学案34一元二次不等式及其解法
高三数学一元二次不等式及其解法教案范例

高三数学一元二次不等式及其解法教案范例一、教学目标1.理解一元二次不等式的概念及其与一元二次方程的关系。
2.掌握一元二次不等式的解法及解集表示方法。
3.能够运用一元二次不等式解决实际问题。
二、教学重点与难点1.教学重点:一元二次不等式的解法及解集表示方法。
2.教学难点:一元二次不等式解法中的分类讨论。
三、教学过程1.导入新课(1)回顾一元二次方程的解法,引导学生思考如何将一元二次方程转化为一次方程来求解。
(2)引出一元二次不等式的概念,让学生初步了解一元二次不等式的解法。
2.知识讲解(1)讲解一元二次不等式的定义:形如ax^2+bx+c>0(a≠0)的不等式称为一元二次不等式。
(2)讲解一元二次不等式的解法:a.将一元二次不等式化为标准形式:ax^2+bx+c>0。
b.然后,求解对应的一元二次方程ax^2+bx+c=0的根。
c.根据根的情况,将实数轴分为三个区间,分别讨论每个区间内的不等式解。
d.将三个区间的解合并,得到一元二次不等式的解集。
(3)讲解一元二次不等式解集的表示方法:a.使用区间表示法,如(-∞,x1)∪(x2,+∞),其中x1、x2为方程ax^2+bx+c=0的根。
b.使用集合表示法,如{x|x<x1或x>x2}。
3.实例讲解(1)讲解例题1:解一元二次不等式x^24x+3>0。
a.将不等式化为标准形式:x^24x+3>0。
b.求解对应的一元二次方程x^24x+3=0,得到根x1=1,x2=3。
c.根据根的情况,将实数轴分为三个区间:(-∞,1)、(1,3)、(3,+∞)。
d.分别讨论每个区间内的不等式解,得到解集为(-∞,1)∪(3,+∞)。
(2)讲解例题2:解一元二次不等式2x^25x3<0。
a.将不等式化为标准形式:2x^25x3<0。
b.求解对应的一元二次方程2x^25x3=0,得到根x1=-1/2,x2=3。
c.根据根的情况,将实数轴分为三个区间:(-∞,-1/2)、(-1/2,3)、(3,+∞)。
学案4一元二次不等式及其解法(1)

学案4—一元二次不等式及其解法[课程标准]1.会从实际情境中抽象出一元二次不等式模型.2.通过函数图象理解一元二次不等式与相应的二次函数、一元二次方程的关系.3.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.[知识梳理]1.一元一次不等式ax>b(a≠0)的解集(1)当a>0时,解集为.(2)当a<0时,解集为.2.三个“二次”间的关系(1)一元二次不等式ax2+bx+c>0对任意实数x恒成立⇔(2)一元二次不等式ax2+bx+c<0对任意实数x恒成立⇔思考辨析判断正误(请在括号中打“√”或“×”)(1)若不等式ax2+bx+c<0(a≠0)的解集为(x1,x2),则必有a>0.()(2)若方程ax2+bx+c=0(a≠0)没有实数根,则不等式ax2+bx+c>0的解集为R.()(3)不等式ax2+bx+c≤0在R上恒成立的条件是a<0且Δ=b2-4ac≤0.()(4)若二次函数y=ax2+bx+c的图象开口向下,则不等式ax2+bx+c<0的解集一定不是空集.() [典例精讲]考点一一元二次不等式的解法(基础型)命题点1不含参的不等式【例1】求下列不等式的解集(1)08822>+-xx (2)03722<+-xx (3)04432>-+-yy(4)2x+1x-5≥-1 (5) | x2-x-2|≤4命题点2含参不等式【例2】解关于x的不等式ax2-(a+1)x+1<0(a∈R)【跟踪训练】(1)y=log2(3x2-2x-2)的定义域是________________.(2)已知不等式ax2-bx-1>0的解集是⎩⎨⎧⎭⎬⎫x⎪⎪-12<x<-13,则不等式x2-bx-a≥0的解集是________.考点二一元二次不等式恒成立问题(综合型)命题点1在R上的恒成立问题【例3】已知函数f (x)=mx2-mx-1.若对于x∈R,f (x)<0恒成立,求实数m的取值范围.命题点2在给定区间上的恒成立问题【例4】已知函数f (x)=mx2-mx-1.若对于x∈[1,3],f (x)<5-m恒成立,求实数m的取值范围.【若将“f (x)<5-m恒成立”改为“存在x,使 f (x)<5-m成立”,如何求m的取值范围?命题点3给定参数范围的恒成立问题【例5】若mx2-mx-1<0对于m∈[1,2]恒成立,求实数x的取值范围.思维升华解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.课时作业41.关于x的不等式ax+b>0的解集是(1,+∞),则关于x的不等式(ax+b)(x-2)<0的解集是() A.(-∞,1)∪(2,+∞) B.(-1,2) C.(1,2) D.(-∞,-1)∪(2,+∞)2.在关于x的不等式x2-(a+1)x+a<0的解集中至多包含1个整数,则a的取值范围是() A.(-3,5) B.(-2,4)C.[-1,3] D.[-2,4]3.“不等式x 2-x +m >0在R 上恒成立”的充要条件是( ) A .m >14 B .m <14C .m <1D .m >14.若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是( ) A .[-4,1] B .[-4,3] C .[1,3] D .[-1,3]5.若存在实数x ∈[2,4],使x 2-2x +5-m <0成立,则m 的取值范围为( ) A .(13,+∞) B .(5,+∞) C .(4,+∞)D .(-∞,13) 6.(多选)下列四个解不等式,正确的有( ) A .不等式2x 2-x -1>0的解集是{x |x >2或x <1}B .不等式-6x 2-x +2≤0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-23或x ≥12C .若不等式ax 2+8ax +21<0的解集是{x |-7<x <-1},那么a 的值是3D .关于x 的不等式x 2+px -2<0的解集是(q,1),则p +q 的值为-17.(多选)已知关于x 的不等式kx 2-2x +6k <0(k ≠0),则下列说法正确的是( ) A .