探索三角形全等的条件(1)的专家点评
6 探索全等三角形的条件(1)-边角边(SAS)(拓展提高)(解析版)

专题1.6 探索全等三角形的条件(1)-边角边(SAS )(拓展提高)一、单选题1.如图所示,在△ABC 中,∠ACB =90°,CD 平分∠ACB ,在BC 边上取点E ,使EC =AC ,连接DE ,若∠A =50°,则∠BDE 的度数是( )A .10°B .20°C .30°D .40°【答案】A 【分析】先由直角三角形的性质得∠B =90°﹣∠A =40°,再证△CDE ≌△CDA (S A S ),得∠CED =∠A =50°,然后由三角形的外角性质即可得出答案.【详解】∵∠ACB =90°,∠A =50°,∴∠B =90°﹣∠A =40°,∵CD 平分∠ACB ,∴∠ECD =∠ACD ,在△CDE 和△CDA 中,EC AC ECD ACD CD CD =⎧⎪∠=∠⎨⎪=⎩,∴△CDE ≌△CDA (S A S ),∴∠CED =∠A =50°,又∵∠CED =∠B +∠BDE ,∴∠BDE =∠CED ﹣∠B =50°﹣40°=10°,故选:A .【点睛】本题考查了全等三角形的判定与性质.2.如图所示,AD 是ABC ∆的边BC 上的中线,5AB =cm ,4=AD cm ,则边AC 的长度可能是( )A .3cmB .5cmC .14cmD .13cm【答案】B 【分析】延长AD 至M 使DM =AD ,连接CM ,根据SAS 得出≅ADB MDC ,得出AB =CM =4cm ,再根据三角形的三边关系得出AC 的范围,从而得出结论;【详解】解:延长AD 至M 使DM =AD ,连接CM ,∵AD 是ABC ∆的边BC 上的中线,∴BD =CD ,∵∠ADB =∠CDM ,∴≅ADB MDC ,∴MC =AB =5cm ,AD =DM =4cm ,在AMC 中,3<AC <13,故选:B【点睛】本题考查了全等三角形的判定与性质以及三角形的三边关系,根据三角形的三边关系找出AC 长度的取值范围是解题的关键.3.如图,已知AB AD =,BC DE =,且10CAD ∠=︒,25B D ∠=∠=︒,120EAB ∠=︒,则EGF ∠的度数为( )A .120︒B .135︒C .115︒D .125︒【答案】C 【分析】由已知可得△ABC ≌△ADE ,故有∠BAC =∠DAE ,由∠EAB =120°及∠CAD =10°可求得∠AFB 的度数,进而得∠GFD 的度数,在△FGD 中,由三角形的外角等于不相邻的两个内角的和即可求得∠EGF 的度数.【详解】在△ABC 和△ADE 中AB AD B D BC DE =⎧⎪∠=∠⎨⎪=⎩∴ △ABC ≌△ADE (SAS )∴∠BAC =∠DAE∵∠EAB =∠BAC +∠DAE +∠CAD =120°∴∠BAC =∠DAE ()112010552=⨯︒-︒=︒ ∴∠BAF =∠BAC +∠CAD =65°∴在△AFB 中,∠AFB =180°-∠B -∠BAF =90°∴∠GFD =90°在△FGD 中,∠EGF =∠D +∠GFD =115°故选:C【点睛】本题考查了三角形全等的判定和性质、三角形内角和定理,关键求得∠BAC 的度数.4.如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连接BF ,CE ,下列说法:①ABD △和ACD △面积相等; ②BAD CAD ∠=∠; ③BDF ≌CDE △;④//BF CE ;⑤CE AE =.其中正确的是( )A.①②B.①③C.①③④D.①④⑤【答案】C【分析】根据三角形中线的定义可得BD=CD,根据等底等高的三角形的面积相等判断出①正确,然后利用“边角边”证明△BDF和△CDE全等,根据全等三角形对应边相等可得CE=BF,全等三角形对应角相等可得∠F=∠CED,再根据内错角相等,两直线平行可得BF∥CE.【详解】解:∵AD是△ABC的中线,∴BD=CD,∴△ABD和△ACD面积相等,故①正确;∵AD为△ABC的中线,∴BD=CD,∠BAD和∠CAD不一定相等,故②错误;在△BDF和△CDE中,BD CDBDF CDE DF DE=⎧⎪∠=∠⎨⎪=⎩,∴△BDF≌△CDE(SAS),故③正确;∴∠F=∠DEC,∴BF∥CE,故④正确;∵△BDF≌△CDE,∴CE=BF,故⑤错误,正确的结论为:①③④,故选:C.【点睛】本题考查了全等三角形的判定与性质,等底等高的三角形的面积相等,熟练掌握三角形全等的判定方法并准确识图是解题的关键.5.如图已知ABC ∆中,12AB AC cm ==,B C ∠=∠,8BC cm =,点D 为AB 的中点.如果点P 在线段BC 上以2/cm s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v ,则当BPD ∆与CQP ∆全等时,v 的值为( )A .1B .3C .1或3D .2或3【答案】D 【分析】设运动时间为t 秒,由题目条件求出BD=12AB=6,由题意得BP=2t ,则CP=8-2t ,CQ=vt ,然后结合全等三角形的判定方法,分两种情况列方程求解.【详解】解:设运动时间为t 秒,∵12AB AC cm ==,点D 为AB 的中点.∴BD=12AB=6, 由题意得BP=2t ,则CP=8-2t ,CQ=vt ,又∵∠B=∠C∴①当BP=CQ ,BD=CP 时,BPD ∆≌CQP ∆∴2t=vt ,解得:v=2②当BP=CP ,BD=CQ 时,BPD ∆≌CPQ ∆∴8-2t=2t ,解得:t=2将t=2代入vt=6,解得:v=3综上,当v=2或3时,BPD ∆与CQP ∆全等故选:D【点睛】本题主要考查了全等三角形全等的判定、熟练掌握全等三角形的判定方法是解题的关键,学会用分类讨论的思想思考问题,属于中考常考题型.6.如图1,已知AB AC =,D 为BAC ∠的角平分线上面一点,连接BD ,CD ;如图2,已知AB AC =,D 、E 为BAC ∠的角平分线上面两点,连接BD ,CD ,BE ,CE ;如图3,已知AB AC =,D 、E 、F 为BAC ∠的角平分线上面三点,连接BD ,CD ,BE ,CE ,BF ,CF ;…,依次规律,第n 个图形中有全等三角形的对数是( ).A .nB .21n -C .(1)2n n +D .3(1)n +【答案】C 【分析】根据条件可得图1中△ABD ≌△ACD 有1对三角形全等;图2中可证出△ABD ≌△ACD ,△BDE ≌△CDE ,△ABE ≌△ACE 有3对三角形全等;图3中有6对三角形全等,根据数据可分析出第n 个图形中全等三角形的对数.【详解】解:∵AD 是∠BAC 的平分线,∴∠BAD=∠CAD .在△ABD 与△ACD 中,AB=AC ,∠BAD=∠CAD ,∴△ABD≌△ACD.∴图1中有1对三角形全等;同理图2中,△ABE≌△ACE,∴BE=EC,∵△ABD≌△ACD.∴BD=CD,又DE=DE,∴△BDE≌△CDE,∴图2中有3对三角形全等;同理:图3中有6对三角形全等;由此发现:第n个图形中全等三角形的对数是()12n n+.故选:C.【点睛】此题主要考查了三角形全等的判定以及规律的归纳,解题的关键是根据条件证出图形中有几对三角形全等,然后寻找规律.二、填空题7.如图所示,点O为AC的中点,也是BD的中点,那么AB与CD的关系是________.【答案】平行且相等【分析】只需要证明△AOB≌△COD,根据全等三角形的性质和平行线的判定定理即可得出结论.【详解】解:∵点O为AC的中点,也是BD的中点,∴AO=OC,BO=OD,又∵∠AOB=∠DOC,∴△AOB≌△COD(SAS)∴AB=CD,∠A=∠C,即AB 与CD 的关系是平行且相等,故答案为:平行且相等.【点睛】本题考查全等三角形的性质和判定,平行线的判定定理.掌握全等三角形的判定定理是解题关键.8.在ABC ∆中,AD 是BC 边上的中线,若7,5AB AC ==,则AD 长的取值范围是_________.【答案】16AD <<【分析】利用中线的性质,作辅助线AD=DE ,构造全等三角形()ADB EDC SAS ≅,再有全等三角形对应边相等的性质,解得7CE AB ==,最后由三角形三边关系解题即可.