨q p∧q要点一用逻辑联结词联结组成新命题例1 分别写出由下列命题构成的“p∨q”“p∧q”“綈p”形式的新命题.(1)p:π是无理数,q:e不是无理数.(2)p:方程x2+2x+1=0有两个相等的实数根,q:方程x2+2x+1=0两根的绝对值相等.(3)p:正△ABC三内角都相等,q:正△ABC有一个内角是直角.解(1)p∨q:π是无理数或e不是无理数.p∧q:π是无理数且e不是无理数.綈p:π不是无理数.(2)p∨q:方程x2+2x+1=0有两个相等的实数根或两根的绝对值相等.p∧q:方程x2+2x+1=0有两个相等的实数根且两根的绝对值相等.綈p:方程x2+2x+1=0没有两个相等的实数根.(3)p∨q:正△ABC三内角都相等或有一个内角是直角;p∧q:正△ABC三内角都相等且有一个内角是直角;綈p:正△ABC三个内角不都相等.规律方法解决这类问题的关键是正确理解“或”“且”“非”的定义,用“或”“且”“非”联结p、q构成新命题时,在不引起歧义的前提下,可把命题p、q中的条件或结论合并.跟踪演练1 分别写出由下列各组命题构成的“p∨q”、“p∧q”、“綈p”形式:(1)p:是无理数,q:大于1;(2)p:N⊆Z,q:{0}∈N;(3)p:x2+1>x-4,q:x2+1<x-4.解(1)“p∨q”:是无理数或大于1;“p∧q”:是无理数且大于1;“綈p”:不是无理数.(2)“p∨q”:N⊆Z或{0}∈N;“p∧q”:N⊆Z且{0}∈N;“綈p”:NZ.(3)“p∨q”:x2+1≠x-4;“p∧q”:x2+1>x-4且x2+1<x-4;“綈p”:x2+1≤x-4.要点二含逻辑联结词的命题的真假判断例2 指出下列命题的构成形式并判断真假: (1)不等式|x +2|≤0没有实数解; (2)-1是偶数或奇数; (3)属于集合Q ,也属于集合R ; (4)A(A ∪B).解 (1)此命题是“綈p ”的形式,其中p :不等式|x +2|≤0有实数解.因为x =-2是该不等式的一个解,所以命题p 为真命题,即綈p 为假命题.所以该命题为假命题.(2)此命题是“p ∨q ”的形式,其中p :-1是偶数,q :-1是奇数,因为命题p 为假命题,命题q 为真命题,所以“p ∨q ”为真命题,故该命题为真命题.(3)此命题为“p ∧q ”的形式,其中p :2∈Q ,q :2∈R ,因命题p 为假命题,命题q 为真命题,所以命题“p ∧q ”为假命题.故该命题为假命题. (4)此命题为“綈p ”的形式,其中p :A ⊆(A ∪B ), 因为p 为真命题,所以綈p 为假命题, 故该命题为假命题.规律方法 理解简单复合命题,字面上有逻辑联结词当然简单,否则需寻找与其等价的词语、符号或式子.跟踪演练2 分别指出由下列各组命题构成的p ∨q 、p ∧q 、綈p 形式的命题的真假: (1)p :2+2=5,q :3>2;(2)p :9是质数,q :8是12的约数; (3)p :∅{0},q :∅={0}.解 (1)p 假q 真,故p ∨q 为真;p ∧q 为假;綈p 为真. (2)p 假q 假,故p ∨q 为假;p ∧q 为假;綈p 为真. (3)p 真q 假,故p ∨q 为真;p ∧q 为假;綈p 为假. 要点三 逻辑联结词的应用例3 已知a >0,a ≠1,设p :函数y =log a (x +1)在x ∈(0,+∞)内单调递减;q :曲线y =x 2+(2a -3)x +1与x 轴交于不同的两点,如果p 和q 有且只有一个正确,求a 的取值范围. 解 对于命题p ,当0<a <1时,函数y =log a (x +1)在(0,+∞)内单调递减;当a >1时,函数y =log a (x +1)在(0,+∞)内不是单调递减.对于命题q ,曲线y =x 2+(2a -3)x +1与x 轴交于不同的两点等价于(2a -3)2-4>0, 即0<a <12或a >52.方法一 (1)若p 正确且q 不正确,即函数y =log a (x +1)在x ∈(0,+∞)内单调递减,曲线y =x 2+(2a -3)x +1与x 轴不交于不同的两点,因此a ∈(0,1)∩([12,1)∪(1,52]),即a ∈[12,1).(2)若p 不正确且q 正确,即函数y =log a (x +1)在x ∈(0,+∞)内不是单调递减,曲线y =x 2+(2a -3)x +1与x 轴交于不同的两点,因此a ∈(1,+∞)∩[(0,12)∪(52,+∞)],即a ∈(52,+∞).综上,a 的取值范围为[12,1)∪(52,+∞).方法二 设A ={a |p (a )}=(0,1),B ={a |q (a )} =(0,12)∪(52,+∞).所以p 和q 有且只有一个正确⇔a ∈A ∪B 且a ∉A ∩B 故a 的取值范围为[12,1)∪(52,+∞).规律方法 解答这类问题,应先由每个简单命题为真,确定参数的取值范围,再由复合命题的真值,得参数所满足的条件,进而确定参数的取值范围.在综合参数的取值范围时,有时利用集合来处理,可以简化解题的过程.如本例的方法二,就较为简捷.跟踪演练3 命题p :1是集合{x |x 2<a }中的元素;q :2是集合{x |x 2<a }中的元素,则a 为何值时,“p ∨q ”为真?a 为何值时,“p ∧q ”为真?