若不等式的解集为{x |x <-3或x >-2},则k =-25B .若不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈R ,x ≠1k ,则k =66 C .若不等式的解集为R ,则k <-66D .若不等式的解集为∅,则k ≥668.(多选)关于x 的不等式(ax -1)(x +2a -1)>0的解集中恰有3个整数,则a 的值可以为( ) A .-12 B .1 C .-1 D .29..已知关于x 的不等式-x 2+ax +b >0. (1)若该不等式的解集为(-4,2),求a ,b 的值; (2)若b =a +1,求此不等式的解集.学案4-------一元二次不等式及其解法【例2】.解 原不等式变为(ax -1)(x -1)<0,因为a >0,所以⎝⎛⎭⎫x -1a (x -1)<0. 所以当a >1时,解得1a <x <1;当a =1时,解集为∅;当0<a <1时,解得1<x <1a .综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1<x <1a ;当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a <x <1. 【跟踪训练】(1)答案 答案 ⎝ ⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞解析 由题意,得3x 2-2x -2>0,令3x 2-2x -2=0,得x 1=1-73,x 2=1+73,∴3x 2-2x -2>0的解集为⎝ ⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞. (2)答案 {x |x ≥3或x ≤2}解析 由题意,知-12,-13是方程ax 2-bx -1=0的两个根,且a <0,所以⎩⎨⎧-12+⎝⎛⎭⎫-13=ba,-12×⎝⎛⎭⎫-13=-1a ,解得⎩⎪⎨⎪⎧a =-6,b =5.故不等式x 2-bx -a ≥0为x 2-5x +6≥0,解得x ≥3或x ≤2.【例4】.解 要使f (x )<-m +5在x ∈[1,3]上恒成立,即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立.方法一 令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3),即7m -6<0,所以m <67,所以0<m <67;当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1),即m -6<0,所以m <6,所以m <0.综上所述,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪m <67. 方法二 因为x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.所以m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪m <67. 解 由题意知f (x )<5-m 有解,即m <6x 2-x +1有解,则m <⎝⎛⎭⎫6x 2-x +1max ,又x ∈[1,3],得m <6,即m 的取值范围为(-∞,6).【例5】.解 设g (m )=mx 2-mx -1=(x 2-x )m -1,其图象是直线,当m ∈[1,2]时,图象为一条线段,则⎩⎪⎨⎪⎧ g (1)<0,g (2)<0,即⎩⎪⎨⎪⎧x 2-x -1<0,2x 2-2x -1<0,故x 的取值范围为⎝⎛⎭⎪⎫1-32,1+32.课时作业41.答案 C 解析 关于x 的不等式ax +b >0的解集是(1,+∞),∴a >0,且-ba =1,∴关于x 的不等式(ax +b )(x -2)<0可化为⎝⎛⎭⎫x +b a (x -2)<0,即(x -1)(x -2)<0, ∴不等式的解集为{x |1<x <2}.故选C.2.解析 因为关于x 的不等式x 2-(a +1)x +a <0可化为(x -1)(x -a )<0, 当a >1时,不等式的解集为{x |1<x <a },当a <1时,不等式的解集为{x |a <x <1},当a =1时,不等式的解集为∅,要使得解集中至多包含1个整数,则a =1或1<a ≤3或-1≤a <1, 所以实数a 的取值范围是a ∈[-1,3],故选C. 3.解析 ∵不等式x 2-x +m >0在R 上恒成立,∴Δ=(-1)2-4m <0,解得m >14,又∵m >14,∴Δ=1-4m <0,∴“m >14”是“不等式x 2-x +m >0在R 上恒成立”的充要条件.故选A.4.解析 原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3,综上可得-4≤a ≤3.5.解析 m >x 2-2x +5,设f (x )=x 2-2x +5=(x -1)2+4,x ∈[2,4],当x =2时f (x )min =5,∃x ∈[2,4]使x 2-2x +5-m <0成立,即m >f (x )min ,∴m >5.故选B. 6.解析 对于A ,∵2x 2-x -1=(2x +1)(x -1),∴由2x 2-x -1>0得(2x +1)(x -1)>0,解得x >1或x <-12,∴不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >1或x <-12.故A 错误;对于B ,∵-6x 2-x +2≤0,∴6x 2+x -2≥0, ∴(2x -1)(3x +2)≥0,∴x ≥12或x ≤-23.故B 正确;对于C ,由题意可知-7和-1为方程ax 2+8ax+21=0的两个根.∴-7×(-1)=21a ,∴a =3.故C 正确;对于D ,依题意q,1是方程x 2+px -2=0的两根,q +1=-p ,即p +q =-1,故D 正确.7.解析 对于A ,∵不等式的解集为{x |x <-3或x >-2},∴k <0,且-3与-2是方程kx 2-2x +6k =0的两根,∴(-3)+(-2)=2k ,解得k =-25.