【详解】如图,AD 为BC 边上的中线,延长AD 至点E ,使得AD=DE在△ADB 和△EDC 中BD DC ADB CDE AD DE =⎧⎪∠=∠⎨⎪=⎩()ADB EDC SAS ∴≅7CE AB ∴==CE AC AE AC CE -<<+75275AD ∴-<<+16AD ∴<<故答案为:16AD <<.【点睛】本题考查三角形三边的关系,其中涉及全等三角形的判定与性质等知识,是重要考点,掌握相关知识、正确作出辅助线是解题的关键.9.如图,在ABC 中,,90AC BC ACB =∠=︒,点D 是BC 上的一点,过点B 作//BE AC ,使BE CD =,连接CE 与AD 相交于点G ,则AD 与CE 的关系是_______________.【答案】AD ⊥CE ,AD =CE【分析】证明△ACD ≌△CBE ,得到∠CAD =∠BCE ,AD =CE ,结合∠ACB =90°,可得∠CGD =90°,从而可得结果.【详解】解:由题意可知:∵∠ACB =90°,BE ∥AC ,∴∠ACB =∠EBC =90°,在Rt △ACD 和Rt △CBE 中,AC CB ACD CBE CD BE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (SAS ),∴∠CAD =∠BCE ,AD =CE ,∵∠CAD +∠CDA =90°,∴∠CDA +∠BCE =90°,∴∠CGD =180°-(∠CDA +∠BCE )=90°,∴AD ⊥CE ,综上:AD ⊥CE ,AD =CE ,故答案为:AD ⊥CE ,AD =CE .【点睛】本题考查了全等三角形的判定和性质,解题的关键是证明△ACD ≌△CBE ,得到角和线段之间的相等关系.10.如图,在ABC 中,90B ∠>︒,CD 为ACB ∠的角平分线,在AC 边上取点E ,使DE DB =,且90AED ∠>︒,若A x ∠=︒,ACB y ∠=︒,则AED =∠_______.(用x 、y 的代数式表示)【答案】180°-x°-y° 【分析】在AC 上截取CF =BC ,根据全等三角形的性质可得BD =DF =DE ,可得∠AED =∠ABC ,根据三角形的内角和可求解.【详解】解:如图,在AC 上截取CF =BC ,∵CD 为∠ACB 的角平分线,∴∠ACD =∠BCD ,∵CF =BC ,∠ACD =∠BCD ,CD =CD ,∴△BDC ≌△FDC (SAS ),∴∠ABC =∠CFD ,DF =BD ,∵BD =DE ,∴DE =DF ,∴∠DEF =∠DFE ,∴∠AED =∠CFD ,∵∠A =x°,∠ACB =y°,∴∠ABC =180°-∠A -∠ACB =180°-x°-y°,∴∠AED =∠DBC =180°-x°-y°,故答案为:180°-x°-y°.【点睛】本题考查了全等三角形的判定和性质,三角形内角和定理,添加恰当辅助线构造全等三角形是解本题的关键.11.如图,在ABC 中,90,,,ACB AC BC CE BE CE ∠=︒=⊥与AB 相交于点F ,且CD BE =,则ACD CBA DAF ∠∠∠、、之间的数量关系是_____________.【答案】=ACD CBA DAF ∠∠∠+【分析】先利用同角的余角相等得到ACD ∠=CBE ∠,再通过证ACD CBE ≌,得到==90ADC CEB ∠︒∠即==90ADF CEB ∠︒∠,再 利用三角形内角和得=AFD ADF EFB FEB ︒--︒-∠-180∠∠180∠可得=DAF EBF ∠∠,最后利用角的和差即可得到答案,ACD ∠==++CBE CBA EFB CBA DAF ∠∠∠=∠∠.【详解】证明:∵90ACB ∠=︒,CE BE ⊥∴+90ACD ECB ∠=︒∠,+90CBE ECB ∠=︒∠∴ACD ∠=CBE ∠又∵AC BC =,CD BE =∴ACD CBE ≌∴==90ADC CEB ∠︒∠即==90ADF CEB ∠︒∠∵=AFD EFB ∠∠∴=AFD ADF EFB FEB ︒--︒-∠-180∠∠180∠即=DAF EBF ∠∠∴ACD ∠==++CBE CBA EFB CBA DAF ∠∠∠=∠∠故答案为:=ACD CBA DAF ∠∠∠+.【点睛】本题考查了直角三角形的性质、内角和定理以及全等三角形的判定和性质,能通过性质找到角与角之间的关系是解答此题的关键.12.如图所示的是一张直角ABC 纸片(90C ∠=︒),其中30BAC ∠=︒,如果用两张完全相同的这种纸片恰好能拼成如图2所示的ABD △,若2BC =,则ABD △的周长为______.【答案】12【分析】根据题意证明三角形全等即可得解;【详解】如图所示,由题可知ABC ADC ≅△△,∴30BAC DAC ∠=∠=︒,90ACB ACD ∠=∠=︒,2BC BD ==,∴60BAD ∠=︒,180BCD ∠=︒,∴B ,C ,D 在一条直线上,∵60B D ∠=∠=︒,∴△ABD 是等边三角形,∴△ABD 的周长()3312BD BC CD==+=;故答案是12.【点睛】本题主要考查了全等三角形的判定与性质,结合等边三角形的性质计算是解题的关键. 13.已知:如图,在长方形ABCD 中,AB =4,AD =6.延长BC 到点E ,使CE =2,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC ﹣CD ﹣DA 向终点A 运动,设点P 的运动时间为t 秒,当t 的值为__秒时,△ABP 和△DCE 全等.【答案】1或7【分析】分两种情况进行讨论,根据题意得出BP=2t=2或AP=16-2t=2即可求得结果.【详解】因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=2,所以t=1,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,由题意得:AP=16﹣2t=2,解得t=7.所以,当t的值为1或7秒时.△ABP和△DCE全等.故答案为:1或7.【点睛】本题考查了全等三角形的判定,要注意分类讨论.14.如图,△P AB与△PCD均为等腰直角三角形,点C在PB上,若△ABC与△BCD的面积之和为10,则△P AB与△PCD的面积之差为_____.【答案】10【分析】由“SAS”可证△APC≌△BPD,可得S△APC=S△BPD,由面积和差关系可求解.【详解】解:∵△P AB与△PCD均为等腰直角三角形,∴PC=PD,∠APB=∠CPD=90°,AP=BP,∴△APC≌△BPD(SAS),∴S△APC=S△BPD,∵S△APB﹣S△PCD=S△APC+S△ABC﹣(S△BPD﹣S△BCD),∴S△APB﹣S△PCD=S△BCD+S△ABC=10,故答案为:10.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,证明△APC≌△BPD是本题的关键.三、解答题15.如图所示,AC BC ⊥,DC EC ⊥,垂足均为点C ,且AC BC =,EC DC =.求证:AE BD =.【答案】见解析【分析】根据SAS 证明ACE BCD △≌△即可.【详解】证明:∵AC BC ⊥,DC EC ⊥,∴90ACB ECD ∠=∠=︒∴ACB BCE ECD BCE ∠+∠=∠+∠即ACE BCD ∠=∠在ACE 和BCD △中AC BC ACE BCD EC DC =⎧⎪∠=∠⎨⎪=⎩∴()SAS ACE BCD ≌△△ ∴AE BD =【点睛】此题主要考查了全等三角形的判定与性质,证明ACE BCD ∠=∠是解答此题的关键. 16.如图,点B ,E ,C ,F 在一条直线上,//,,AB DE AB DE BE CF ==.求证:A D ∠=∠.【答案】证明见解析【分析】根据平行得出B DEF ∠=∠,然后用“边角边”证明ABC DEF △≌△即可.【详解】证明:∵//AB DE ,∴B DEF ∠=∠.∵BE CF =,∴BE EC CF EC +=+.∴BC EF =.