2第二节频率特性的几种表示方法
精品文档-自动控制原理(第二版)(千博)-第5章

图 5-5 惯性环节的波德图
25
三、对数幅相图(Nichols图)
对数幅相图是以相角(°)为横坐标, 以对数幅频L(ω)(dB)
为纵坐标绘出的G(jω)曲线。频率ω为参变量。因此它与幅相
频率特性一样, 在曲线的适当位置上要标出ω的值, 并且要用
箭头表示ω增加的方向。
用对数幅频Hale Waihona Puke 性及相频特性取得数据来绘制对数幅相
第五章 频 域 分 析 法
第一节 第二节 第三节 第四节 第五节 第六节 第七节 第八节 关系 第九节 德图
频率特性的基本概念 频率特性的表示方法 典型环节的频率特性 系统开环频率特性 奈奎斯特稳定性判据和波德判据 稳定裕度 闭环频率特性 开环频率特性和系统阶跃响应的
利用MATLAB绘制奈奎斯特图和波
8
图 5-2 频率特性与系统描述之间的关系
9
利用频率特性曲线分析研究控制系统性能的方法称为频域 分析法。频域分析法主要有傅氏变换法和经典法。
(1) 傅氏变换法就是系统在输入信号r(t)的作用下,其输 出响应为
即把时间函数变换到频域进行计算并以此分析研究系统的方法。 (2) 经典法就是先求出系统的开环频率特性G(jω)并绘成
的对数频率
22
(1) 对数幅频特性曲线。通常用L(ω)简记对数幅频特性, 故
ω从0变化到∞时的对数幅频特性曲线如图5-3所示。
23
(2) 相频特性曲线。通常以j(ω)表示相频特性, 即 j (ω)=∠G(jω)。对于惯性环节, 有
j (ω)=-arctanTω 对不同ω值, 逐点求出相角值并绘成曲线即为相频特性曲线, 如图5-5所示。
45
图 5-11 振荡环节近似波德图
2第二节对数频率特性

1-Apr-21
1
一、对数频率特性曲线(波德图,Bode图)
Bode图由对数幅频特性和对数相频特性两条曲线组成。 ⒈波德图坐标(横坐标是频率,纵坐标是幅值和相角)的分度:
横坐标(称为频率轴)分度:它是以频率w 的对数值 logw 进行 线性分度的。但为了便于观察仍标以w 的值,因此对w 而言是 非线性刻度。w 每变化十倍,横坐标变化一个单位长度,称为 十倍频程(或十倍频),用dec表示。类似地,频率w 的数值变化
w L(w )
2 20 log
A(w )
20 log
K
w
40
K 10
20log K 20log w,
20
w 当K 1时,w 1, L(w) 0;
20 40
j (w)
1 10 100 K 1 w
当w 10时,L(w) 20 可见斜率为-20/dec 当K 1时,w 1, L(w) 20log K;
0.3
-120° 0.5
-150° 0.7
1.0
-180°
1
1
10T 5T
1
1
2
2T
T
T
对数幅频特性和对数相频特性
图。上图是不同阻尼系数情况
下的对数幅频特性实际曲线与
渐近线之间的误差曲线。
5 T
10 T
当0.3<<0.8,误差约为±4.5dB
1-Apr-21
16
振荡环节的波德图
相频特性:j
1-Apr-21
6
比例环节的bode图
二、典型环节的波德图 ⒈ 比例环节: G(s) K ;
G( jw) K
幅频特性:A(w) K;相频特性:j(w) 0
第五章 频率特性法 (2)

斜率 (dB/dec) 0 -20 -40 0,-20 ,
特殊点 ω L( )=lgK ω =1, L( )=0 ω ω =1, L( )=0 ω
φ(ω) 0o -90o -180o
s2 1 Ts+1
1+τs
ωn 2 s2+2ζ ωns+ωn
2
转折ω = 1 0o -90o ~ 频率 T 转折ω = 1 0o~90o 0,20 频率 , τ 0,-40 转折 ω =ω n 0o~-180o , 频率
一、典型环节的频率特性 二、控制系统开环频率特性
第二节 典型环节与系统的频率特性
一 典型环节的频率特性
1.比例环节 .
传递函数和频率特性 G(s)=K G(jω)=K 幅频特性和相频特性 A(ω)=K φ(ω)=0o (1) 奈氏图 奈氏图是实轴上的 点 奈氏图是实轴上的K点。 是实轴上的 比例环节的奈氏图
第二节 典型环节与系统的频率特性
(1) 奈氏图
振荡环节的奈氏图
Im
ω=0 =∞
A(ω)=1 A(ω)=0 (ω)=0o φ(ω)=-180o 1 A(ω)= 2ζ 率特性曲线因ζ值 率特性曲线因 值 φ(ω)=-90o 不同而异. 的不同而异
ω ∞
0
1
ω=0
Re
ω=ωn 振荡环节的频
ω= ωn
ξ=0.8 ξ=0.6 ξ=0.4
积分环节的伯德图
40 20 0 -20 0.1 1
L(ω)/dB -20dB/dec
10
ω
Φ(ω)
0 0.1 1 10
φ(ω)=-90o
ω
-90
第二节 典型环节与系统的频率特性
3.微分环节 .
节频率特性分析