故A 正确;对于B ,∵不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈R ,x ≠1k , ∴⎩⎪⎨⎪⎧k <0,Δ=4-24k 2=0,解得k =-66.故B 错误; 对于C ,由题意,得⎩⎪⎨⎪⎧k <0,Δ=4-24k 2<0,解得k <-66.故C 正确;对于D ,由题意,得⎩⎪⎨⎪⎧k >0,Δ=4-24k 2≤0,解得k ≥66.故D 正确.8答案 AC 解析 由题意知a <0,则排除B ,D ;对于A 项,当a =-12时,⎝⎛⎭⎫-12x -1(x -2)>0,即(x +2)(x -2)<0,解得-2<x <2,恰有3个整数,符合题意;对于C 项,当a =-1时,(-x -1)(x -3)>0,即(x +1)(x -3)<0,解得-1<x <3,恰有3个整数,符合题意,故选AC.9.解 (1)根据题意得⎩⎪⎨⎪⎧2-4=a ,2×(-4)=-b ,解得a =-2,b =8.(2)当b =a +1时,-x 2+ax +b >0⇔x 2-ax -(a +1)<0, 即[x -(a +1)](x +1)<0.当a +1=-1,即a =-2时,原不等式的解集为∅; 当a +1<-1,即a <-2时,原不等式的解集为(a +1,-1); 当a +1>-1,即a >-2时,原不等式的解集为(-1,a +1).综上,当a <-2时,不等式的解集为(a +1,-1);当a =-2时,不等式的解集为∅;当a >-2时, 不等式的解集为(-1,a +1)。
一元二次不等式及其解法教案

一元二次不等式及其解法教案教学目标1.知识与技能:二次不等式与会解一元二次不等式及含参数的一元二次不等式。
2.过程与方法:通过学案让学生有目的复习,自主预习。
通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系,进而探究一元二次不等式和含参数不等式的解法;以函数为载体,突破一元二次不等式恒成立问题。
3.情感态度与价值观:培养探究合作的能力和推证能力及解决问题的能力。
2学情分析本节课内容的地位体现在它的基础性,作用体现在它的工具性.一元二次不等式的解法是一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合、函数等知识的巩固和运用具有重要作用,也与后面的线形规划、直线与圆锥曲线以及导数等内容密切相关,许多问题的解决都会借助一元二次不等式的解法。
因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用。
我班中等程度的学生占大多数,程度较高与程度较差的学生占少数。
学生数学基础差异不大,但进一步钻研的精神相差较大。
学生已经学习了一元一次不等式(组)的解法和二次函数的零点,会画一元二次函数的图象,也会通过图象去研究理解函数的性质,初步的数形结合知识可以使学生写出一元二次不等式的解集,因此从学生熟悉的二次函数的图象入手介绍一元二次不等式的解法,从认知规律上讲,应该是容易理解的。
在教学中加强师生互动,尽多的给学生动手的机会,让学生让学生观察、讨论,在实践中体验三者的联系,从而直观地归纳、总结、分析出三者的联系成为可能。
3重点难点1.重点:会解一元二次不等式及含参数不等式。
2.难点:一元二次不等式恒成立应用问题。
4教学过程4.1复习课教学活动活动1【活动】一元二次不等式及其解法引入:以高考考点及类型复习引入学生复习学案上的高考考点明确高考考点教学过程:一快速起跑——学案总结明确学习目标,总结学生学案的完成情况题。
二完善学案——自主学习总结1、一元二次不等式与相应的二次函数、一元二次方程的联系。
一元二次不等式及其解法学案

平
市
第
一
高
级
中
学
2013 级高一年级数学学科学案
学案类型: 新课
四平市第一高级中学
材料序号:
12
编稿教师: 刘强
审稿教师: 刘 强
课题:3.2 一元二次不等式及其解法
一、学习目标: 理解一元二次方程、 一元二次不等式与二次函数的关系,掌握图象法解 一元二次不等式的方法;培养数形结合的能力,培养分类讨论的思想方法。 二、学习重、难点: 教学重点:从实际情境中抽象出一元二次不等式模型;一元二次不等式的解法。 教学难点:理解二次函数、一元二次方程与一元二次不等式解集的关系。 三、知识导学: 1、设相应的一元二次方程 ax 2 bx c 0a 0 的两根为 x1、x2 且 x1 x2 , b 2 4ac ,则不等式的解的各种情况如下表:
x1 x2
b 2a
无实根
ax 2 bx c 0 (a 0)的解集 ax 2 bx c 0 (a 0)的解集 ax 2 bx c 0 (a 0)的解集 ax 2 bx c 0 (a 0)的解集
x x x 或x x
参考答案
1 {x | x } 。 【例 1】 (1) 注意到 4 x 2 4 x 1 (2 x 1) 2 0 , 所以原不等式的解集为: 2 2 2 (2)不等式可化为 x 2 x 3 0 ,因为 8 0 ,方程 x 2 x 3 0 无 实根。而 y x 2 2 x 3 的图像开口向上,所以原不等式的解集为 。 【例 2】 a 0 时,解集为: {x | 2a x a} ; a 0 时,解集为 ; a 0 时,解集为 {x | x a或x 2a} 。 1 1 2 x 39.5 。 【例 3】 设这辆汽车刹车前的车速至少为 x km / h , 根据题意: x 20 180 移项整理,得: x 2 9 x 7110 0 。显然 0 ,方程 x 2 9 x 7110 0 有 两个实根, 即 x1 88.94 ,x2 79.94 。 然后画出函数 y x 2 9 x 7110 的 图像。由图象得不等式的解集为 {x | x 88.94或x 79.94} 。 在这个问题中, x 0 ,所以这辆汽车刹车前的车速至少为 79.94 km / h 。 m 0 6 【例 4】 (1)由题意知: ,解得: m ; 6 4 4 m 6 m 0 m 0 6 (2)由题意得: ,解得: m 。 6 4 4 m 6 m 0
一元二次不等式及其解法精选全文 (3)

B1、当a为何值时,不等式(a2-1)x2-(a-1)x-1<0的解是全体实数?