解 若p 为真,则1∈{x |x 2<a },所以12<a ,即a >1;若q 为真,则2∈{x |x 2<a },即a >4. 若“p ∨q ”为真,则a >1或a >4,即a >1; 若“p ∧q ”为真,则a >1且a >4,即a >4.1.命题p :“x >0”是“x 2>0”的必要不充分条件,命题q :△ABC 中,“A >B ”是“sin A >sin B ”的充要条件,则________.①p 真q 假 ②p ∧q 为真 ③p ∨q 为假 ④p 假q 真 答案 ④解析 命题p 假,命题q 真. 2.给出下列命题: ①2>1或1>3;②方程x 2-2x -4=0的判别式大于或等于0; ③25是6或5的倍数;④集合A ∩B 是A 的子集,且是A ∪B 的子集. 其中真命题的个数为________. 答案 4解析 由于2>1是真命题,所以“2>1或1>3”是真命题;由于方程x 2-2x -4=0的Δ=4+16>0,所以“方程x 2-2x -4=0的判别式大于或等于0”是真命题;由于25是5的倍数,所以命题“25是6或5的倍数”是真命题;由于A ∩B ⊆A ,A ∩B ⊆A ∪B ,所以命题“集合A ∩B 是A 的子集,且是A ∪B 的子集”是真命题.3.“p 是真命题”是“p ∧q 为真命题”的________条件. 答案 必要不充分解析 “p 是真命题”则p ∧q 不一定真,“p ∧q 为真命题”则“p 是真命题”一定真. 4.设命题p :函数y =sin2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称,则下列判断正确的是________.①p 为真 ②綈p 为假 ③p ∧q 为假 ④p ∨q 为真 答案 ③解析 函数y =sin2x 的最小正周期为2π2=π,故p 为假命题;x =π2不是y =cos x 的对称轴,命题q 为假命题,故p ∧q 为假.1.从集合的角度理解“且”“或”“非”对联结词“且”“或”“非”的含义的理解可类比集合中“交”“并”“补”的含义理解:设A ={x |x 满足命题p },B ={x |x 满足命题q },U 为全集,则p ∧q 对应于A ∩B ,p ∨q 对应于A ∪B ,綈p 对应于∁U A .2.对含有逻辑联结词的命题真假性的判断 当p 、q 都为真时,p ∧q 才为真; 当p 、q 有一个为真时,p ∨q 就为真; 綈p 与p 的真假性相反且一定有一个为真.一、基础达标1.命题“2011≥2010”使用的逻辑联结词是______. 答案 或解析 “2011≥2010”的含义是“2011>2010或2011=2010”,是一个含逻辑联结词“或”的命题.2.下列命题中,是真命题的是________(填序号). ①{∅}是空集;②{x ∈N ||x -1|<3}是无限集;③空集是任何集合的真子集;④x2-5x=0的根是自然数.答案④解析{∅}是以∅为元素的集合;{x∈N||x-1|<3}={0,1,2,3};空集是任何非空集合的真子集.x2-5x=0的根是0,5.3.给定两个命题p,q.若非p是q的必要而不充分条件,则p是非p的________条件.答案充分而不必要解析q⇒非p,非p q⇔p⇒非q,非q p.4.已知命题p:2是偶数,命题q:2是3的约数,则下列命题:①p∧q②p∨q③綈p④(綈p)∧(綈q)其中真命题是______(填序号).答案②解析因为p为真命题,q为假命题,所以“p∨q”“綈q”为真命题,“p∧q”“綈p”是假命题,故“(綈p)∧(綈q)”为假命题,故填②.5.对于命题p和q,若p∧q为真命题,则下列四个命题:①p∨綈q是真命题;②p∧綈q是真命题;③綈p∧綈q是假命题;④綈p∨q是假命题.其中真命题是________(填序号).答案①③解析若p∧q为真命题,则p和q都是真命题,所以①和③都是真命题.6.“a≥5且b≥2”的否定是________________.答案a<5或b<2解析本题考查命题的否定,“p∨q”的否定是“綈p∧綈q”,“p∧q”的否定是“綈p∨綈q”.7.分别写出由下列各组命题构成的“p∨q”“p∧q”,“綈p”形式的新命题,并判断其真假.(1)p:3是9的约数,q:3是18的约数.(2)p:菱形的对角线一定相等.q:菱形的对角线互相垂直.(3)p:方程x2+x-1=0的两实根符号相同.q:方程x2+x-1=0的两实根绝对值相等.(4)p:π是有理数,q:π是无理数.解(1)p∨q:3是9的约数或是18的约数,真命题;p∧q:3是9的约数且是18的约数,真命题;綈p:3不是9的约数,假命题.(2)p∨q:菱形的对角线一定相等或互相垂直,真命题;p ∧q :菱形的对角线一定相等且互相垂直,假命题; 綈p :菱形的对角线不一定相等,真命题.(3)p ∨q :方程x 2+x -1=0的两实根符号相同或绝对值相等,假命题; p ∧q :方程x 2+x -1=0的两实根符号相同且绝对值相等,假命题; 綈p :方程x 2+x -1=0的两实根符号不同,真命题. (4)p ∨q :π是有理数或是无理数,真命题; p ∧q :π是有理数且是无理数,假命题; 綈p :π不是有理数,真命题. 二、能力提升8.已知命题p 1:函数y =2x -2-x 在R 上为增函数, p 2:函数y =2x +2-x 在R 上为减函数.