在ABC 和DEF 中,,,,AB DE B DEF BC EF =⎧⎪∠=∠⎨⎪=⎩∴ABC DEF △≌△.∴A D ∠=∠.【点睛】本题考查了全等三角形的判定与性质,解题关键是熟练运用已知条件,推导证明出全等三角形判定所需条件,运用全等三角形判定定理证明.17.如图,四边形ABCD 的对角线交于点O ,点E 、F 在AC 上,//DF BE ,且DF BE =,AE CF =.求证:AB CD =,且//AB CD .【答案】见解析【分析】根据已知条件可证得ABE CDF △≌△,从而由全等三角形的性质可得要证的结论.【详解】//DF BEBEO DFO ∴∠=∠AEB CFD ∴∠=∠又DF BE =∵,AE CF =ABE CDF ∴△≌△AB CD ∴=,BAE DCF ∠=∠//AB CD ∴【点睛】本题考查了三角形全等的的判定的性质,关键是得出AEB CFD ∠=∠.18.如图,BD ,CE 分别是ABC 的边AC 和AB 边上的高,点P 在BD 的延长线上,点Q 在CE 上,BP AC =,CQ AB =,请说明AQ 与AP 的关系.【答案】AP =AQ 且AP ⊥AQ【分析】由于BD AC ⊥,CE AB ⊥,可得ABD ACE ∠=∠,又由对应边的关系,进而得出ABP QCA ∆≅∆,即可得出AQ=AP .在此基础上,可证明90PAQ ∠=︒.【详解】解:证明:BD AC ⊥,CE AB ⊥(已知),90BEC BDC ∴∠=∠=︒,90ABD BAC ∴∠+∠=︒,90ACE BAC ∠+∠=︒(直角三角形两个锐角互余),ABD ACE ∴∠=∠(等角的余角相等),在ABP ∆和QCA ∆中,BP AC ABD ACE CQ AB =⎧⎪∠=∠⎨⎪=⎩()ABP QCA SAS ∴∆≅∆,∴=AP AQ .ABP QCA ∆≅∆,CAQ P ∴∠=∠,BD AC ⊥,即90P CAP ∠+∠=︒,90CAQ CAP ∴∠+∠=︒,即90QAP ∠=︒,AP AQ ∴⊥.【点睛】本题主要考查了全等三角形的判定及性质问题,能够熟练掌握并运用.19.平面上有ACD △与,BCE AD 与BE 相交于点,P AC 与BE 相交于点,M AD 与CE 相交于点N ,若,,AC BC CD CE ECD ACB ==∠=∠.(1)求证:≌ACD BCE ;(2)55,145ACE BCD ∠=︒∠=︒,求BPD ∠的度数.【答案】(1)证明见解析;(2)∠BPD =140°.【分析】(1)利用SAS 证明△ACD ≌△BCE 即可;(2)由全等三角形的性质可知:∠A =∠B ,再根据已知条件和四边形的内角和为360°,即可求出∠BPD 的度数.【详解】解:(1)证明:∵∠ACB =∠ECD ,∠ACE =∠ACE ,∴∠BCE =∠ACD ,在△ACD 和△BCE 中,AC BC BCE ACD CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS );(2)∵△ACD ≌△BCE ,∴∠A =∠B ,∠BCE =∠ACD ,∴∠BCA =∠ECD ,∵∠ACE =55°,∠BCD =155°,∴∠BCA +∠ECD =100°,∴∠BCA =∠ECD =50°,∵∠ACE =55°,∴∠ACD =105°∴∠A +∠D =75°,∴∠B +∠D =75°,∵∠BCD =145°,∴∠BPD =360°-75°-145°=140°.【点睛】本题考查了全等三角形的判定和性质、三角形的内角和定理以及四边形的内角和定理,解题的关键是利用整体的数学思想求出∠B+∠D=75°.20.(1)如图1,一扇窗户打开后,用窗钩AB将其固定,这里所运用的几何原理是:;(2)如图2,小河的旁边有一个甲村庄所示,现计划在河岸AB上建一个泵站,向甲村供水,使得所铺设的供水管道最短,请在上图中画出铺设的管道,这里所运用的几何原理是:(3)如图3,在新修的小区中,有一条“Z”字形长廊ABCD,其中AB∥CD,在AB,BC,CD三段长廊上各修一小凉亭E,M,F,且BE=CF,点M是BC的中点,在凉亭M与F之间有一池塘,不能直接到达,要想知道M与F之间的距离,只需要测出线段ME的长度(用两个字母表示线段).这样做合适吗?请说出理由.【答案】(1)三角形具有稳定性;(2)见解析,垂线段最短;(3)合理,见解析【分析】(1)根据三角形的稳定性解答;(2)根据垂线段最短解答;(3)首先证明△MEB≌△MFC,根据全等三角形的性质可得ME=MF.【详解】解:(1)一扇窗户打开后,用窗钩AB要将其固定,这里所运用的几何原理是三角形具有稳定性;故答案为:三角形具有稳定性;(2)过甲向AB作垂线,如图2所示;运用的原理是:垂线段最短;故答案为:垂线段最短;(3)合理,∵AB ∥CD ,∴∠B =∠C ,∵点M 是BC 的中点,∴MB =MC ,在△MCF 和△MBE 中BE CF B C BM CM =⎧⎪∠=∠⎨⎪=⎩,∴△MEB ≌△MFC (SAS ),∴ME =MF ,∴想知道M 与F 之间的距离,只需要测出线段ME 的长度.【点睛】此题主要考查了垂线段的性质,三角形的稳定性,以及全等三角形的应用,关键是掌握全等三角形判定定理,会用它证明对应边相等.。
探索三角形全等的条件(一)案例与评析

受 我 的 采 访 吗 ? 小 红 车 的 主 人 打 电 话 来是 在 你 意 料 之 中
吗 ? 当时 你 认 为 他 打 电话 的 目的 是 什 么? 最 后 的 结 果 在 你 的 意 料 之 中吗 ?
的 三次说话 ,学生知道 了小红车的主 人是 来表 示感谢 的 。
“ ”在 无 人 知 晓 的情 况 下 主 动 给 他 留 下 字 条 这 件 事 情 让 我 他 很 感 动 。教 师 通过 与 学 生 对话 , 引 导 学 生理 解 小 红 丰 的 主 人 不但 感谢 “ ” 的诚 实 ,更 感 谢 “ ” 对 他 的信 任 。 我 我 ) 师 :我 觉得 你们 真的 很 懂 小红 车 主 人 的 心 .那 么 .你
部 分 学 生 :这 些 图 片 都 是 由三 角 形 组 成 的 。 生1 :这 些三 角形 大 小 那 么一 致 ,都 是 全 等 的 吧 ? 师 :对 !这 些 美 丽 的 图 片 都 是 由 全 等 三 角 形 组 成 的 ,
大 家想 不 想 自 己用 全 等 三 角形 设 计 几 幅 美丽 的 图 片呢 ?
教 海 揉 察 . 例 俸 翼 案
探索三角形全等韵条件 ( 案傍与Байду номын сангаас新 一>
湖北 老河 口市袁冲 中学 陈 敏
一
教 学 目标
2课 前 准 备 :教 师 准 备 一 张 画 有 两 个 全 等三 角 形 的 白 .
1 . 学生在教师 引导下 ,在积极主动地经 历探索三 角形 全等条件 的过程 中,体会 利用操作归纳而获得数 学知识的
(O 师 : 同 学 们 ,通 话 的 另 一 方 , “ ” 是 闽 了 祸 1) 我
的人 ,又是 用 怎样 的心 情接 了这个 电话 呢?请 再读 一读
课例《探索三角形全等的条件(第一课时)》大家评 对四个课例的综合点评——好马配好鞍 快马又加鞭

可促 进教 师 的教 学 设 计 能 力 的 提 高. 了好 的教 材 , 有 再 加上好 的教 学 方 法 , 马配 好 鞍 , 好 我们 的 素质 教 育 就 必定会 取得 成 功 . 因此 , 者也 积极 地参 与 了 这 项 笔 有 益 的活动.
2 重视学生动 手能力培养
4个 课例 都非 常 重视 学 生 动 手能 力 的培 养 . 等 全
的教师 , 由于观 点 、 重 面 、 师 个 性 、 学 素 质 和 能 侧 教 教 力 的不 同 ,找 出的最佳 方 案 也 不 同 ) 在这 个 过程 中 , .
教 学情境 的设 计 中要 注意 , 要符 合 学 生生 理 心 ① 理 特征 , 同 的 内容 在不 同 的 年级 进 行 教学 时 , 境 相 情 的设计 应该不 一 样 ; ②情境 的设 计 应 紧扣 本 堂课 的 内 容 ; 不要 喧宾夺 主 , 多时 间用 在情 境 创设 上 ; 情 ③ 较 ④ 境 的设计 应 与其他 教 学手段 有 机地 结 合 在一 起 , 整 使 堂课 融 为一 体.