B2、关于x的方程 的两个根中一个比2大,一个比2小,求实数m的取值范围。
B3.已知关于X的不等式 的解集是
则实数
作业:A课本78页练习题A 2、4
B练习题B 1、2
⊿> 0
⊿=0
⊿< 0
二次函数
y=ax2+bx+c
(a >0)的图象
方程ax2+bx+c=0
的根
ax2+bx+c>0
的解集
ax2+bx+c<0
的解集
思考总结:当a小于零时二次不等式解得情况
练习:
(1)x2-5x+6<0;(2) 3x2-x-4>0;
(3) 2x2+4x+3>0;(4)9x2-6x+1≤0;
方法总结:
课堂检测:A为基础题(必做)B为中档题(选做)
A1、解下列不等式(1)4x2-4x>15 (2) 14 -4x2≥x(3)
A2、m是什么实数时,关于x的方程mx2-(1-m)x+m=0没有实数根?
A3、求下列函数的定义域:(1)f(x)= (2)
A4.若 则不等式 的解集是________.
(5)-6x2-x+2<0;(6) (x2+3x+2)(x2-2x-3)≥0
例2:解不等式
练习:(1) (2) (3)
小结:1.分式不等式的解法;
2.穿根法:保证x系数为正;右上方开始穿;奇穿偶不穿。
《一元二次不等式的解法》教案新人教B版

数学:3.3《一元二次不等式的解法》教案(新人教B版必修5)3.3一元二次不等式及其解法教案教学目标:掌握一元二次不等式的解法教学重点:重点、难点:一元二次不等式的解法。
思维方法:归类、转化。
数形结合。
特别提示:解分式不等式时,注意先移项,使右边为0。
教学过程一、复习引入:(一)复习已学过的不等式:1.一元一次不等式ax+b0(1)若a0时,则其解集为{x|x-}.(2)若a0时,则其解集为{x|x-}.(3)若a=0时,b0,其解集为R.b≤0,其解集为.2. 不等式|x|a与|x|a(a0)的解集(1)|x|a(a0)的解集为:{x|-axa},几何表示为:(2)|x|a(a0)的解集为:{x|xa或x-a},几何表示为: (二)一元二次方程、一元二次不等式与二次函数的关系一元二次不等式的解集:设相应的一元二次方程的两根为,,则不等式的解的各种情况如下表:二次函数()的图象一元二次方程有两相异实根有两相等实根无实根R例题讲解:例1.解下列不等式1.2。
变式练习:1。
2。
例2.解不等式。
例3.解不等式。
例4.解不等式。
例5.求函数函数f(x)=的定义域。
知识精讲:① 一元一次不等式(略)② 一元二次不等式,与二次函数、二次不等式结合。
③ 高次不等式的解法:a)降次化作不等式组求解;f(x)·g(x)>0f(x) >0或f(x)<0g(x) >0g(x)<0f(x) >0f(x)<0f(x)·g(x)<0g(x)<0或g(x) >0b)数轴标根法求解.:④ 分式不等式的解法:记f(x),g(x)为x的整式函数,分式不等式与f(x)·g(x)0同解;与f(x)·g(x)0同解.一般形式的分式不等式可先化为上述形式.提高练习:解关于x的不等式解:原不等式可以化为:若即则或若即则若即则或。
课堂练习:第78页练习A、B课堂小结:1、解不等式基本思想是化归转化;2、解分式不等式时注意先化为标准式,使右边为0;1、含参数不等式的基本途径是分类讨论(1)要考虑参数的总体取值范围(2)用同一标准对参数进行划分,做到不重不漏。
3.3一元二次不等式及其解法学案

f ( x) 〉0 ⇔ g ( x) f ( x) ≥0⇔ g ( x) f ( x) 〉a ⇔ g ( x)
三、例题研究 【例 1】 解不等式 : (1)x
2
x 2 + 2x − 3 <0 1、解不等式 − x2 + x + 6
2、解不等式 x
2
− (a + a 2 ) x + a 3 > 0
a>0
导学案 3.3 一元二次不等式及其解法
组编:
审核:
4、分式不等式
日期:
四、深入探究
【学习目标】理解一元二次方程、一元二次不等式与二次函数的 学习目标】 关系,掌握图象法解一元二次不等式的方法;培养 数形结合的能力,培养分类讨论的思想方法。 重点】 【重点】从实际情境中抽象出一元二次不等式模型;一元二次不 等式的解法。 难点】 【难点】理解二次函数、一元二次方程与一元二次不等式解集的 关系。 一、知识回顾 一元一次不等式(最简) 的解集如下表: 一元一次不等式(最简) ax > b 的解集如下表:
(a > 0) 的图 象 有两相异实根 有两相等实根
4、已知 不等式 ax 【例 3】解不等式 x
2
2
+ 5 x + c > 0 的 解集为 x < x < 求
+ 4x + 4 > 0
1 3
1 2
a, c 的范围。
一元二次方程
【例 4】解不等式 − 2 x
2
+ 4x − 3 > 0
【例 2】解不等式 1 − x − 4 x
2
3、不等式 ( a + 1) x 数 a 的取值范围。
一元二次不等式学案