则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题有______. 答案 q 1,q 4解析 p 1是真命题,则綈p 1为假命题;p 2是假命题,则綈p 2为真命题;∴q 1:p 1∨p 2是真命题,q 2:p 1∧p 2是假命题.∴q 3:(綈p 1)∨p 2为假命题,q 4:p 1∧(綈p 2)为真命题. ∴真命题是q 1,q 4.9.设有两个命题:p :关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,q :函数y =-(5-2a )x 在R 上是减函数,若“p ∧q ”为真命题,则实数a 的取值范围是______. 答案 -2<a <2解析 因为“p ∧q ”为真命题,所以p ,q 均为真命题,故⎩⎪⎨⎪⎧(2a )2-16<0,5-2a >1,解得-2<a <2.10.已知a >0且a ≠1,设p :y =a x 是R 上的单调递减函数;q :函数g (x )=lg(2ax 2+2x +1)的值域为R ;如果“p ∧q ”为假命题,“p ∨q ”为真命题,则a 的取值范围是________. 答案 (12,1)解析 由题意知,p :0<a <1,q :0<a ≤12,当p 真q 假时,得12<a <1;当p 假q 真时,无解.11.写出下列各命题的否定形式及否命题: (1)面积相等的两个三角形是全等三角形; (2)若xy =0,则x =0或y =0.解 (1)否定形式:面积相等的两个三角形不一定是全等三角形. 否命题:面积不相等的两个三角形不一定是全等三角形. (2)否定形式:若xy =0,则x ≠0且y ≠0.否命题:若xy ≠0,则x ≠0且y ≠0.12.设有两个命题.命题p :不等式x 2-(a +1)x +1≤0的解集是∅;命题q :函数f (x )=(a +1)x 在定义域内是增函数.如果p ∧q 为假命题,p ∨q 为真命题,求a 的取值范围. 解 对于p :因为不等式x 2-(a +1)x +1≤0的解集是∅,所以Δ=[-(a +1)]2-4<0. 解不等式得:-3<a <1.对于q :f (x )=(a +1)x 在定义域内是增函数, 则有a +1>1,所以a >0.又p ∧q 为假命题,p ∨q 为真命题, 所以p 、q 必是一真一假. 当p 真q 假时有-3<a ≤0, 当p 假q 真时有a ≥1.综上所述,a 的取值范围为(-3,0]∪[1,+∞). 三、探究与创新13.已知命题p :方程a 2x 2+ax -2=0在[-1,1]上有解;命题q :只有一个实数x 满足不等式x 2+2ax +2a ≤0,若命题“p ∨q ”是假命题,求实数a 的取值范围. 解 由a 2x 2+ax -2=0,得(ax +2)(ax -1)=0. 显然a ≠0,∴x =-2a 或x =1a .若命题p 为真,∵x ∈[-1,1],故⎪⎪⎪⎪-2a ≤1或⎪⎪⎪⎪1a ≤1,∴|a |≥1. 若命题q 为真,即只有一个实数x 满足x 2+2ax +2a ≤0, 即抛物线y =x 2+2ax +2a 与x 轴只有一个交点. ∴Δ=4a 2-8a =0,∴a =0或a =2.∵命题“p ∨q ”为假命题,∴p ,q 均为假命题. ∴a 的取值范围是{a |-1<a <0或0<a <1}.此文档是由网络收集并进行重新排版整理.word 可编辑版本!。
苏教版数学高二-必修5导学案 3.2一元二次不等式(2)

3.2 一元二次不等式(2)【学习目标】1.从实际情境中抽象出一元二次不等式模型.2.利用一元二次不等式解决有关的实际问题.【重点难点】重点是将实际问题转化为一元二次不等式模型,并进行求解;难点是实际问题的表征.【学习过程】一、自主学习与交流反馈1.某种商品的进价为800元,出售时的标价为1200元,后来由于该商品积压,商品打折出售,但要保持利润率不低于5 %,则至少可打折.2.用一根长为100m的绳子能围成一个面积大于600m2的矩形吗?当长、宽分别为多少米时,所围成的矩形的面积最大?3.制作一个高为20cm的长方形容器,底面矩形的长比宽多10cm,并且容积不少于4000cm3问:底面矩形的宽至少应为多少?二.建构数学解应用题的一般步骤:审题、建模、解模、还原三.例题例1 某小型服装厂生产一种风衣,日销货量x件与货价p元/件之间的关系为p=160-2x,生产x件所需成本为C=500+30x元,问:该厂日产量多大时,日获利不少于1300元?例2汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素.在一个限速为40km/h的弯道上,甲乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场勘查测得甲车的刹车距离略超过12m,乙车的刹车距离略超过10m,又知甲乙两种车型的刹车距离s(m)与车速x(km/h)之间分别有如下关系:S甲=0.1x+0.01x2S乙=0.05x+0.005x2问:甲乙两车有无超速现象?四、巩固练习1.某商店服装柜在销售中发现,“宝乐”牌童装平均每天可售出20件,每件盈利40元,为迎接“六一”,商场决定适当降价,扩大销售,增加盈利,减少库存,经市场调查发现,如果每件童装降价2元,那么平均每天就可多出售4件,要想平均每天在销售这种童装上盈利不少于1200元,那么每件童装最少降价元.2.如图,以墙为一边,用篱笆围成长方形的场地,并用平行于一边的篱笆隔开,已知篱笆的总长为定值L ,若要使场地的面积不小于19L 2,则篱笆的宽度范围是3.如右图,从一块长80 cm ,宽 60 cm 铁片中间截去一个小长方形,使剩下的长方形框四周的宽度一样,并且小长方形的面积不小于原来铁片面积的一半,求其最大宽度.。