1 重视教学情境 的创设
教 学情境 的创 设 , 在课 堂教 学 中的地 位 和作 用越 来 越重 要 , 特别 是在 实施 课 程 标 准 以后 . 仅 可 促 进 不
教师对 纯知识 传授 型 课堂 教学 模式 实 现 彻底 的改革 . 还 关 系到学 生学 习兴 趣 的高低 、 习 积极 性 调动 的程 学 度 , 接影 响到 课 堂 教 学 效果 的好 坏. 且 它 还 影 响 直 而 到学 生是 否能够 主动 、 动 学 习 的 学 习 态 度 , 习 习 生 学 惯. 重要 意义 , 教育 教学 工作者 所公 认 的. 其 是 教 学 情境 创 设 的 内容 , 一般 是 学 生 所 喜 闻乐 见 , 符 合学 生生理 心 理 特 征 的. 者 把 它 归 纳 为 “ 题 性 笔 问 情境 型” “ 事性 情境 型 ” “ 活性 情 境 型” “ 、故 、生 、 童话 谜 语性情 境 型” “ 赛 性 情 境 型” “ 、竞 、 电视 专 题 栏 目性 情
1.3探索三角形全等的条件(一~三)(解析版)

1.3探索三角形全等的条件(一~三)【推本溯源】1.由上一节课我们已经知道了全等三角形的性质,它们的对应边相等、对应角相等;那当两个三角形的角和边具备什么样的条件时,两个三角形就相等呢?想一想:(1)当两个三角形的1对边或角相等时,它们全等吗?(2)当两个三角形的2对边或角分别相等时,它们全等吗?(3)当两个三角形的3对边或角分别相等时,它们全等吗?动手做一做:按下列作法,用直尺和圆规作△ABC ,使∠A =∠α,AB =a ,AC=b .作法:1.作∠MAN =∠α.2.在射线AM 、AN 上分别作线段AB =a ,AC =b .3.连接BC ,△ABC 就是所求作的三角形.通过自己实践后发现:两边及其夹角分别相等的两个三角形全等(简写成“边角边”或“SAS ”)几何语言:∵在△ABC 和△DEF 中,AB=DE,∠B=∠E,BC=EF,∴△ABC ≌△DEF(SAS).2.用纸板挡住了三角形的一部分,小明根据所学知识很快就画出了一个与原来完全一样的三角形,他的原理是什么?ba D E FC B A动手做一做:按下列作法,用圆规和直尺作△ABC ,使AB =a ,∠A =∠α,∠B =∠β.(1)作AB =a .(2)在AB 的同一侧分别作∠MAB =∠α,∠NBA =∠β,AM 、BN 相交于点C .△ABC 就是所求作的三角形.通过自己实践后发现:两角及其夹边分别相等的两个三角形全等(简写成“角边角”或“ASA ”)几何语言:∵在△ABC 和△DEF 中,∠A=∠D,AB=DE,∠B=∠E,∴△ABC ≌△DEF(ASA).【解惑】例1:如图,为测量池塘两侧A ,B 两点间距离,在地面上找一点C ,连接AC ,BC ,使90ACB ∠=︒,然后在AC 的延长线上确定点D ,使CD AC =,得到ABC DBC ≌△△,通过测量BD 的长,就能得出AB 的长.那么ABC DBC ≌△△的理由是()D E FC B AA .SASB .ASAC .AASD .SSS【答案】A 【分析】根据已知条件可找到两边对应相等且夹角相等,利用SAS 即可证明ABC DBC ≌△△,由此即可解决问题.【详解】解:∵90ACB ∠=︒,∴90DCB ACB ∠=∠=︒,则在ABC 和DBC △中90DC AC DCB ACB BC BC =⎧⎪∠=∠=︒⎨⎪=⎩∴()SAS ABC DBC ≌ .故选:A .【点睛】本题考查全等三角形的应用,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.例2:如图,C ,A ,D 三点在同一直线上,AB CE ∥,AB CD =,AC CE =.求证:ABC ≌CDE .【答案】见解析【分析】由平行线的性质得到BAC DCE ∠=∠,由SAS 即可证明ABC ≌()SAS CDE .【详解】解:AB CE ∥ ,BAC DCE ∴∠=∠,在ABC 和CDE 中,AB CD BAC DCE AC CE =⎧⎪∠=∠⎨⎪=⎩,ABC ∴ ≌()SAS CDE .【点睛】本题考查全等三角形的判定,关键是掌握全等三角形的判定方法.例3:如图,要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD BC =,再定出BF 的垂线DE ,可以证明EDC ABC ≌,得ED AB =,因此,测得ED 的长就是AB 的长.判定EDC ABC ≌的理由是()A .SSSB .ASAC .AASD .SAS【答案】B 【分析】由已知可以得到ABC BDE ∠=∠,又CD BC =,ACB DCE ∠=∠,由此根据角边角即可判定EDC ABC ≌.【详解】解:BF AB ⊥ ,DE BD ⊥,ABC BDE ∴∠=∠,又CD BC = ,ACB DCE ∠=∠,EDC ABC ∴ ≌(ASA )故选:B .【点睛】本题主要考查了三角形全等的判定定理,熟练掌握三角形全等的判定定理是解题的关键.例4:如图,C E ∠=∠,点D 在BC 边上,BC DE =,12∠=∠,AC 和DE 相交于点O .求证:ABC ADE △≌△.【答案】见解析【分析】先利用三角形外角性质证明ADE B ∠=∠,然后根据“ASA ”判断ABC ADE △≌△.【详解】证明:1ADC B ∠=∠+∠ ,即21ADE B ∠+∠=∠+∠,而12∠=∠,ADE B ∴∠=∠,在ABC 和ADE V 中,C E BC DE B ADE ∠=∠⎧⎪=⎨⎪∠=∠⎩,(ASA)ABC ADE ∴ ≌.【点睛】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法.选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.例5:在ABC 中,AC BC =,90ACB ∠=︒,D 是射线BA 上一动点,连接CD ,以CD 为边作45DCE ∠=︒,CE 在CD 右侧,CE 与过点A 且垂直于AB 的直线交于点E ,连接DE .(1)当CD CE ,都在AC 的左侧时,如图①,线段BD AE DE ,,之间的数量关系是_________;(2)当CD CE ,在AC 的两侧时,如图②,线段BD AE DE ,,之间有怎样的数量关系?写出你的猜想,并给予证明;(3)当CD CE ,都在AC 的右侧时,如图③,线段BD AE DE ,,之间有怎样的数量关系?直接写出你的猜想,不必证明.【答案】(1)BD AE DE+=(2)BD AE DE -=,详见解析(3)BD AE DE-=【分析】(1)过点C 作CF CE ⊥,交AB 延长线于点F ,如图,先证明CBF CAE ≌,得到BF AE =,CF CE =,然后证明DCE DCF ≌解题即可;(2)过点C 作CF CE ⊥,交AB 于点F ,如图,先证明CBF CAE ≌,得到BF AE =,CF CE =,然后证明DCE DCF ≌解题即可;(3)过点C 作CF CE ⊥,交AB 于点F ,如图,先证明CBF CAE ≌,得到BF AE =,CF CE =,然后证明DCE DCF ≌解题即可;【详解】(1)过点C 作CF CE ⊥,交AB 延长线于点F ,如图.∴90ECF ACB ∠=∠=︒.∴FCB ECA ∠=∠.∵AE AB ⊥,∴90EAB ∠=︒.∵45CBA CAB ∠=∠=︒,∴135CBF CAE ∠=∠=︒.∵BC AC =,∴(ASA)CBF CAE ≌.∴BF AE =,CF CE =.∵45DCE ∠=︒,90ECF ∠=︒,∴45DCE DCF ∠=∠=︒.∵CD CD =,∴()SAS DCE DCF ≌.∴DE DF =.∵BD BF DF +=,∴BD AE DE +=.故答案为:BD AE DE +=.(2)图②的猜想:BD AE DE -=.证明:过点C 作CF CE ⊥,交AB 于点F ,如图②.∴90ECF ACB ∠=∠=︒.∴CBF CAE ∠=∠.∵AE AB ⊥,∴90EAB ∠=︒.∵45CBA CAB ∠=∠=︒,∴45CBF CAE ∠=∠=︒.∵BC AC =,∴(ASA)CBF CAE ≌.∴BF AE =,CF CE =.∵45DCE ∠=︒,90ECF ∠=︒,∴45DCE DCF ∠=∠=︒.∵CD CD =,∴()SAS DCE DCF ≌.∴DE DF =.∵BD BF DF -=,∴BD AE DE -=.(3)过点C 作CF CE ⊥,交AB 于点F ,如图∴90ECF ACB ∠=∠=︒.∴FCB ECA ∠=∠.∵AE AB ⊥,∴90EAB ∠=︒.∵45CBA CAB ∠=∠=︒,∴45CBF CAE ∠=∠=︒.∵BC AC =,∴(ASA)CBF CAE ≌.∴BF AE =,CF CE =.∵45DCE ∠=︒,90ECF ∠=︒,∴45DCE DCF ∠=∠=︒.∵CD CD =,∴()SAS DCE DCF ≌.∴DE DF =.∵BD BF DF -=,∴BD AE DE -=.故答案为:BD AE DE -=.【点睛】本题考查全等三角形的判定和性质,掌握全等三角形的判定和性质是解题的关键.【摩拳擦掌】1.(2023春·上海徐汇·七年级上海市第二初级中学校考阶段练习)如图,已知12∠=∠,AC AB =,则ABD ACD △≌△的依据是()A .ASAB .AASC .SSSD .SAS【答案】D 【分析】根据全等三角形的判定定理可进行求解.