3.一元二次不等式学案(共4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--22014届高一第一学期数学学案3.一元二次不等式【教学目标】1.通过一元二次函数的图象得到一元二次不等式的解法.2.会解决与一元二次不等式有关的问题.【教学重点】一元二次不等式的解法及其步骤.【教学难点】根据一元二次函数的图象理解一元二次不等式的解法.【教学过程】一.知识概述1.考察一元二次函数342+-=x x y 的图象,回答:(1)当0=y 时,x 的值是 ;(2)当0>y 时,x 的取值范围是 ;(3)当0<y 时,x 的取值范围是 .归纳:当0>y 时,得到的x 取值范围就是不等式0342>+-x x 的解, 当0<y 时,得到的x 取值范围就是不等式0342<+-x x 的解. 所以,我们可以利用二次函数的图象来解二次不等式.2.推广到一般情形:对于一元二次函数)0(2≠++=a c bx ax y 、一元二次方程)0(02≠=++a c bx ax 和一元二次不等式02>++c bx ax (或0<),有下表所示关系:3二.应用举例例1.解下列不等式:(1)01562>--x x ; (2)015442≥+--x x ;(3)3252->-x x ; (4)05432<+-x x .例3.(1)若关于x 不等式02<+-b ax x 的解集为{}21<<x x ,求实数b a ,的值;(2)已知关于x 的不等式02<++c bx ax 的解是⎭⎬⎫⎩⎨⎧->-<212x x x 或,求下列不等式的解:①02>+-c bx ax ; ②02<++a bx cx例4*.已知函数3)1(4)54(22+-+-+=x k x k k y 的图象都在x 轴的上方,求实数k 的取值范围.4三.小结与作业1.小结:(1)一元二次不等式与二次函数、一元二次方程等有密切的关系,根据解题需要常可互相转化.(2)解一元二次不等式02>++c bx ax (或0<)时,应将二次项系数a 化成正数,然后根据表格中的归纳熟练求解.2014届高一第一学期数学练习3.一元二次不等式 班级 姓名一.选择题1.不等式0322>-+x x 的解为 ( )(A )123<<-x (B )31<<-x(C )31<<x (D )323<<-x 2.若关于x 的不等式)0(02≠<++a c bx ax 无解,那么 ( )(A )0<a 且042>-ac b (B )0<a 且042≤-ac b(C )0>a 且042≤-ac b (D )0>a 且042>-ac b3.若关于x 的二次不等式02182<++mx mx 的解是17-<<-x ,则实数m 的值等于( )(A )1 (B )2 (C )3 (D )4二.填空题4.不等式x x 2312>-的解为______ _.5.若对任意实数x ,不等式03)1(22>++++k x k x 恒成立,则k 的取值范围是 .5 6.若1>a ,则不等式0112<+⎪⎭⎫ ⎝⎛+-x a a x 的解为 7. 已知实数x 满足015442≤--x x ,化简31682--+-x x x =_ ___.三.解答题8.解下列不等式:(1)1832<-x x ; (2)0212≥--x x ; (3)0)13)(2(>+-x x .9.(1)已知关于x 的不等式)0(0622≠<+-k k x kx ,若不等式的解为全体实数,求实数k 的取值范围;(2)当00900<<ϕ时,要使ϕsin 28622=++-x x x 成立,求实数x 的取值范围.10.某商店购进一批杯子,若按每个杯子15元的价格销售,每天能卖出30个;若售价每提高1元,日销售量将减少2个;若降价,日销售量将增加.为使这批杯子每天能获得400元以上的销售收入,应怎样制定这批杯子的销售价格?6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学案34一元二次不等式及其解法导学目标: 1.会从实际情境中抽象出一元二次不等式模型.2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.3.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.自主梳理1.一元二次不等式的定义只含有一个未知数,且未知数的最高次数是____的不等式叫一元二次不等式.2.二次函数的图象、一元二次方程的根与一元二次不等式的解集之间的关系判别式Δ=b2-4acΔ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两相异实根x1,2=-b±b2-4ac2a(x1<x2)有两相等实根x1=x2=________没有实根一元二次不等式ax2+bx+c>0的解集a>0{x|x<x1,或x>x2}{x|x≠____}______a<0{x|x1<x<x2}________1.(2011·广州模拟)已知p:关于x的不等式x2+2ax-a>0的解集是R,q:-1<a<0,则p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.设函数f(x)=⎩⎪⎨⎪⎧x2-4x+6,x≥0,x+6,x<0,则不等式f(x)>f(1)的解集是( ) A.(-3,1)∪(3,+∞) B.(-3,1)∪(2,+∞)C.(-1,1)∪(3,+∞) D.(-∞,-3)∪(1,3)3.已知不等式x2-2x-3<0的解集为A,不等式x2+x-6<0的解集是B,不等式x2+ax +b<0的解集是A∩B,那么a+b等于( )A.-3 B.1 C.-1 D.34.(2011·厦门月考)已知f(x)=ax2-x-c>0的解集为(-3,2),则y=f(-x)的图象是( )5.当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围为________________.探究点一 一元二次不等式的解法 例1 解下列不等式:(1)-x 2+2x -23>0;(2)9x 2-6x +1≥0.变式迁移1 解下列不等式:(1)2x 2+4x +3<0;(2)-3x 2-2x +8≤0;(3)8x -1≥16x 2.探究点二 含参数的一元二次不等式的解法例2 已知常数a ∈R ,解关于x 的不等式ax 2-2x +a <0.