高中数学简单的逻辑联结词2 课件苏教版选修2-1

3、P∨ q的否定形式为真命题,则p,q的真假是: ┒P且 ┒q为真命题,即P假q假 4、若P∨ q是真命题, P∧q是假命题,则p,q的真假 是 : P 真 q假 或 P假 q真 5、若P∧q是真命题,则 ① P或┒q是真命题 ② P且┒q是真命题 ③ ┒P且┒q是假命题 ④ ┒P或q是假命题 ①③ 其中正确的是_______
ks5u精品课件
例3:判断下列命题的真假: (1)5是10的约数或是15的约数; (2)5是12的约数或是8的约数; (3)5是12的约数或是15的约数; (4)方程x2-3x-4=0的判别式大于或等于 零
“p或q”形式的复合命题真假:
当p、q中至少有一个为真时,p或q为真; 当p、q都为假时,p或q为假。
ks5u精品课件
例2、分别指出由下列各组命题构成的p或q、 p且q、非p形式的复合命题的真假: (1) p:2+2=5; q:3>2; (2) p:9是质数;q:8是12的约数; (3) p:1∈{1,2}; q:{1}
≠ {1,2}
ks5u精品课件
例3、判断下列P∨q、 P∧q、┒p命題形式的真假﹔
(1) x 2 0没有实数解
当p为真时,非p为假; 当p为假时,非p为真.
ks5u精品课件
“p且q”形式的复合命题真假:
例2:判断下列命题的真假: (1)正方形ABCD是矩形,且是菱形; (2)5是10的约数且是15的约数 (3)5是10的约数且是8的约数
当p、q为真时,p且q为真; 当p、q中至少有一个为假时,p且q为假。
ks5u精品课件
非p形式复合命题
p 非p
假 真
p且q形式复合命题
真
假
P或q形式复合命题 p 真 真 假 假 q 真 假 真 假 P或q
苏教版2018-2019高二数学新学案选修2-1:第一章 常用逻辑用语 §4 4.1~4.2

§4逻辑联结词“且”“或”“非”4.1逻辑联结词“且”4.2逻辑联结词“或”学习目标 1.了解联结词“且”“或”的含义.2.会用联结词“且”“或”联结或改写某些数学命题,并判断其命题的真假.知识点一“且”思考观察三个命题:①5是10的约数;②5是15的约数;③5是10的约数且是15的约数,它们之间有什么关系?答案命题③是将命题①②用“且”联结得到的新命题.梳理(1)定义:一般地,用联结词“且”把命题p和命题q联结起来,就得到一个新命题“p且q”.(2)当p,q都是真命题时,p且q是真命题;当p,q两个命题中有一个命题是假命题时,p 且q是假命题.将命题p和命题q以及p且q的真假情况绘制为命题“p且q”的真值表如下:命题“p且q”的真值表可简单归纳为“同真则真”.知识点二“或”思考观察三个命题:①3>2;②3=2;③3≥2,它们之间有什么关系?答案命题③是命题①②用逻辑联结词“或”联结得到的新命题.梳理(1)定义:一般地,用联结词“或”把命题p和命题q联结起来,就得到一个新命题“p或q”.(2)当p,q两个命题有一个命题是真命题时,p或q是真命题;当p,q两个命题都是假命题时,p或q是假命题.将命题p和命题q以及p或q的真假情况绘制为命题“p或q”的真值表如下:命题“p或q”的真值表可简单归纳为“假假才假”.1.逻辑联结词“且”“或”只能出现在命题的结论中.(×)2.“p且q为假命题”是“p为假命题”的充分条件.(×)3.当p,q都为假命题时,p且q才为假命题.(×)4.若p:sin x≥2,q:任意x∈R,x2-x+1>0,则p或q为假命题.(×)类型一含有“且”“或”命题的构成命题角度1简单命题与复合命题的区分例1指出下列命题的形式及构成它的命题.(1)向量既有大小又有方向;(2)矩形有外接圆或有内切圆;(3)2≥2.考点“且”“或”的概念题点把命题写成“p且q”或“p或q”的形式解(1)是p且q形式命题.其中p:向量有大小,q:向量有方向.(2)是p或q形式命题.其中p:矩形有外接圆,q:矩形有内切圆.(3)是p或q形式命题.其中p:2>2,q:2=2.反思与感悟不含有逻辑联结词的命题是简单命题;由简单命题与逻辑联结词“或”“且”构成的命题是复合命题.判断一个命题是简单命题还是复合命题,不能仅从字面上看它是否含有“或”“且”等逻辑联结词,而应从命题的结构来看是否用逻辑联结词联结两个命题.如“四边相等且四角相等的四边形是正方形”不是“且”联结的复合命题,它是真命题,而用“且”联结的命题“四边相等的四边形是正方形且四角相等的四边形是正方形”是假命题.跟踪训练1命题“菱形对角线垂直且平分”为________形式复合命题.考点“且”的概念题点把命题写成“p且q”的形式答案p且q命题角度2用逻辑联结词构造新命题例2分别写出下列命题的“p且q”“p或q”形式的命题.