【详解】解:在ABD △和ACD 中,12AC AB AD AD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABD ACD ≌△△;故选D .【点睛】本题主要考查全等三角形的判定,熟练掌握全等三角形的判定是解题的关键.2.(2023·四川成都·统考二模)如图,AB 与CD 相交于点O ,且O 是AB CD ,的中点,则AOC 与BOD 全等的理由是()A .SASB .ASAC .SSSD .HL【答案】A 【分析】根据全等三角形的判定定理求解即可.【详解】解:∵O 是AB CD ,的中点,∴,,OA OB OC OD ==在AOC 和DOB 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩∴()SAS AOC DOB ≅ ,故选:A .【点睛】此题考查了全等三角形的判定,熟记全等三角形的判定定理是解题的关键.3.(2022秋·七年级单元测试)如图,为了测量B 点到河对面的目标A 之间的距离,在B 点同侧选择一点C ,测得75ABC ∠=︒,35ACB ∠=︒,然后在M 处立了标杆,使75MBC ∠=︒,35MCB ∠=︒,得到MBC ABC ≌△△,测得MB 的长就是A ,B 两点间的距离,这里判定MBC ABC ≌△△的理由是()A .SSSB .SASC .ASAD .AAA【答案】C 【分析】利用全等三角形的判定方法进行分析即可.【详解】解:在MBC 和ABC 中,MBC ABC BC BC MCB ACB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA MBC ABC ≌,∴判定MBC ABC ≌△△的理由是ASA ,故选:C .【点睛】本题考查全等三角形判定的实际应用,是重要考点,掌握相关知识是解题关键.4.(2022秋·云南楚雄·八年级校考阶段练习)如图,小亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A .SSSB .SASC .AASD .ASA【答案】D 【分析】观察图形可知,有两角以及两角的夹边是已知,由此即可得到答案.【详解】解:由题意得,有两角以及两角的夹边是已知,因此可以利用ASA 画出一个全等的三角形,故答案为:ASA故选D【点睛】本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键.5.(2023春·广东惠州·八年级校考阶段练习)如图,ABC 中,AB AC =,AD 平分BAC ∠,则_____≌_____.【答案】BAD CAD【分析】直接利用全等三角形的判定方法()SAS ,进而得出答案.【详解】解:∵AD 平分BAC ∠,∴BAD CAD ∠=∠,在BAD 和CAD 中,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BAD CAD ≌.故答案为:BAD ,CAD .【点睛】此题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题关键.6.(2023秋·吉林长春·八年级统考期末)如图,把两根钢条的中点连在一起,可以做成一个测量工件内槽的工具(卡钳).在图中,若测量得20cm A B ''=,则工件内槽宽AB =_________cm .【答案】20【分析】根据三角形全等的判定可知()SAS ≌AOB A OB ''△△,从而得到20cm AB A B ''==.【详解】解:由题意可知,()SAS ≌AOB A OB ''△△,∴20cm AB A B ''==,故答案为:20.【点睛】本题考查全等三角形的应用,熟记全等三角形的判定与性质是解决问题的关键.7.(2023春·陕西咸阳·七年级咸阳市实验中学校考阶段练习)如图,在ABC 中,AD 是BC 上的中线,点F 、E 分別在AD 和AD 的延长线上,且DE DF =,连接BE 、CF .试说明:BE CF ∥.【答案】见解析【分析】证明BDE CDF ≌得到EBD FCD Ð=Ð得证BE CF ∥.【详解】解:∵AD 是BC 上的中线,∴BD DC =,∵在BDE 和CDF 中DE DF BDE CDF BD CD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BDE CDF △≌△,∴EBD FCD Ð=Ð,∴BE CF ∥.【点睛】本题考查了三角形全等的判定和性质,平行线的判定定理,熟练掌握全等的判定,8.(2023·广东广州·统考二模)为了制作燕子风筝,燕子风筝的骨架图如图所示,AB AE =,AC AD =,BAD EAC ∠=∠,证明:A ABC ED ≌△△.【答案】见解析【分析】根据SAS 证明A ABC ED ≌△△即可.【详解】证明:∵BAD EAC ∠=∠,∴BAD CAD EAC CAD ∠+∠=∠+∠,∴BAC EAD ∠=∠,∴在ABC 和AED △中,AB AE BAC EAD AC AD =⎧⎪∠=∠⎨⎪=⎩∴()SAS ABC AED ≌【点睛】此题考查了三角形全等的判定方法,解题的关键是熟练掌握三角形全等的判定方法.9.(2023春·陕西西安·七年级西安市远东第二中学校考阶段练习)如图,小刚站在河边的A 点处,在河对岸的B 处有一电线塔(小刚的正北方向),他想知道电线塔离他有多远,于是他向正西方向走了20步到达一棵树C 处,接着再向前走了20步到达D 处,然后再左转90︒直行,当小刚看到电线塔B 、树C 与自己现处的位置E 在一条直线时,他共走了120步.(1)根据题意,画出示意图;(2)若小刚一步约0.5米,请求出A 、B 两点间的距离(写出推理过程).【答案】(1)见解析(2)40米,见解析【分析】(1)根据上北下南,左西右东,直角的意义,共线的条件画图即可.(2)根据三角形全等,得到120202080AB DE ==--=步,结合一步约0.5米,代入计算即可.【详解】(1)根据上北下南,左西右东,直角的意义,共线的条件画图如下:则画图即为所求.(2)∵ACB DCE AC CD BAC EDC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ACB DCE ≌,∴120202080AB DE ==--=步,∵一步约0.5米,∴800.540AB =⨯=(米),答:A 、B 两点间的距离约为40米.【点睛】本题考查了三角形全等的判定和性质,熟练掌握三角形全等的判定的应用是解题的关键.10.(2023·云南楚雄·统考三模)如图,AE 和BD 相交于点C ,AB DE ∥,AB ED =.求证:AC EC =.【答案】见解析【分析】由平行线的性质可得B D ∠=∠,A E ∠=∠.根据ASA 证明ABC EDC △△≌,即可推出AC EC =.【详解】证明:∵AB DE ∥,∴B D ∠=∠,A E ∠=∠.在ABC 和EDC △中,B D AB ED A E ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ABC EDC ≌△△.∴AC EC =.【点睛】本题考查全等三角形的判定与性质,解题的关键是熟练掌握全等三角形的判定方法.【知不足】1.(2023春·全国·七年级专题练习)如图,12m AB =,CA AB ⊥于点A ,DB AB ⊥于点B ,且4m AC =,点P 从B 向A 运动.每分钟走1m ,点Q 从B 向D 运动,每分钟走2m ,P 、Q 两点同时出发,运动()分钟后,CAP 与PQB △全等.A .2或4B .3C .4D .4或6【答案】C 【分析】设运动x 分钟后CAP 与PQB △全等,则m BP x =,2m BQ x =,(12)m AP x =-,分两种情况:①若BP AC =,则4x =,此时AP BQ =,CAP PBQ ≌△△;②若BP AP =,则12x x -=,得出6x =,12BQ AC =≠,此情况舍去,则得出结果.【详解】解:∵CA AB ⊥于A ,DB AB ⊥于B ,∴90A B ∠=∠=︒.设运动x 分钟后CAP 与PQB △全等,则m BP x =,2m BQ x =,(12)m AP x =-,分类讨论:①若BP AC =,则4x =,∴12488AP BQ AP BQ =-===,,,∴(SAS)CAP PBQ ≌;②若BP AP =,则12x x -=,解得:6x =,∴12BQ AC =≠,此时CAP 与PQB △不全等;综上所述:运动4分钟后CAP 与PQB △全等;故选C .【点睛】本题考查三角形全等的判定方法、解方程等知识;本题难度适中,利用分类讨论的思想是解题关键.2.(2023秋·八年级单元测试)如图,一块三角形的玻璃破成三片,一位同学很快拿着其中一片玻璃说:根据所学知识就能配出一个与原三角形完全一样的图形.他这样做的依据是()A .SSSB .SASC .AASD .ASA【答案】D 【分析】结合三角形全等的判定条件,依次对三片玻璃进行分析即可.【详解】解:第一片玻璃只有一个角与原三角形相等,无法判断与原三角形全等;第二片玻璃既没有边与原三角形相等,也有没有角与原三角形相等,无法判断与原三角形全等;第三片玻璃有两角及其夹边与原三角形相等,可以通过ASA 判定新三角形与原三角形全等;故选:D .【点睛】本题考查三角形全等的判定条件,解题的关键是熟练掌握三角形全等的相关知识.3.(2023春·全国·七年级专题练习)小刚把一块三角形玻璃打碎成了如图所示的三块,现要到玻璃店取配一块完全一样的玻璃,那么最省事的办法是()A .带①去B .带②去C .带③去D .