变式迁移2 解关于x 的不等式ax 2-(a +1)x +1<0.探究点三 一元二次不等式恒成立问题例3 (2011·巢湖月考)已知f (x )=x 2-2ax +2 (a ∈R ),当x ∈[-1,+∞)时,f (x )≥a 恒成立,求a 的取值范围.变式迁移3 (1)关于x 的不等式4x +mx 2-2x +3<2对任意实数x 恒成立,求实数m 的取值范围.(2)若不等式x 2+px >4x +p -3对一切0≤p ≤4均成立,试求实数x 的取值范围.转化与化归思想的应用例 (12分)已知不等式ax 2+bx +c >0的解集为(α,β),且0<α<β,求不等式cx 2+bx +a <0的解集.【答题模板】解 由已知不等式的解集为(α,β)可得a <0,∵α,β为方程ax 2+bx +c =0的两根,∴由根与系数的关系可得⎩⎪⎨⎪⎧b a =-α+β<0, ①ca =αβ>0. ②[4分]∵a <0,∴由②得c <0,[5分]则cx 2+bx +a <0可化为x 2+b c x +a c>0.[6分]①÷②,得b c =-α+βαβ=-⎝ ⎛⎭⎪⎫1α+1β<0,由②得a c =1αβ=1α·1β>0,∴1α、1β为方程x 2+b c x +a c=0的两根.[10分]∵0<α<β,∴不等式cx 2+bx +a <0的解集为{x |x <1β或x >1α}.[12分]【突破思维障碍】由ax 2+bx +c >0的解集是一个开区间,结合不等式对应的函数图象知a <0,要求cx 2+bx +a <0的解集首先需要判断二次项系数c 的正负,由方程根与系数关系知ca=α·β>0,因a <0,∴c <0,从而知道cx 2+bx +a <0的解集是x 大于大根及小于小根对应的两个集合.要想求出解集,需用已知量α,β代替参数c 、b 、a ,需对不等式cx 2+bx +a <0两边同除c 或a ,用α、β代替后,就不难找到要求不等式对应方程的两根,从而求出不等式的解集.本题较好地体现了三个“二次”之间的相互转化.1.三个“二次”的关系:二次函数是主体,一元二次方程和一元二次不等式分别为二次函数的函数值为零和不为零的两种情况,一般讨论二次函数常将问题转化为一元二次方程和一元二次不等式来研究,而讨论一元二次方程和一元二次不等式又常与相应的二次函数相联系,通过二次函数的图象及性质来解决.一元二次不等式解集的端点值就是相应的一元二次方程的根,也是相应的二次函数的图象与x 轴交点的横坐标,即二次函数的零点. 2.解含参数的一元二次不等式的步骤:解含参数的一元二次不等式可按如下步骤进行:1°二次项若含有参数应讨论参数是等于0、小于0、还是大于0.然后将不等式转化为二次项系数为正的形式.2°判断方程的根的个数,讨论判别式Δ与0的关系.3°确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集的形式.3.不等式恒成立问题:不等式恒成立,即不等式的解集为R ,一元二次不等式ax 2+bx+c >0 (a ≠0)恒成立的条件是⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac <0;ax 2+bx +c <0 (a ≠0)恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ=b 2-4ac <0.(满分:75分)一、选择题(每小题5分,共25分) 1.函数y 212log 1x( )A .[-2,-1)∪(1,2]B .[-2,-1]∪(1,2)C .[-2,-1)∪(1,2]D .(-2,-1)∪(1,2)2.(2010·抚顺模拟)已知集合P ={x |x +1x -1>0},集合Q ={x |x 2+x -2≥0},则x ∈Q 是x ∈P 的( )A .充分条件但不是必要条件B .必要条件但不是充分条件C .充要条件D .既不充分又不必要条件3.(2011·银川模拟)已知集合M ={x |x 2-2 008x -2 009>0},N ={x |x 2+ax +b ≤0},若M ∪N =R ,M ∩N =(2 009,2 010],则( )A .a =2 009,b =-2 010B .a =-2 009,b =2 010C .a =2 009,b =2 010D .a =-2 009,b =-2 0104.若(m +1)x 2-(m -1)x +3(m -1)<0对任何实数x 恒成立,则实数m 的取值范围是( )A .m >1B .m <-1C .m <-1311D .m >1或m <-13115.(创新题)已知a 1>a 2>a 3>0,则使得(1-a i x )2<1 (i =1,2,3)都成立的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,1a 1B.⎝ ⎛⎭⎪⎫0,2a 1C.⎝ ⎛⎭⎪⎫0,1a 3D.⎝ ⎛⎭⎪⎫0,2a 3 二、填空题(每小题4分,共12分) 6.在R 上定义运算⊗:x ⊗y =x (1-y ),若不等式(x -a )⊗(x +a )<1对任意实数x 恒成立,则a 的取值范围为________.7.已知函数f (x )=⎩⎪⎨⎪⎧log 2x , x >0,x 2, x ≤0,则满足f (x )>1的x 的取值范围为______________.8.(2011·泉州月考)已知函数f (x )的定义域为(-∞,+∞),f ′(x )为f (x )的导函数,函数y =f ′(x )的图象如右图所示,且f (-2)=1,f (3)=1,则不等式f (x 2-6)>1的解集为__________________.