节频率特性分析1. 引言在信号处理和通信系统中,频率是一项非常重要的指标。
频率可用来描述信号的周期性、周期数以及变化的速度等特性。
在实际应用中,我们经常需要对信号的频率进行分析,以了解信号中的频谱内容和频率分布情况。
本文将介绍一种常用的频率分析方法–节频率特性分析。
2. 节频率特性分析的概念节频率特性分析是一种将信号从时域转换到频域的方法。
它将信号分解成不同频率分量,以便更好地观察和理解信号的频率特性。
通常,我们使用傅里叶变换来实现节频率特性分析。
3. 傅里叶变换傅里叶变换是一种将信号从时域转换到频域的数学工具。
它将一个信号分解成一系列不同频率的正弦和余弦波,并给出每个频率分量的振幅和相位信息。
傅里叶变换公式如下:F(ω) = ∫[f(t) * e^(-jωt)] dt其中,F(ω)表示信号在频率ω处的频谱分量,f(t)表示原始信号,ω表示要分析的频率,j表示虚数单位。
傅里叶变换可以将信号从时域表示转换为频域表示,从而揭示信号的频率特性。
4. 快速傅里叶变换快速傅里叶变换(FFT)是一种高效的计算傅里叶变换的算法。
与传统的傅里叶变换相比,FFT具有更低的计算复杂度,能够在较短的时间内对信号进行频率分析。
FFT可以对信号的离散样本序列进行处理,并得到与连续信号的傅里叶变换结果相似的频谱信息。
5. 节频率特性分析的应用节频率特性分析在很多领域都有广泛的应用。
以下是一些典型的应用场景:•信号处理:通过节频率特性分析,可以了解信号中各个频率分量的贡献程度,从而进行滤波、降噪等处理操作。
•通信系统:节频率特性分析可以帮助我们理解信道的频率响应特性,从而优化通信系统的设计和参数配置。
•音频处理:在音频处理中,节频率特性分析可以帮助我们了解音频信号的频谱分布情况,例如音乐的音调和乐器的谐波分量等。
•图像处理:通过节频率特性分析,可以对图像进行频域滤波和增强处理,以提高图像质量或实现特定的图像处理效果。
6. 实例分析假设我们有一个音频信号,想要了解其频率特性。
§52频率特性的几种表示方法

A( ) ( )
P ( )
0
G( s)
s 1 s2 s 1
由于 | G( j ) |是偶函数, 所以当 从 0 和 0 变化时,奈魁 斯特曲线对称于实轴。
3
Tuesday, November 20, 2018
二、对数频率特性曲线(又称波德图) 它由两条曲线组成:幅频特性曲线和相频特性曲线。
第二节 频率特性的几种表示方法
Tuesday, November 20, 2018
1
频率特性可以写成复数形式: G( j ) P( ) jQ( ) ,也可 以写成指数形式:G( j ) | G( j ) | G( j )。其中,P ( ) 为实 频特性, Q ( ) 为虚频特性; | G ( j ) |为幅频特性, G ( j ) 为相频 特性。 在控制工程中,频率分析法常常是用图解法进行分析和设 计的,因此有必要介绍常用的频率特性的三种图解表示。 极坐标频率特性曲线(又称奈魁斯特曲线) 对数频率特性曲线(又称波德图) 对数幅相特性曲线(又称尼柯尔斯图)
Tuesday, November 20, 2018
2
一、极坐标频率特性曲线(又称奈魁斯特曲线)
它是在复平面上用一条曲线表示 由 0 时的频率特性。 即用矢量 G ( j ) 的端点轨迹形成的图形。 是参变量。在曲线 的上的任意一点可以确定实频、虚频、幅频和相频特性。 根据上面的说明,可知: 频率特性曲线是S平面 Q ( ) 上变量s沿正虚轴变化 时在G(s)平面上的映射。
ቤተ መጻሕፍቲ ባይዱ
幅值 1
A( )
1.26
2
1.56
4
2.00
6
2.51
8
频率特性的几种表示方法