带①和②去【答案】C 【分析】根据三角形全等的条件进行判断即可.【详解】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA 来配一块一样的玻璃,应带③去.故选:C .【点睛】本题主要考查全等三角形的应用,熟练掌握全等三角形的判定定理是解题的关键.4.(2023春·全国·七年级专题练习)ABC 中,8AC =,BC 边上的中线6AD =,则边AB 的取值范围是__.【答案】420AB <<【分析】延长AD 至E 使DE AD =,连接CE ,然后证明ADB EDC ≅ ,接着利用三角形的三边关系即可得到AB 的取值范围.【详解】延长AD 至E 使DE AD =,连接CE在ADB 和EDC 中,AD ED ADB CDE BD CD =⎧⎪∠=∠⎨⎪=⎩ADB EDC∴≅ AB CE∴=8AC = ,212AE AD ==420AE AC CE AC AE ∴-=<<+=420AB ∴<<.故答案为:420AB <<.【点睛】本题考查了全等三角形的判定与性质以及三角形的三边关系,正确的作出辅助线是解题的关键.5.(2021春·广东河源·七年级统考期末)如图,在ABC 和DEF 中,AB DE ∥,AB DE =,点A ,F ,C ,D 在同一条直线上且AF DC =.请说明ABC DEF ≌△△.【答案】见解析【分析】由平行线的性质可得A D ∠=∠,由AF DC =,可得AC DF =,进而根据SAS 即可证明ABC DEF ≌△△.【详解】证明: AB DE ∥,∴A D ∠=∠,AF DC =,∴AFFC DC FC +=+,即AC DF =,在ABC 和DEF 中,AC DF A D AB DE =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABC DEF △△≌.【点睛】本题考查全等三角形的判定、平行线的性质,解题的关键是熟练掌握全等三角形的判定方法.6.(2023·云南昆明·统考一模)如图,点A 、B 、C 、D 在同一直线上,AF DE =,A D ∠=∠,AC DB =.求证:ABF DCE △△≌.【答案】见解析【分析】利用线段的加减证得AB DC =,即可用“SAS ”证明三角形全等.【详解】证明:∵AC DB =,∴AC BC DB BC -=-,即AB DC =,在ABF △和DCE △中,∵AF DE A D AB DC =⎧⎪∠=∠⎨⎪=⎩,∴(SAS)ABF DCE ≌△△.【点睛】本题考查的是三角形全等的判定,掌握三角形的各个判定定理是关键.7.(2023·云南昭通·统考二模)如图,点A ,F ,C ,D 在同一直线上,BC EF ∥,AF DC =,BC EF =.求证:ABC DEF ≌△△.【答案】见解析【分析】根据平行线的性质可得ACB DFE ∠=∠,再由AF CD =,可得AC DF =,再根据全等三角形的判定即可得出结论.【详解】证明:BC EF ∥,ACB DFE ∴∠=∠,AF CD = ,AC DF =∴,在ABC 和DEF 中,AC DF ACB DFE BC EF =⎧⎪∠=∠⎨⎪=⎩(SAS)ABC DEF ∴△≌△.【点睛】本题考查平行线的性质和全等三角形的判定,熟练掌握全等三角形的判定是解题的关键.8.(2023·云南昆明·统考二模)“倍长中线法”是解决几何问题的重要方法.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,具体做法是:如图,AD 是ABC的中线,延长AD 到E ,使DE AD =,连接BE ,构造出BED 和CAD .求证:BED CAD △≌△.【答案】见解析【分析】由AD 是ABC 的中线,可得DE AD =,再由EDB ADC ∠=∠,DB DC =,即可证明BED CAD △≌△.【详解】证明:如图所示:,AD 是ABC 的中线,DB DC ∴=,在BED 和CAD 中,ED ADEDB ADC DB DC =⎧⎪∠=∠⎨⎪=⎩,(SAS)BED CAD ∴ ≌.【点睛】本题主要考查了三角形全等的判定,倍长中线,熟练掌握三角形全等的判定,添加适当的辅助线是解题的关键.【一览众山小】1.(2023秋·吉林长春·八年级统考期末)如图,在用尺规作图得到DBC ABC ≌过程中,运用的三角形全等的判定方法是()A .SASB .ASAC .AASD .SSS【答案】B 【分析】根据作法可得,ABC DBC ACB DCB ∠=∠∠=∠,可利用ASA 证明DBC ABC ≌,即可求解.【详解】解:根据作法得:,ABC DBC ACB DCB ∠=∠∠=∠,∵BC BC =,∴()ASA DBC ABC ≌.故选:B【点睛】本题主要考查了尺规作图——作一个角等于已知角,全等三角形的判定,熟练掌握作一个角等于已知角的作法,全等三角形的判定定理是解题的关键.2.(2023·山东菏泽·统考一模)如图,18m AB =,CA AB ⊥于A ,DB AB ⊥于B ,且6m AC =,点P 从B 向A 运动,每秒钟走1m ,Q 点从B 向D 运动,每秒钟走2m ,点P ,Q 同时出发,运动______秒后,CAP 与PQB △全等.【答案】6【分析】设运动x 秒钟后CAP 与PQB △全等;则m 2m BP x BQ x =,=,则()18m AP x =-,分两种情况:①若BP AC =,则6x =,此时AP BQ =,()SAS CAP PBQ ≌;②若BP AP =,则18x x -=,得出9x =,218BQ x AC ==≠,即可得出结果.【详解】解:∵CA AB ⊥于A ,DB AB ⊥于B ,∴90A B ∠=∠=︒,设运动x 分钟后CAP 与PQB △全等;则m 2m BP x BQ x =,=,则()18m AP x =-,分两种情况:①若BP AC =,则6x =,∴18612AP =-=,12BQ =,AP BQ =,∴()SAS CAP PBQ ≌;②若BP AP =,则18x x -=,解得:9x =,218BQ x AC ==≠,此时CAP 与PQB △不全等;综上所述:运动6秒钟后CAP 与PQB △全等;故答案为:6.【点睛】本题考查了三角形全等的判定方法、解方程等知识;本题难度适中,需要进行分类讨论.3.(2022秋·湖北恩施·八年级校考阶段练习)如图,要测量池塘两端A ,B 的距离,可先在平地上取一个可以直接到达A ,B 两点的点C ,连接AC 并延长AC 到点D ,使CD CA =,连接BC 并延长BC 到点E ,使CE CB =,连接DE ,那么量出DE 的长就等于AB 的长,这是因为ABC DEC ≅ ,而这个判定全等的依据是______(填字母).【答案】SAS【分析】先根据对顶角相等可得ACB DCE ∠=∠,再根据三角形全等的判定即可得.【详解】解:由对顶角相等得:ACB DCE ∠=∠,在ABC 和DEC 中,CA CD ACB DCE CB CE =⎧⎪∠=∠⎨⎪=⎩,()SAS ABC DEC ∴≅ ,故答案为:SAS .【点睛】本题考查了三角形全等的判定,熟练掌握三角形全等的判定是解题关键.4.(2023·云南昆明·昆明八中校考三模)如图,点B ,C ,E ,F 在同一条直线上,AB DE =,A D ∠=∠,AC DF =.求证:BF CE =.【答案】见解析【分析】先证明()SAS ABC DEF ≌△△,可得BC EF =,根据BC CF EF FC -=-即可证明.【详解】证明:在ABC 和DEF 中,∵AB DE A D AC DF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABC DEF ≌△△,∴BC EF =,∵BC CF EF FC -=-,∴BF CE =.【点睛】本题考查了几何证明,涉及到全等三角形的判定与性质,找出BC CF EF FC -=-是关键.5.(2023秋·八年级课时练习)如图,在ABC 中,点D 是AC 上一点,AD AB =,过点D 作DE AB ∥,且DE AC =,连接AE ,CE .(1)求证:ABC DAE △≌△;(2)若D 是AC 的中点,ABC 的面积是20,求AEC △的面积.【答案】(1)见解析(2)40【分析】(1)根据两直线平行,内错角相等可得BAC ADE ∠=∠,再利用“边角边”证明即可;(2)根据全等三角形面积相等,即三角形中线的性质即可求解.【详解】(1)证明:DE AB ∥,BAC ADE ∴∠=∠,在ABC 和DAE 中,AB DA BAC ADE AC DE =⎧⎪∠=∠⎨⎪=⎩,()SAS ABC DAE ∴△≌△;(2)解:ABC DAE ≌,20ABC DAE S S ∴==△△.D 是AC 的中点,222040AEC DAE S S ∴==⨯=△△.【点睛】本题主要考查了全等三角形的判定与性质,平行线的性质,三角形的中线将三角形面积平分为两等份,熟记三角形全等的判定方法是解题的关键.6.(2023·浙江·模拟预测)如图,在ABC 中,AC AB >,射线AD 平分BAC ∠,交BC 于点E ,点F 在边AB 的延长线上,AF AC =,连接EF .(1)求证:AEC AEF ≌.(2)若50AEB ∠=︒,求BEF ∠的度数.【答案】(1)证明见解析(2)80︒【分析】(1)由射线AD 平分BAC ∠,可得CAE FAE ∠=∠,进而可证()SAS AEC AEF ≌;(2)由()SAS AEC AEF ≌,可得C F ∠=∠,由三角形外角的性质可得50AEB CAE C ∠=∠+∠=︒,则50FAE F ∠+∠=︒,根据180FAE F AEB BEF ∠+∠+∠+∠=︒,计算求解即可.