(1)p:梯形有一组对边平行,q:梯形有一组对边相等;(2)p:-1是方程x2+4x+3=0的解,q:-3是方程x2+4x+3=0的解.考点“且”“或”的概念题点把命题写成“p且q”或“p或q”的形式解(1)p或q:梯形有一组对边平行或有一组对边相等.p且q:梯形有一组对边平行且有一组对边相等.(2)p或q:-1或-3是方程x2+4x+3=0的解.p且q:-1和-3是方程x2+4x+3=0的解.反思与感悟用逻辑联结词“或”“且”联结p,q构成新命题时,在不引起歧义的前提下,可以把p,q中的条件或结论合并.跟踪训练2指出下列命题的形式及构成它的简单命题.(1)96是48与16的倍数;(2)不等式x 2-x -2>0的解集是{x |x <-1或x >2}. 考点 “且”“或”的概念题点 把命题写成“p 且q ”或“p 或q ”的形式解 (1)p 且q :p :96是48的倍数;q :96是16的倍数. (2)p 或q :p :不等式x 2-x -2>0的解集是{x |x <-1}, q :不等式x 2-x -2>0的解集是{x |x >2}.类型二 “p 且q ”和“p 或q ”形式命题的真假判断 例3 分别指出“p 或q ”“p 且q ”的真假.(1)p :函数y =sin x 是奇函数;q :函数y =sin x 在R 上单调递增; (2)p :直线x =1与圆x 2+y 2=1相切;q :直线x =12与圆x 2+y 2=1相交.考点 “p 且q ”和“p 或q ”形式命题真假性判断 题点 判断“p 且q ”和“p 或q ”形式命题的真假 解 (1)∵p 真,q 假,∴“p 或q ”为真,“p 且q ”为假. (2)∵p 真,q 真,∴“p 或q ”为真,“p 且q ”为真.反思与感悟 形如p 或q ,p 且q 命题的真假根据真值表判定.跟踪训练3 分别指出由下列各组命题构成的“p 或q ”“p 且q ”形式的命题的真假. (1)p :3是无理数,q :π不是无理数; (2)p :集合A =A ,q :A ∪A =A ;(3)p :函数y =x 2+3x +4的图像与x 轴有公共点,q :方程x 2+3x -4=0没有实数根. 考点 “p 且q ”和“p 或q ”形式命题真假性判断 题点 判断“p 且q ”和“p 或q ”形式命题的真假 解 (1)∵p 真,q 假,∴“p 或q ”为真,“p 且q ”为假. (2)∵p 真,q 真,∴“p 或q ”为真,“p 且q ”为真. (3)∵p 假,q 假,∴“p 或q ”为假,“p 且q ”为假. 类型三 已知复合命题的真假求参数范围例4 已知p :方程x 2+mx +1=0有两个不相等的负根,q :方程4x 2+4(m -2)x +1=0无实数根,若p 或q 为真,p 且q 为假,求m 的取值范围. 考点 “p 或q ”“p 且q ”形式命题真假性的判断题点 由“p 或q ”“p 且q ”形式命题的真假求参数的取值范围 解 因为p :方程x 2+mx +1=0有两个不相等的负根,所以⎩⎪⎨⎪⎧Δ=m 2-4>0,m >0,所以m >2.因为q :方程4x 2+4(m -2)x +1=0无实数根,所以Δ<0,即16(m -2)2-16<0, 所以16(m 2-4m +3)<0,所以1<m <3. 因为p 或q 为真,p 且q 为假,所以p 为真,q 为假或者p 为假,q 为真.即⎩⎪⎨⎪⎧ m >2,m ≤1或m ≥3或⎩⎪⎨⎪⎧m ≤2,1<m <3, 解得m ≥3或1<m ≤2.所以m 的取值范围为{m |m ≥3或1<m ≤2}. 引申探究本例中若将“p 且q 为假”改为“p 且q 为真”,求实数m 的取值范围. 解 同例得当p 为真命题时,m >2,当q 为真命题时, 1<m <3.因为p 或q 为真,p 且q 为真,所以p ,q 均为真命题,即⎩⎪⎨⎪⎧m >2,1<m <3,解得2<m <3,所以m 的取值范围为(2,3). 反思与感悟 应用逻辑联结词求参数范围的四个步骤 (1)分别求出命题p ,q 为真时对应的参数集合A ,B ; (2)讨论p ,q 的真假;(3)由p ,q 的真假转化为相应的集合的运算; (4)求解不等式或不等式组得到参数的取值范围.跟踪训练4 已知p :(x +2)(x -3)≤0,q :|x +1|≥2,若“p 且q ”为真,则实数x 的取值范围是________.考点 “p 且q ”形式命题真假性的判断题点 由“p 且q ”形式命题的真假求参数的取值范围 答案 [1,3]解析 由(x +2)(x -3)≤0,解得-2≤x ≤3. 由|x +1|≥2,解得x ≥1或x ≤-3.∵“p 且q ”为真,∴⎩⎪⎨⎪⎧-2≤x ≤3,x ≥1或x ≤-3,解得1≤x ≤3,则实数x 的取值范围是[1,3].1.已知p :2+3=5,q :5<4,则下列判断正确的是( ) A .p 为假命题 B .q 为真命题 C .p 或q 为真命题D .p 且q 为真命题考点 “p 且q ”“p 或q ”形式命题真假性的判断 题点 判断“p 且q ”“p 或q ”形式命题的真假 答案 C解析 由题意,知p 为真命题,q 为假命题.2.