在控制工程中,频率分析法常常是用图解法进行分析和设 计的,因此有必要介绍常用的频率特性的三种图解表示。
极坐标频率特性曲线(又称奈魁斯特曲线) 对数频率特性曲线(又称波德图) 对数幅相特性曲线(又称尼柯尔斯图)
Monday, August 05, 2019
2
一、极坐标频率特性曲线(又称奈魁斯特曲线)
Monday, August 05, 2019
6
第二节 频率特性的几种表示方法
Monday, August 05, 2019
1
频率特性可以写成复数形式:G( j) P() jQ() ,也可 以写成指数形式:G( j) | G( j) | G( j)。其中,P() 为实 频特性,Q()为虚频特性;| G( j) |为幅频特性,G( j) 为相频
Monday, August 05, 2019
4
纵坐标分度:幅频特性曲线的纵坐标是以log A()或20log A() 表示。其单位分别为贝尔(Bl)和分贝(dB)。直接将log A() 或 20log A() 值标注在纵坐标上。
相频特性曲线的纵坐标以度或弧度为单位进行线性分度。
一般将幅频特性和相频特性画在一张图上,使用同一个横 坐标(频率轴)。
0 由于 | G( j) |是偶函数, 所以当 从 0 和 0变化时,奈 魁斯特曲线对称于实 轴。
Monday, August 05, 2019
3
二、对数频率特性曲线(又称波德图)
它由两条曲线组成:幅频特性曲线和相频特性曲线。
波德图坐标(横坐标是频率,纵坐标是幅值和相角)的分度:
横坐标分度:它是以频率 的对数值 log 进行分度的。所 以横坐标(称为频率轴)上每一线性单位表示频率的十倍变化, 称为十倍频程(或十倍频),用Dec表示。如下图所示:
自动控制原理 第五章 频率法

频率特性
在稳态下输出:e2 = E2Sin(wt +υ ) 仍是正弦信号, 频率不变, 幅值和相角发生变化. 变化与w有关. 1/jwC 1 写成矢量形式:e2 = ————— e1 = ———— e1 R + 1/jwC 1+jwRC e2 1
-— = ———— e1 1+jwRC
与电路参数RC有关、与输入电压的频率有关
自动控制原理
蒋大明
幅相特性与传递函数之间的关系
输出输入的振幅比(幅频特性): A(w) = Ac/Ar = | G(jw)| = G(S) | 输出输入的相位差(相频特性): υ (w) = υ - 0 =∠G(jw) =∠G(S) | 所以:G(jw) = G(S)|S=jw 频率特性 传递函数 证毕
自动控制原理
蒋大明
一阶不稳定环节
一阶不稳定环节的对数幅频特性与惯性环节的完全一样;相频则有所 不同,是在-180至-90范围内变化.
L ( )
0 -20
1
10
(a )
( )
0o
90o
(b)
180o
图5-20 一阶不稳定环节 的对数频率特性
自动控制原理
蒋大明
时滞环节
传递函数: G(S) = e-τ
S
幅相频率特性:
G(jw) = e-jτ
A(w) = 1 υ (w) = -τ w
w
自动控制原理
蒋大明
时滞环节
对数频率特性: L(w) = 20 lg A(w) = 20lg 1 = 0 υ (w) = -τ w
(横坐标对数分度,曲线)
自动控制原理
蒋大明
第三节
1.
《机械工程控制基础》课后答案