【详解】(1)证明:射线AD 平分BAC ∠,∴CAE FAE ∠=∠,在AEC △和AEF △中,∵AC AF CAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴()SAS AEC AEF ≌;(2)解:∵()SAS AEC AEF ≌,∴C F ∠=∠,∵50AEB CAE C ∠=∠+∠=︒,∴50FAE F ∠+∠=︒,∵180FAE F AEB BEF ∠+∠+∠+∠=︒,∴80BEF ∠=︒,∴BEF ∠为80︒.【点睛】本题考查了角平分线,全等三角形的判定与性质,三角形外角的性质,三角形内角和定理.解题的关键在于对知识的熟练掌握与灵活运用.7.(2022秋·福建泉州·八年级校考阶段练习)如图,在43⨯的正方形网格中,ABC 的顶点都在正方形网格的格点上请你在图①和图②中分别画出一个三角形,同时满足以下两个条件:(1)以点A 为一个顶点,另外两个顶点也在正方形网格点上;(2)与ABC 全等,且不与ABC 重合.【答案】(1)见解析(2)见解析【分析】(1)直接利用网格结合全等三角形的判定方法分析得出答案;(2)直接利用网格结合全等三角形的判定方法分析得出答案.【详解】(1)如图所示:ABD △即为所求;在ABC 和ABD △中453AB AB ABC ABD BC BD =⎧⎪∠=∠=︒⎨⎪==⎩∴()SAS ABC ABD ≌.(2)如图所示:BAE 即为所求.∵AE BC ∥,∴ABC BAE ∠=∠.在ABC 和BAE 中3AB BA ABC BAE BC AE =⎧⎪∠=∠⎨⎪==⎩∴()SAS ABC BAE ≌.【点睛】此题主要考查了应用设计与作图,熟练掌握全等三角形的判定方法是解题关键.8.(2023·云南昆明·校考三模)如图,在ABC 和ADE V 中,C E ∠=∠,AC AE =,CAD EAB ∠=∠.求证:ABC ADE △≌△.【答案】证明见解析;【分析】根据角的和差得到DAE CAB ∠=∠,再根据全等三角形的判定即可解答.【详解】解:∵CAD EAB ∠=∠,∴CAD BAD EAB BAD ∠+∠=∠+∠,∴DAE CAB ∠=∠,∴在ABC 和ADE 中,C E AC AE CAB DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ABC ADE ASA ≌;【点睛】本题考查了角的和差关系,全等三角形的判定,掌握全等三角形的判定是解题的关键.9.(2022春·七年级单元测试)如图,A ∠=B ∠,AE =BE ,点D 在AC 边上,1∠=2∠,AE 和BD 相交于点O .求证:AEC BED ≌△△.【答案】见解析【分析】利用三角形内角和得到2BEO ∠=∠,结合12∠=∠推出AEC BED ∠=∠,再利用ASA 证明AEC BED △△≌即可.【详解】解:证明:AE 和BD 相交于点O ,AOD BOE ∴∠=∠.在AOD △和BOE △中,A B ∠=∠,2BEO ∴∠=∠.又12∠=∠ ,1BEO ∴∠=∠,AEC BED ∴∠=∠.在AEC △和BED 中,A B AE BE AEC BED ∠=∠⎧⎪=⎨⎪∠=∠⎩,(ASA)AEC BED ∴△≌△.【点睛】本题考查全等三角形的判定,解题的关键是熟练运用全等三角形的性质与判定.10.(2022秋·七年级单元测试)如图,在ABC 中,AB AC =,AD BC ⊥于点D ,CE AB ⊥于点E ,AE CE =,AD 与CE 相交于点F .求证:AEF CEB ≌.【答案】见解析【分析】由ASA 证明AEF CEB ≌即可.【详解】证明:AD BC ⊥ ,90B BAD ∴∠+∠=︒,CE AB ⊥ ,90B BCE ∴∠+∠=︒,EAF ECB ∴∠=∠,在AEF △和CEB 中,AEF BEC AE CE EAF BCE ∠=∠⎧⎪=⎨⎪∠=∠⎩,(ASA)AEF CEB ∴ ≌.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;熟练掌握等腰三角形的性质,证明三角形全等是解题的关键.11.(2023·辽宁鞍山·统考一模)如图,在ABC 中,AB AC =,CD AB ∥,连接AD ,E 为AC 边上一点,ABE CAD ∠=∠,求证:ABE CAD ≌.【答案】证明见解析【分析】根据CD AB ∥,得到BAE ACD ∠=∠,利用ASA 即可得证.【详解】证朋:CD AB ∥,BAE ACD ∴∠=∠,AB AC = ,ABE CAD ∠=∠,()ASA ABE CAD ∴ ≌.【点睛】本题考查全等三角形的判定.熟练掌握全等三角形的判定方法,是解题的关键.12.(2023秋·湖南常德·八年级统考期末)如图,在ABC 中,90ACB ∠=︒,AC BC =,AE 是BC 边上的中线,过点C 作CF AE ⊥于点F ,过点B 作BD BC ⊥交CF 的延长线于点D ,连接DE .(1)求证:DBC ECA △≌△;(2)若6AC =,求CDE 的面积.【答案】(1)见解析中,(2)如图2,在ABC∠=∠在线段AD上,12【答案】(1)见解析;【分析】(1)由1∠又由AB AC =即可得到(2)ABC 的面积为的面积=CAF V 的面积,则可得到结论.【详解】(1)证明:BAC BAE ∠=∠+∴ABE CAF ∠=∠在ABE 和CAF V ABE CAF AB AC BAE ACF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ABE CAF ≌△△(2)解:∵ABC ∴ACD 的面积是:由(2)可得ABE △即ABE 的面积=∴ABE 与CDF 【点睛】此题主要考查了全等三角形的判定和性质,键.求证:ABE CAF V V ≌;若ABC 的面积为18,BD BC 【答案】(1)证明见解析.(2)12.【分析】(1)利用ASA 证明三角形全等即可;判定方法,证明三角形全等是解题的关键.。
《三角形全等的判定SSS》课堂教学实录及评析

《三角形全等的判定SSS>课堂教学实录及评析【设计理念】学习是一个探究与发现的过程,是一个认识、实践、提高的过程。
在教学中通过组织引导学生探索三角形全等的条件,让学生们在交往中学,在观察中学,在比较中学,努力实行知与行、学与用、识与能的高度统一,培养学生善于“做数学”的能力。
教学目标1. 知识目标:(1)掌握“边边边”公理;(2)能应用“边边边”公理判定两个三角形全等。
2. 能力目标:(1)培养学生动手操作、观察、分析、归纳获得数学结论的能力;(2)培养学生推理论证能力。
3. 情感态度价值观目标:通过多种手段的活动过程,让学生动手操作,激发学生学习的兴趣,并能通过合作交流解决问题,体会数学在现实生活中的应用,增强学生的自信心。
教学重点:寻找判定三角形全等的条件。
教学难点:三角形全等条件的探索和推理论证方法。
教学方法:“悟学式”教学法。
教学准备:多媒体课件、三角板、圆规、木棒、硬纸、剪刀等。
教学过程一、课堂启发(感动。
感动是学习的动力)师:大家知道数学来源于生活,用数学知识又可以解决许多生活中的问题,下面让我们先来看一个与生活有关的数学问题。
(幻灯片演示)皮皮公司接到一批三角形支架的加工任务,客户的要求是所有的三角形支架必须与样本完全一样。
质检部门为了使产品顺利过关,提出了明确的要求:要逐一比对所有的三角形支架与样本是否完全一样。
技术科的毛毛提出了质疑:为了提高效率,是不是可以找到一个更优化的方法呢?师:问题中的“完全一样”在数学中是指什么?生:全等。
师:“逐一比对”是怎样比呢?生:用重合法,分别比较三角形的三条边和三个角是否重合。
师:也就是验证几个条件?生:6 个。
师:是不是一定要满足这6 个条件才能判定两个三角形全等呢?在这里毛毛提出的更优化的方法,实质上是给我们提出了一个什么样的数学问题呢?生:也就是说,如何判定两个三角形全等需要的条件最少。
师:很好!这节课就让我们一起来研究三角形全等的判定方法。
初中数学教学课例《探索三角形全等的条件(一)》教学设计及总结反思

(学生分小组画图,学生们可以进行分工合作,可 以让部分学生画两边相等,部分学生画两角相等,另一 部分画一角相等,一边相等。然后在一起互相交流,看 每种情况是否全等,画完之后,教师找每组学生代表回 答。)
生 14:在△ABC 和△AB′C′中,其中∠B=∠B′, ∠C=∠C′,但这两个三角形不全等。(如图 3)
师:我们画三角形需要确定它的两个顶点,我们如 何才能确定△A′B′C′的顶点呢?
生 20:我们先画一条边 B′C′,使 B′C′=BC, 就可以确定两个顶点。
师:点 A′和 B′的距离为多少?,点 A′和 C′的 距离为多少?
生 21:A′B′=AB 师:我们怎样做能使 A′B′=AB。 生 22:以 B′为圆心,以 AB 的长为半径画弧。 师:对同样的道理,我们以 C′为圆心,AC 的长为 半径画弧,两弧交点就 A′,教师演示作图过程,并要 求学生说出三个主要的步骤。 (投影出示)任意画一个△ABC,然后画 △A′B′C′,使 A′B′=AB,B′C′=BC,A′C′= AC。 学生画完图后,将其中一个三角形剪下来,放在另 一个上面,看两个三角形是否全等,并与小组中其他同 学交流意见,教师收集学生作品,并展示学生代表的作 品。 生 23:在△ABC 和△A′B′C′,且 A′B′=AB, B′C′=BC,A′C′=AC,如下图:我将其中一个剪下 来,放在另一个上面,发现它们是完全重合的,所以这
教学过程
生 3:画全等三角形需要满足什么条件?