由下列各组命题构成的新命题“p 或q ”“p 且q ”都为真命题的是( ) A .p :4+4=9,q :7>4B .p :a ∈{a ,b ,c },q :{a }⊆{a ,b ,c }C .p :15是质数,q :8是12的约数D .p :2是偶数,q :2不是质数考点 “p 且q ”“p 或q ”形式命题真假性的判断 题点 判断“p 且q ”“p 或q ”形式命题的真假 答案 B3.已知命题p ,q ,若p 为真命题,则( ) A .p 且q 必为真 B .p 且q 必为假 C .p 或q 必为真D .p 或q 必为假考点 “p 且q ”“p 或q ”形式命题真假性的判断 题点 判断“p 且q ”“p 或q ”形式命题的真假 答案 C解析 p 或q ,一真则真,故必有p 或q 为真.4.已知p :函数y =sin x 的最小正周期为π2,q :函数y =sin2x 的图像关于直线x =π对称,则p 且q 是________命题.(填“真”或“假”) 考点 “p 且q ”形式命题真假性的判断 题点 判断“p 且q ”形式命题的真假 答案 假解析 由题意,知命题p 为假命题,命题q 也是假命题,故p 且q 是假命题.5.已知命题p :函数f (x )=(x +m )(x +4)为偶函数;命题q :方程x 2+(2m -1)x +4-2m =0的一个根大于2,一个根小于2,若p 且q 为假,p 或q 为真,求实数m 的取值范围. 考点 “p 且q ”“p 或q ”形式命题真假性的判断题点由“p且q”“p或q”形式命题的真假求参数的取值范围解若命题p为真,则由f(x)=x2+(m+4)x+4m,得m+4=0,解得m=-4.设g(x)=x2+(2m-1)x+4-2m,其图像开口向上,若命题q为真,则g(2)<0,即22+(2m-1)×2+4-2m<0,解得m<-3.由p且q为假,p或q为真,得p假q真或p真q假.若p假q真,则m<-3且m≠-4;若p真q假,则m无解.所以实数m的取值范围为(-∞,-4)∪(-4,-3).1.判断不含有逻辑联结词的命题构成形式关键是:弄清构成它的命题条件、结论.2.对用逻辑联结词联结的复合命题的真假进行判断时,首先找出构成复合命题的简单命题,判断简单命题的真假,然后分析构成形式,根据构成形式判断复合命题的真假.一、选择题1.“p 且q 是真命题”是“p 或q 是真命题”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件考点 “p 或q ”“p 且q ”形式命题真假性的判断 题点 判断“p 或q ”“p 且q ”形式命题的真假 答案 A解析 p 且q 是真命题⇒p 是真命题,且q 是真命题⇒p 或q 是真命题;p 或q 是真命题⇏p 且q 是真命题.2.命题p :函数y =log a (ax +2a )(a >0且a ≠1)的图像必过定点(-1,1),命题q :如果函数y =f (x )的图像关于(3,0)对称,那么函数y =f (x -3)的图像关于原点对称,则有( ) A .“p 且q ”为真 B .“p 或q ”为假 C .p 真q 假D .p 假q 真考点 “p 或q ”“p 且q ”形式命题真假性的判断 题点 判断“p 或q ”“p 且q ”形式命题的真假 答案 C解析 由命题p 知,ax +2a =a ,解得x =-1,故过定点(-1,1),而命题q 为假命题. 3.设命题p :函数y =sin2x 的最小正周期为π2;命题q :函数y =cos x 的图像关于直线x =π2对称,则下列判断正确的是( ) A .p 为真 B .q 为真 C .p 且q 为假D .p 或q 为真考点 “p 且q ”形式命题真假性的判断 题点 判断“p 且q ”形式命题的真假 答案 C解析 函数y =sin2x 的最小正周期为2π2=π,故p 为假命题;x =π2不是y =cos x 的对称轴,命题q 为假命题,故p 且q 为假.故选C.4.p :方程x 2+2x +a =0有实数根,q :函数f (x )=(a 2-a )x 是增函数,若“p 且q ”为假命题,“p 或q ”为真命题,则实数a 的取值范围是( ) A .a >0B .a ≥0C .a >1D .a ≥1考点 “p 且q ”“p 或q ”形式命题真假性的判断题点 由“p 且q ”“p 或q ”形式命题的真假求参数的取值范围 答案 B解析 ∵方程x 2+2x +a =0有实数根, ∴Δ=4-4a ≥0,解得a ≤1. ∵函数f (x )=(a 2-a )x 是增函数, ∴a 2-a >0,解得a <0或a >1.∵p 且q 为假命题,p 或q 为真命题,∴p ,q 中一真一假. ①当p 真q 假时,得0≤a ≤1; ②当p 假q 真时,得a >1.由①②,得所求实数a 的取值范围是a ≥0.5.命题p :“x >0”是“x 2>0”的必要不充分条件,命题q :△ABC 中,“A >B ”是“sin A >sin B ”的充要条件,则( ) A .p 真q 假 B .p 且q 为真 C .p 或q 为假D .p 假q 真考点 “p 或q ”“p 且q ”形式命题真假性的判断 题点 判断“p 或q ”“p 且q ”形式命题的真假 答案 D解析 命题p 假,命题q 真.6.命题p :点P 在直线y =2x -3上;q :点P 在曲线y =-x 2上,则使“p 且q ”为真命题的一个点P 的坐标是( ) A .(0,-3) B .(1,2) C .