目录第一章自动控制系统的基本原理第一节控制系统的工作原理和基本要求第二节控制系统的基本类型第三节典型控制信号第四节控制理论的内容和方法第二章控制系统的数学模型第一节机械系统的数学模型第二节液压系统的数学模型第三节电气系统的数学模型第四节线性控制系统的卷积关系式第三章拉氏变换第一节傅氏变换第二节拉普拉斯变换第三节拉普拉斯变换的基本定理第四节拉普拉斯逆变换第四章传递函数第一节传递函数的概念与性质第二节线性控制系统的典型环节第三节系统框图及其运算第四节多变量系统的传递函数第五章时间响应分析第一节概述第二节单位脉冲输入的时间响应第三节单位阶跃输入的时间响应第四节高阶系统时间响应第六章频率响应分析第一节谐和输入系统的定态响应第二节频率特性极坐标图第三节频率特性的对数坐标图第四节由频率特性的实验曲线求系统传递函数第七章控制系统的稳定性第一节稳定性概念第二节劳斯判据第三节乃奎斯特判据第四节对数坐标图的稳定性判据第八章控制系统的偏差第一节控制系统的偏差概念第二节输入引起的定态偏差第三节输入引起的动态偏差第九章控制系统的设计和校正第一节综述第二节希望对数幅频特性曲线的绘制第三节校正方法与校正环节第四节控制系统的增益调整第五节控制系统的串联校正第六节控制系统的局部反馈校正第七节控制系统的顺馈校正第一章自动控制系统的基本原理定义:在没有人的直接参与下,利用控制器使控制对象的某一物理量准确地按照预期的规律运行。
第一节控制系统的工作原理和基本要求一、控制系统举例与结构方框图例1.一个人工控制的恒温箱,希望的炉水温度为100C°,利用表示函数功能的方块、信号线,画出结构方块图。
图1人通过眼睛观察温度计来获得炉内实际温度,通过大脑分析、比较,利用手和锹上煤炭助燃。
比较图2例2.图示为液面高度控制系统原理图。
试画出控制系统方块图和相应的人工操纵的液面控制系统方块图。
解:浮子作为液面高度的反馈物,自动控制器通过比较实际的液面高度与希望的液面高度,调解气动阀门的开合度,对误差进行修正,可保持液面高度稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A( ) ( )
P ( )
0
G( s)
s 1 s2 s 1
由于 | G( j ) |是偶函数, 所以当 从 0 和 0 变化时,奈魁 斯特曲线对称于实轴。 3
Tuesday, December 01, 2015
二、对数频率特性曲线(又称波德图) 它由两条曲线组成:幅频特性曲线和相频特性曲线。
三、 对数幅相特性曲线(又称尼柯尔斯图) 尼柯尔斯图是将对数幅频特性和相频特性两条曲线合并成 一ห้องสมุดไป่ตู้曲线。横坐标为相角特性,单位度或弧度。纵坐标为对数 幅频特性,单位分贝。横、纵坐标都是线性分度。
Tuesday, December 01, 2015
6
1
10
2 100
log
以对数分度,所以零频率线在 处。 由于
Tuesday, December 01, 2015
4
纵坐标分度:幅频特性曲线的纵坐标是以log A( )或20log A( ) 表示。其单位分别为贝尔(Bl)和分贝(dB)。直接将log A( ) 或 20log A( ) 值标注在纵坐标上。 相频特性曲线的纵坐标以度或弧度为单位进行线性分度。 一般将幅频特性和相频特性画在一张图上,使用同一个横 坐标(频率轴)。 当幅制特性值用分贝值表示时,通常将它称为增益。幅值 和增益的关系为:增益 20log(幅值)
第二节 频率特性的几种表示方法
Tuesday, December 01, 2015
1
频率特性可以写成复数形式: G( j ) P( ) jQ( ) ,也可 以写成指数形式:G( j ) | G( j ) | G( j )。其中,P ( ) 为实 频特性, Q ( ) 为虚频特性; | G ( j ) |为幅频特性, G ( j ) 为相频 特性。 在控制工程中,频率分析法常常是用图解法进行分析和设 计的,因此有必要介绍常用的频率特性的三种图解表示。 极坐标频率特性曲线(又称奈魁斯特曲线) 对数频率特性曲线(又称波德图) 对数幅相特性曲线(又称尼柯尔斯图)
幅值 1
A( )
1.26
2
1.56
4
2.00
6
2.51
8
3.16
10
5.62
15
10.0
20
增益 0
Tuesday, December 01, 2015
5
使用对数坐标图的优点: 可以展宽频带;频率是以10倍频表示的,因此可以清楚 的表示出低频、中频和高频段的幅频和相频特性。 可以将乘法运算转化为加法运算。纵坐标是以 20log A( w) 所有的典型环节的频率特性都可以用分段直线(渐进线) 近似表示。 对实验所得的频率特性用对数坐标表示,并用分段直线 近似的方法,可以很容易的写出它的频率特性表达式。
Tuesday, December 01, 2015
2
一、极坐标频率特性曲线(又称奈魁斯特曲线)
它是在复平面上用一条曲线表示 由 0 时的频率特性。 即用矢量 G ( j ) 的端点轨迹形成的图形。 是参变量。在曲线 的上的任意一点可以确定实频、虚频、幅频和相频特性。 根据上面的说明,可知: 频率特性曲线是S平面 Q ( ) 上变量s沿正虚轴变化 时在G(s)平面上的映射。
波德图坐标(横坐标是频率,纵坐标是幅值和相角)的分度:
横坐标分度:它是以频率 的对数值 log 进行分度的。所 以横坐标(称为频率轴)上每一线性单位表示频率的十倍变化, 称为十倍频程(或十倍频),用Dec表示。如下图所示:
Dec Dec Dec Dec
...
0
2
1
0.01
0.1
0 1