师:问得好!三角形全等需要什么条件呢?这就是
我们这节课需要研究的问题。
(出示课题)
点评 1:通过投影出示欣赏几幅美丽的图案,让学
生感受美的同时激发学创造美的意识,培养学生学习和
探索的兴趣,调动了学生学习的积极性。
让激情与智慧共生——“探索直角三角形全等的条件”课例及其点评

激 与 智 慧 l
执教 : 湖北 省 宜都 市红 花 中学 江 春
生
“ 索 直 角 三 角 形 全 等 的 条 件 " 课 例 及 其 点 评 探
点 评 : 北 省 宜 都 市 教 育 局 孙 大 勇 湖
1 教 学 目标
1 2 过 程 与 方 法 .
在 探索 直角 三角 形 全等 条件 及 其 运 用 的过 程 中 , 能进 行 有条 理 的思考 和 简单 的推 理 .
1 3 情 感 与态 度 .
置 . 同学 们 想 一 想 , 时 钩 挂 在 它 两 头 的绳 索 AB 请 这 和 AC( 图 1 2 ) 如 ( ) 的长 度相 等 吗 ? 学生( 齐答 ) 相 等 . : 点 评 : 生 活 中有 意 义 的事 情 移 植 到 数 学课 堂 , 把 既是 丰 富学 生情 感 的有 效手 段 , 能 引导 学 生用 数 学 也 的 眼光 关注 生 活 , 同时 也 激 发 了他 们 学 习 、 究 的 欲 探 望. 鲜活 的生 活 实 例 展 现 于 学 生 面 前 , 数 学 课 堂 旧 让 貌换 新颜 . 教师: 大家有 过 类似 的体 验 吗 ? 学生 1 有 . 肩膀 背 书 包 时 , 膀 总是 很 自然 地 : 用 肩 处在 书包 带 的最 中 间? 学生 2 读 小 学 时 我 提 着 算 盘 上 学 , 算 盘 的 带 : 系 子在 手 中 的位 置好 像 是 在最 中 间. 学生 3 用 水 桶 提 水 时 , 必 须 提 在 最 中 间 才 感 : 手
教师: 回答得 很 好 , 是一 个 聪 明 的孩 子. 你 能告诉 我 为 什 么吗 ? 学 生 4 因为 它 们 一 个 处 于 水 平 的位 置 , 一 个 : 另
探索三角形全等的条件(1)的教学设计

4.3 探索三角形全等的条件(1)大庆市第44中学刘畅一、教学目标1.知识与技能:掌握三角形全等的“SSS”条件,了解三角形的稳定性。
2.过程与方法:经历观察、猜想、操作,归纳的探究过程。
体会特殊到一般的分析问题方法,和分类的数学思想方法。
3.情感态度与价值观:会有条理的思考,感受逻辑推理的严谨性和数学的美。
二、教学重点、难点1.经历探索过程,从实践中得到三角形全等的“SSS“条件。
并能运用其解决简单问题。
2.对三角形全等条件的分析以及探索思路的选择三、教具、学具多媒体演示、直尺、圆规、量角器、剪刀、卡纸.四、教学过程(一)导入新课1.旧知回顾.教师:(1)上节课学习了图形的全等,回忆一下什么是全等三角形?(2)(参看幻灯片)如图,如果△ABC≌△DEF,那么它们的()相等,()相等。
即满足:AB=(),()=EF,( )=( ), ∠A=( ),( )= ∠E,( )=( )。
2.情境创设教师:要画一个三角形与小明画的三角形全等,需要几个与边或角有关的条件呢?同学们猜想一下,一定要六个条件都满足时,才会使得两个三角形全等吗?这就是本节课所要研究的问题.(回忆三角形全等的有关知识,以及全等三角形的性质。
以此为出发点启发学生大胆猜想:要判定三角形全等,是否需要三组边、三组角都分别相等,即从条件的数量着手来研究,自然进入本节课的探究活动。
)3.引出课题.(板书:4.3探索三角形全等的条件)(二)合作探究探究点一、探索两个三角形全等需要的条件(课前布置:依据下列要求画出并剪下三角形,标清题号。
在本节课的操作比较中,剪下的三角形可以灵活的移动、叠合,对比结果更加直观,便于观察。
)问题1:只给一个条件作三角形,大家画的三角形一定全等吗?问题2:给出两个条件作三角形,有几种可能的情况?每种情况下大家得到的三角形一定全等吗?(1)三角形一个内角30°,一条边长15CM.(2)三角形两个内角分别为30°和50°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《1.3 探索三角形全等的条件(1)》评课1.本节课的教学目标明晰,层层递进,过渡自然.
本节课是在学生学习了全等图形,对于全等三角形的概念及性质有了一定的了解后,探索三角形全等条件的第1课时.本节课的教学目标明确,重点突出,引导学生经历了从特殊到一般的研究过程,在实践中得到“SAS”的基本事实,帮助学生积累分析问题的方法和数学活动的经验.本节课的各环节的设计层次分明,环环相扣,使学生从知识到能力逐步得到发展.学生活动充分、有效.
2.重视知识的生成过程及应用过程,有效诠释了新教材的设计意图.
(1)教师从一个简单的动画演示——“图形的旋转”入手,唤起学生对全等的定义及性质的回忆,承上启下的引导学生从“形”的重合到“量”的思考,提出本节课所要探究的问题.教师将新知的探究在3个活动中循序渐进地铺开,活动一:通过任意剪——剪得的直角三角形不全等;再动手——组内寻找统一的参考量,在对比与思考中,确定直角三角形全等的条件.活动二:在活动一的基础上,将三角形的形状一般化,既而得出猜想,从而引发出本节课的第3个活动:由学生利用尺规作图的方法,亲历实验操作过程,验证“两边及其夹角相等的两个三角形全等”这个猜想的正确性.知识的生成过程看似花去了很多时间,但无论是隐形思维还是显性活动,学生始终处于活跃积极的氛围中,消除了课堂上学生被动接受的静止状态.
(2)锻炼学生几何说理的同时,培养学生几何直观的能力.本节课的重点与难点便是利用“SAS”进行几何说理,对于刚刚步入八年级的学生而言,演绎推理的能力还很薄弱,教师在教学过程中,反复强调并规范说理的书写过程,将书写过程归纳为“指明图形,列出条件,得出结论”,特别强调写出每一步的说理依据,并将对应字母写在对应位置上,努力培养学生良好的几何素养和严谨的逻辑表达.教师能深刻领悟教材,除几何说理外,还引导学生用“运动变换”的观点看待问题,直观地理解数学.这也正是新教材的“出新”之处,平面几何教材经历了重演绎推理、重直观感悟到现在的“并举”——用“运动变换”来研究、揭示图形的性质,发展学生几何直观能力,用几何说理发展逻辑思维推理能力.教师在今后的图形与几何的教学中,要研究教材设计意图,充分体现出“几何直观”与“推理能力”密不可分的关系.
3.注重引导学生自主探究,发挥小组合作的优势.
(1)《新课程标准》将培养学生自主探究能力作为一项重要的教学策略,本节课教师在
新知的生成环节上尽量的放手,让学生亲历探究过程.在整个探究过程中,教师充分扮演了组织者与引导者的角色,从提出问题到指导探索,凸显学生的主体地位,外国语学校的小组合作的学习模式使本节课的探究得以顺利进行,学生的活动平等而自由,知识的“再生成”毫无造作生硬和预设,完全是学生思维的真实流露和智慧碰撞.
(2)本节课教师的站位不是在学生之间,而是站在教学设计的制高点:将待解决的问题设置成一个个任务,通过“课堂活动单”布置学习任务,既有学生的独立思维,又有组内的交流讨论,整节课教师对学生活动的节奏调控较好.
4.发展学生提出问题的意识与解决问题的能力.
本节课的“开放思维”环节,设计大胆,对学生而言具有一定的挑战性.要求借助适当的图形运动,利用组内的全等三角形进行拼图,对拼图合理设计问题,并且能够利用本节课所学知识解决问题.这样的设计十分符合当下“发展学生自己发现和提出问题的能力”的教学理念.本节课上学生呈现出的拼图各式各样,设计的问题多元灵活,反映出学生对本节课的知识有了很好的理解并能灵活运用,由于课堂时间有限,不能一一解决各个小组设计的问题,所以教师将没有完成的问题布置学生课后继续完成,这其中还有几个设计的问题不能用本节课的知识加以解决,本节课的“不能解决”就成为了后续知识的生长点,不失为延伸课堂的一种好做法.
5.本节课中还有一些值得探讨的地方.
(1)在第一次动手剪直角三角形后,回答问题的学生没有指出隐含的直角相等的条件,教师是否一定要及时追问?待到一般形状的三角形研究过后,再通过对比,将隐含的条件挖掘出来,使得条件在层层深入中不断得以完善,更为符合学生的认知规律,体会从特殊到一般的必要性与合理性.
(2)最后一个拼图环节,学生展示后,可由小组派出代表,指明拼图所含有的图形运动,再次体会“几何直观”与“推理能力”的关系.。