(1,-1)D .(-1,1)考点 “p 且q ”形式命题真假性的判断 题点 判断“p 且q ”形式命题的真假 答案 C解析 点P (x ,y )满足⎩⎪⎨⎪⎧y =2x -3,y =-x 2, 解得P (1,-1)或P (-3,-9),故选C. 7.已知p :x 2-2x -3<0;q :1x -2<1,若p 且q 为真,则x 的取值范围是( ) A .(-1,2) B .(-1,3) C .(3,+∞)D .(-∞,2)考点 “p 且q ”形式命题真假性的判断 题点 由“p 且q ”形式命题的真假求参数的值答案 A解析 由命题p ,得-1<x <3, 当q 为真命题时,得x <2或x >3,因为p 且q 为真命题,所以⎩⎪⎨⎪⎧-1<x <3,x <2或x >3,即-1<x <2.二、填空题8.设p :2x +y =3,q :x -y =6,若p 且q 为真命题,则x =________,y =________. 考点 “p 且q ”形式命题真假性的判断 题点 由“p 且q ”形式命题的真假求参数的值 答案 3 -3解析 若p 且q 为真命题,则p ,q 均为真命题,所以有⎩⎪⎨⎪⎧ 2x +y =3,x -y =6,解得⎩⎪⎨⎪⎧x =3,y =-3.9.若“x ∈[2,5]或x ∈{x |x <1或x >4}”是假命题,则x 的取值范围是________. 考点 “p 或q ”形式命题真假性的判断题点 由“p 或q ”形式命题的真假求参数的取值范围 答案 [1,2)解析 x ∈[2,5]或x ∈(-∞,1)∪(4,+∞), 即x ∈(-∞,1)∪[2,+∞),由于命题是假命题,所以1≤x <2,即x ∈[1,2).10.设p :关于x 的不等式a x >1的解集是{x |x <0},q :函数y =lg(ax 2-x +a )的定义域为R ,如果p 和q 有且仅有一个为真,则a 的取值范围为______________. 考点 “p 或q ”形式命题真假性的判断题点 由“p 或q ”形式命题的真假求参数的取值范围 答案 ⎝⎛⎦⎤0,12∪[)1,+∞ 解析 若p 真,则0<a <1,若p 假,则a ≥1或a ≤0.若q 真,有⎩⎪⎨⎪⎧a >0,Δ=1-4a 2<0,即a >12. 若q 假,则a ≤12,又p 和q 有且仅有一个为真,所以当p 真q 假时,0<a ≤12,当p 假q 真时,a ≥1.综上所述,a ∈⎝⎛⎦⎤0,12∪[)1,+∞.三、解答题11.判断下列复合命题的真假.(1)等腰三角形顶角的平分线平分底边并且垂直于底边;(2)不等式x 2-2x +1>0的解集为R 且不等式x 2-2x +2≤1的解集为∅.考点 “p 且q ”形式命题真假性的判断题点 判断“p 且q ”形式命题的真假解 (1)这个命题是“p 且q ”形式的复合命题,其中p :等腰三角形顶角的平分线平分底边,q :等腰三角形顶角的平分线垂直于底边,因为p 真q 真,则“p 且q ”为真,所以该命题是真命题.(2)这个命题是“p 且q ”形式的复合命题,其中p :不等式x 2-2x +1>0的解集为R ,q :不等式x 2-2x +2≤1的解集为∅.因为p 假q 假,所以“p 且q ”为假,故该命题为假命题.12.已知p :c 2<c 和q :对任意x ∈R ,x 2+4cx +1>0,若p 或q 为真,p 且q 为假,求实数c 的取值范围.考点 “p 且q ”“p 或q ”形式命题真假性的判断题点 由“p 且q ”“p 或q ”形式命题的真假求参数的取值范围解 由不等式c 2<c ,得0<c <1.由对任意x ∈R ,x 2+4cx +1>0,得(4c )2-4<0,得-12<c <12. 由已知,得p 和q 必有一个为真、一个为假.当p 真q 假时,12≤c <1;当q 真p 假时,-12<c ≤0. 故实数c 的取值范围是⎝⎛⎦⎤-12,0∪⎣⎡⎭⎫12,1 13.设p :函数f (x )=lg(ax 2-4x +a )的定义域为R ;q :设a =(2x 2+x ,-1),b =(1,ax +2),不等式a ·b >0对任意x ∈(-∞,-1)恒成立.如果p 或q 为真命题,p 且q 为假命题,求实数a 的取值范围.考点 “p 或q ”“p 且q ”形式命题真假性的判断题点 由“p 或q ”“p 且q ”形式命题的真假求参数的取值范围解 若p 为真命题,则ax 2-4x +a >0对x ∈R 都成立,当a =0时,f (x )=lg(-4x )的定义域不为R ,不合题意,当a ≠0时.则(-4)2-4a 2<0且a >0,即⎩⎪⎨⎪⎧a >0,16-4a 2<0,解得a >2. 若q 为真命题,则由a ·b >0对任意x ∈(-∞,-1)恒成立,知2x 2+x -(ax +2)>0,即a >2x-2x+1对任意x ∈(-∞,-1)恒成立,则a >⎝⎛⎭⎫2x -2x +1max . 令g (x )=2x -2x+1,可知g (x )在(-∞,-1)上是增函数,当x =-1时取得最大值,g (x )max =1.故a ≥1.又p 或q 为真命题,p 且q 为假命题,则p ,q 中一个为真命题,另一个为假命题.若p 真q 假,则⎩⎪⎨⎪⎧ a >2,a <1,无解; 若p 假q 真,则⎩⎪⎨⎪⎧a ≤2,a ≥1,则1≤a ≤2. 