三、解答题(共38分)9.(12分)解关于x 的不等式x -ax -a 2<0 (a ∈R ).10.(12分)若不等式ax 2+bx +c ≥0的解集是⎩⎨⎧⎭⎬⎫x |-13≤x ≤2,求不等式cx 2+bx +a <0的解集.11.(14分)(2011·烟台月考)已知函数f (x )=x 2+ax +3. (1)当x ∈R 时,f (x )≥a 恒成立,求a 的取值范围;(2)当x ∈[-2,2]时,f (x )≥a 恒成立,求a 的取值范围.学案34 一元二次不等式及其解法自主梳理1.2 2.-b 2a -b2aR ∅ ∅自我检测1.C 2.A 3.A 4.D 5.(-∞,-5]解析 记f (x )=x 2+mx +4,根据题意得⎩⎪⎨⎪⎧Δ=m 2-16>0,f 1≤0,f 2≤0,解得m ≤-5.课堂活动区例1 解题导引 解一元二次不等式的一般步骤(1)对不等式变形,使一端为0且二次项系数大于0,即ax 2+bx +c >0(a >0),ax 2+bx +c <0(a >0).(2)计算相应的判别式.(3)当Δ≥0时,求出相应的一元二次方程的根. (4)根据对应二次函数的图象,写出不等式的解集.解 (1)两边都乘以-3,得3x 2-6x +2<0,因为3>0,且方程3x 2-6x +2=0的解是x 1=1-33,x 2=1+33,所以原不等式的解集是{x |1-33<x <1+33}. (2)∵不等式9x 2-6x +1≥0,其相应方程9x 2-6x +1=0, Δ=(-6)2-4×9=0,∴上述方程有两相等实根x =13,结合二次函数y =9x 2-6x +1的图象知,原不等式的解集为R .变式迁移1 解 (1)∵不等式2x 2+4x +3<0可转化为2(x +1)2+1<0,而2(x +1)2+1>0,∴2x 2+4x +3<0的解集为∅.(2)两边都乘以-1,得3x 2+2x -8≥0,因为3>0,且方程3x 2+2x -8=0的解是x 1=-2,x 2=43,所以原不等式的解集是(-∞,-2]∪[43,+∞).(3)原不等式可转化为16x 2-8x +1≤0,即(4x -1)2≤0,∴原不等式的解集为{14}.例2 解题导引 (1)含参数的一元二次不等式,若二次项系数为常数,可先考虑分解因式,再对参数进行讨论;若不易因式分解,则可对判别式进行分类讨论,分类要不重不漏.(2)若二次项系数为参数,则应先考虑二次项是否为零,然后再讨论二次项系数不为零时的情形,以便确定解集的形式.(3)其次对方程的根进行讨论,比较大小,以便写出解集.解 上述不等式不一定为一元二次不等式,当a =0时为一元一次不等式,当a ≠0时为一元二次不等式,故应对a 进行讨论,然后分情况求解.(1)a =0时,解为x >0.(2)a >0时,Δ=4-4a 2. ①当Δ>0,即0<a <1时,方程ax 2-2x +a =0的两根为1±1-a 2a,∴不等式的解集为{x |1-1-a 2a <x <1+1-a 2a }.②当Δ=0,即a =1时,x ∈∅; ③当Δ<0,即a >1时,x ∈∅. (3)当a <0时,①Δ>0,即-1<a <0时,不等式的解集为{x |x <1+1-a 2a 或x >1-1-a2a}.②Δ=0,即a =-1时,不等式化为(x +1)2>0, ∴解为x ∈R 且x ≠-1.③Δ<0,即a <-1时,x ∈R .综上所述,当a ≥1时,原不等式的解集为∅; 当0<a <1时,解集为{x |1-1-a 2a <x <1+1-a 2a};当a =0时,解集为{x |x >0}; 当-1<a <0时,解集为{x |x <1+1-a 2a 或x >1-1-a 2a};当a =-1时,解集为{x |x ∈R 且x ≠-1}; 当a <-1时,解集为{x |x ∈R }.变式迁移2 解 ①当a =0时,解得x >1.②当a >0时,原不等式变形为(x -1a)(x -1)<0,∴a >1时,解得1a<x <1;a =1时,解得x ∈∅;0<a <1时,解得1<x <1a.③当a <0时,原不等式变形为(x -1a)(x -1)>0,∵1a <1,∴解不等式可得x <1a或x >1.综上所述,当a <0时,不等式解集为(-∞,1a)∪(1,+∞);当a =0时,不等式解集为(1,+∞);当0<a <1时,不等式解集为(1,1a);当a =1时,不等式解集为∅;当a >1时,不等式解集为(1a,1).例3 解题导引 注意等价转化思想的运用,二次不等式在区间上恒成立的问题可转化为二次函数区间最值问题.解方法一f(x)=(x-a)2+2-a2,此二次函数图象的对称轴为x=a.①当a ∈(-∞,-1)时,f (x )在[-1,+∞)上单调递增,f (x )min =f (-1)=2a +3.要使f (x )≥a 恒成立,只需f (x )min ≥a ,即2a +3≥a ,解得-3≤a <-1;②当a ∈[-1,+∞)时,f (x )min =f (a )=2-a 2,由2-a 2≥a ,解得-1≤a ≤1.综上所述,所求a 的取值范围为-3≤a ≤1.方法二 令g (x )=x 2-2ax +2-a ,由已知,得x 2-2ax +2-a ≥0在[-1,+∞)上恒成立,即Δ=4a 2-4(2-a )≤0或⎩⎪⎨⎪⎧Δ>0,a <-1,g -1≥0.解得-3≤a ≤1.变式迁移3 解 (1)∵x 2-2x +3=(x -1)2+2>0,∴不等式4x +m x 2-2x +3<2同解于4x +m <2x 2-4x +6,即2x 2-8x +6-m >0.