综上,实数a 的取值范围为[1,2].四、探究与拓展14.命题p :1是集合{x |x 2<a }中的元素;命题q :2是集合{x |x 2<a }中的元素.若“p 且q ”是真命题,则a 的取值范围为________.考点 “p 且q ”形式命题真假性的判断题点 “p 且q ”形式命题的真假求参数的取值范围答案 (4,+∞)解析 由p 为真命题,得a >1,由q 为真命题,得a >4.因为p 且q 为真命题,所以⎩⎪⎨⎪⎧a >1,a >4,解得a >4.15.已知p :(x +1)(x -5)≤0,q :1-m ≤x ≤1+m (m >0).(1)若p 是q 的充分条件,求实数m 的取值范围;(2)若m =5,p 或q 为真命题,p 且q 为假命题,求实数x 的取值范围.考点 “p 且q ”“p 或q ”形式命题真假性的判断题点 由“p 且q ”“p 或q ”形式命题的真假求参数的取值范围解 (1)由(x +1)(x -5)≤0,得-1≤x ≤5,∵p 是q 的充分条件,∴⎩⎪⎨⎪⎧1+m ≥5,1-m ≤-1, 解得m ≥4.(2)当m =5时,q :-4≤x ≤6.根据已知,p ,q 一真一假,当p 真q 假时,⎩⎪⎨⎪⎧ -1≤x ≤5,x >6或x <-4,无解; 当p 假q 真时,⎩⎪⎨⎪⎧x >5或x <-1,-4≤x ≤6,解得-4≤x<-1或5<x≤6.综上,实数x的取值范围是[-4,-1)∪(5,6].。
高二数学 教案 1.2 简单逻辑联结词_苏教版_选修2-1(2)

1.2 简单逻辑联结词(2) 编写:刘守仁 审核:黄爱华一、知识要点 1.区分命题的否定和否命题;2.反证法的证题思想及步骤;3.命题“p 或q ”与“p 且q ”及“非p ”的应用。
二、例题例1.写出下列命题的否命题及命题的否定形式,并判断真假。
⑴若0m >,则关于x 的方程20x x m +-=有实根;⑵若,x y 都是奇数,则x y +是奇数;⑶若0abc =,则a b c 、、中至少有一个为0。
例2.已知::p 方程210x mx ++=有两个不等的负实根,:q 方程244(2)10x m x +-+=无实数,若“p 或q ”为真,“p 且q ”为假,求m 的取值范围。
例 3.已知,,a b c 均为实数,且2222,2,2236a x yb y zc z x πππ=-+=-+=-+,求证,,a b c 至少有一个大于0。
三、课堂检测1.写出下列命题的否定形式⑴若220x y +=,则,x y 全为零;⑵等腰三角形有两个内角相等;⑶自然数的平方是正数。
2.已知2:6p x x -≥,:q x Z ∈,若“p 或q ”和“非q ”都是假命题,求x 的值。
四、回顾小结1.会用反证法证明;2.正确求出命题的否命题和命题的否定形式。
五、课后作业1.命题“:p 若0a >,则20a >”的否定是 ,命题p 的否命题是 ;2.由命题“:p 函数234y x x =++的图象与x 轴有公共点,命题:q 方程2340x x +-=没有实根”构成的“p 或q ”、“p 且q ”、“非p ”形式的命题的真假分别是 ;3.已知:21:523,:045p x q x x ->++≥,非p 是非q 的 条件; 4.对于平面α和共面的直线,m n ,下列命题中真命题是 。
①若,m m n α⊥⊥,则n α∥;②若,m n αα∥∥,则m n ∥; ③若,m n αα⊂∥,则m n ∥; ④若,m n 与α所成的角相等,则m n ∥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
逻辑联结词(2)
目的:通过实例,要求学生理解逻辑联结词,“或”“且”“非”的含义,并能利用真值表,判断含有复合命题的真假。
过程:
一、复习:“命题”“复合命题”的概念
本堂课研究的问题是:概括简单命题的真假,讨论含有“或“且”“非”的复合命题的
真假。
二、先介绍“真值”:命题分“真”“假”两种判断结论。
也可用1表示“真”;
0表示“假”。
这里1与0表示真值,所以真值只能是1或0。
生活中常有“中间情况”从而诞生了“模糊逻辑”。
三、真值表:
1.非p形式:
例:命题P:5是10的约数(真)命题p:5是8的约数(假)
则命题非p:5不是10的约数(假)非p:5不是8的约数(真)结论:为真非为假、为假非为真
记忆:“真假相反”
2.p且q形式
例:命题p:5是10的约数(真) q:5是15的约数(真)
s:5是12的约数(假) r:5是8的约数(假)
则命题p且q: 5是10的约数且是15的约数(真)
p且q:5是10的约数且是8的约数(假)
p且q:5是12的约数且是8的约数(假)
记忆:“同真为真”(其余为假)“同假为假”(其余为真)
3.p或q形式仍看上例
则命题p或q: 5是10的约数或5是15的约数(真)
p或r:5是10的约数或5是8的约数(真)
s或r:5是12的约数或5是8的约数(假)
四、几个注意问题:
1.逻辑中的“或”与日常生活中的“或”是有区别的
例:“苹果是长在树上或长在地里”生活中这句话不妥,但在逻辑中却是真命题。
2.逻辑联结词中“或”与“且”的意义:
举出一些生活例子,见 P28 洗衣机例子开门的事
3.学生讨论:举例
五、例题:
六、作业。