要使原不等式对任意实数x 恒成立,只要2x 2-8x +6-m >0对任意实数x 恒成立. ∴Δ<0,即64-8(6-m )<0, 整理并解得m <-2.∴实数m 的取值范围为(-∞,-2).(2)∵x 2+px >4x +p -3,∴(x -1)p +x 2-4x +3>0.令g (p )=(x -1)p +x 2-4x +3, 则要使它对0≤p ≤4均有g (p )>0, 只要有⎩⎪⎨⎪⎧g 0>0g4>0.∴x >3或x <-1.∴实数x 的取值范围为(-∞,-1)∪(3,+∞). 课后练习区1.A [由已知有12log (x 2-1)≥0,∴⎩⎪⎨⎪⎧x 2-1>0,x 2-1≤1. ∴⎩⎨⎧x >1或x <-1,-2≤x ≤ 2.∴-2≤x <-1或1<x ≤ 2.]2.D [化简得P ={x <-1,或x >1},Q ={x ≤-2,或x ≥1},集合P ,Q 之间不存在包含关系,所以x ∈Q 是x ∈P 的既不充分又不必要条件.] 3.D [化简得M ={x |x <-1或x >2 009},由M ∪N =R ,M ∩N =(2 009,2 010]可知N ={x |-1≤x ≤2 010},即-1,2 010是方程x 2+ax +b =0的两个根.所以b =-1×2 010=-2 010,-a =-1+2 010,即a =-2 009.] 4.C [当m =-1时,不等式变为2x -6<0,即x <3,不符合题意. 当m ≠-1时,由题意知 ⎩⎪⎨⎪⎧m +1<0,Δ=m -12-4m +1×3m -1<0, 化简,得⎩⎪⎨⎪⎧m +1<0,11m 2+2m -13>0,解得m <-1311.]5.B [(1-a i x )2<1,即a 2i x 2-2a i x <0,即a i x (a i x -2)<0,由于a i >0,这个不等式可以化为x ⎝ ⎛⎭⎪⎫x -2a i <0,即0<x <2a i ,若对每个都成立,则2a i应最小,即a i 应最大,也即是0<x <2a 1.]6.(-12,32)解析 由题意知,(x -a )⊗(x +a )<1⇔(x -a )(1-x -a )<1 ⇔x 2-x -(a 2-a -1)>0. 因上式对x ∈R 都成立,所以Δ=1+4(a 2-a -1)<0,即4a 2-4a -3<0.所以-12<a <32.7.(-∞,-1)∪(2,+∞)解析 当x >0时,由log 2x >1,得x >2;当x ≤0时,由x 2>1,得x <-1.综上可知,x 的取值范围为(-∞,-1)∪(2,+∞). 8.(2,3)∪(-3,-2)解析 由导函数图象知当x <0时,f ′(x )>0, 即f (x )在(-∞,0)上为增函数;当x >0时,f ′(x )<0,即f (x )在(0,+∞)上为减函数,故不等式f (x 2-6)>1等价于f (x 2-6)>f (-2)或f (x 2-6)>f (3),即-2<x 2-6≤0或0≤x 2-6<3,解得x ∈(2,3)∪(-3,-2).9.解 x -a x -a2<0⇔(x -a )(x -a 2)<0,(2分)①当a =0或a =1时,原不等式的解集为∅;(4分)②当a <0或a >1时,a <a 2,此时a <x <a 2;(7分)③当0<a <1时,a >a 2,此时a 2<x <a .(10分)综上,当a <0或a >1时,原不等式的解集为{x |a <x <a 2};当0<a <1时,原不等式的解集为{x |a 2<x <a }; 当a =0或a =1时,原不等式解集为∅.(12分)10.解 由ax 2+bx +c ≥0的解集为 ⎩⎨⎧⎭⎬⎫x |-13≤x ≤2,知a <0,(3分)又⎝ ⎛⎭⎪⎫-13×2=c a <0,则c >0. 又-13,2为方程ax 2+bx +c =0的两个根,(6分)∴-b a =53,即b a =-53.又∵c a =-23,∴b =-53a ,c =-23a .(8分)∴不等式cx 2+bx +a <0变为⎝ ⎛⎭⎪⎫-23a x 2+⎝ ⎛⎭⎪⎫-53a x +a <0,即2ax 2+5ax -3a >0.又∵a <0,∴2x 2+5x -3<0,∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x |-3<x <12.(12分)11.解 (1)∵x ∈R 时,有x 2+ax +3-a ≥0恒成立,需Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0, ∴-6≤a ≤2.(4分)(2)当x ∈[-2,2]时,设g (x )=x 2+ax +3-a ≥0,分如下三种情况讨论(如图所示):①如图(1),当g (x )的图象恒在x 轴上方,满足条件时,有Δ=a 2-4(3-a )≤0,即-6≤a ≤2.(7分) ②如图(2),g (x )的图象与x 轴有交点, 但在x ∈[-2,+∞)时,g (x )≥0,即⎩⎪⎨⎪⎧Δ≥0,x =-a2<-2,g -2≥0,即⎩⎪⎨⎪⎧a 2-43-a ≥0,-a2<-2,4-2a +3-a ≥0⇔⎩⎪⎨⎪⎧a ≥2或a ≤-6,a >4,a ≤73,解之,得a ∈∅.(10分)③如图(3),g (x )的图象与x 轴有交点,但在x ∈(-∞,2]时,g (x )≥0,即⎩⎪⎨⎪⎧Δ≥0,x =-a2>2,g 2≥0,即⎩⎪⎨⎪⎧a 2-43-a ≥0,-a2>2,4+2a +3-a ≥0⇔⎩⎪⎨⎪⎧a ≥2或a ≤-6,a <-4,a ≥-7⇔-7≤a ≤-6.(13分)综合①②③,得a ∈[-7,2].(14分). .。