频率特性分析
控制工程基础课件第六章 频率特性分析

G
j
arctan
1
n 2
n2
当=0时,G j 1,G j 0;
当=n时,G j 2,G j 90; 当=时,G j ,G j 180。
二阶微分环节的极坐标图也于阻尼比有关,对应不同的 ξ值,形成一簇坐标曲线,不论ξ值如何,当ω=0时,极 坐标曲线从(1,0)点开始,在ω=∞时指向无穷远处。
第6章 频率特性分析
本章介绍线性系统的频域分析方法。该方法是通 过控制系统对正弦函数的稳态响应来分析系统性能的。
频率特性不仅能反映系统的稳态性能,也可用来 研究系统的稳定性和动态性能。
6.2 频率响应与频率特性
一、频率特性的概念
1、频率响应:是系统对正弦输入的稳态响应。
2、频率特性:给线性系统输入某一频率的正弦波,
1 1 jT
G j 1 U jV
1 jT
1
1 T 22
j T 1 T 22
A e j
实频特性为U 虚频特性为V
1; 1+T 2 2
T。 1+T 2 2
幅频特性为A 1 ;
1 T 22
相频特性为 G j arctanT
特殊点:
当=0时,G j 1,G j 0; 当=1/T时,G j 1 ,G j 45;
取拉氏变换为: Xi s
A
s2
2
电路的输出为: X0 s G s Xi s 上式取拉氏反变换并整理得
1A Ts 1 s2 2
x0 t
AT 1 T2
e t/T
2
A sin t arctan T
1 T2 2
x0 t
AT 1 T2
e t/T
2
A sin t arctan T
频率特性实验报告

频率特性实验报告频率特性实验报告引言:频率特性是描述信号在不同频率下的响应性能的重要指标。
在电子领域中,频率特性实验是非常常见的实验之一。
本文将介绍频率特性实验的目的、实验原理、实验步骤以及实验结果的分析。
一、实验目的:频率特性实验的目的是研究电路或系统在不同频率下的响应特性,了解信号在不同频率下的传输和滤波性能。
通过实验,可以掌握频率特性的测试方法和实验技巧,提高实验操作能力和数据处理能力。
二、实验原理:频率特性实验通常涉及到信号的输入和输出,以及信号的幅度和相位响应。
在实验中,常用的测试仪器有函数发生器、示波器和频谱分析仪。
1. 函数发生器:用于产生不同频率的信号作为输入信号。
可以调节函数发生器的频率、幅度和波形等参数。
2. 示波器:用于观测电路或系统的输入和输出信号波形。
示波器可以显示信号的幅度、相位和频率等信息。
3. 频谱分析仪:用于分析信号的频谱成分。
频谱分析仪可以显示信号在不同频率下的幅度谱和相位谱。
实验步骤:1. 准备实验所需的仪器和器材,包括函数发生器、示波器和频谱分析仪。
2. 连接电路或系统,将函数发生器的输出信号连接到被测电路或系统的输入端,将示波器或频谱分析仪连接到电路或系统的输出端。
3. 设置函数发生器的频率和幅度,选择适当的波形。
4. 调节示波器或频谱分析仪的参数,观测信号的波形和频谱。
5. 重复步骤3和步骤4,改变函数发生器的频率,记录不同频率下的信号波形和频谱。
实验结果分析:根据实验记录的信号波形和频谱数据,可以进行以下分析:1. 幅度响应:通过观察信号的幅度谱,可以了解电路或系统在不同频率下信号的衰减或增益情况。
如果幅度谱在不同频率下保持不变,则说明电路或系统具有平坦的幅度响应特性。
如果幅度谱在某些频率点出现峰值或谷值,则说明电路或系统对该频率具有增益或衰减。
2. 相位响应:通过观察信号的相位谱,可以了解电路或系统在不同频率下信号的相位变化情况。
相位谱可以显示信号的相位延迟或提前。
第五章 频率特性分析法

由于 G( j ) G(s) s j 是一个复数,可写为
G( j ) G( j ) e
jG ( j )
A( )e
j ( )
G( j ) 和 G( j )是共轭的,故 G( j ) 可写成
G( j ) A( )e
j ( )
R Kc A( )e j ( ) 2j R K c A( )e j ( ) 2j
Kc e
jt
K c e
jt
若系统稳定, G ( s ) 的极点均为负实根。当 t 时得 c(t ) 的稳态分量为 css (t ) lim c(t ) K c e jt K c e jt
t
R G ( j ) R 其中 K c G( s) ( s j ) s j ( s j )(s j ) 2j R G ( j ) R K c G ( s) ( s j ) s j ( s j )(s j ) 2j
为方便讨论,设所有极点为互不相同的实数。
若输入信号为正弦函数,即
r (t ) R sin t
其拉氏变换为
R R R( s ) 2 2 s ( s j )(s j )
N ( s) X 则 C ( s) ( s p1 )(s p2 ) (s pn ) ( s j )(s j )
第5章 线性系统的频域分析法
频率特性是研究控制系统的一种工程方法, 应用频率特性可间接地分析系统的动态性能和稳 态性能。频域分析法的突出优点是可以通过实验 直接求得频率特性来分析系统的品质,应用频率 特性分析系统可以得出定性和定量的结论,并具 图表及经验公式。
有明显的物理含义,频域法分析系统可利用曲线、
频率特性分析方法

(2)放大环节
Im
G(s) K G( j) K
φ
方法② 直接用频率特性测试仪测取,直接在X-Y 记录仪上显示 x jy或者 B e j 。
A
例1:某系统的传递函数为G:(s)
2(s s2
2)
当输入信号为:r(t) sin(t 1000 )
求出它的稳态输出响应。
解:
G(
j
2( j j )2
如何求模和相角?
G( j
tg1 1800
sin e j e j
2j
t 2
r=Asinωt
K Ts 1
Yss
KA
1 T 2 2
sin(
t
2 )
稳态输出仍是一个正弦信号,输出幅值和相位发生 了变化,角频率ω没变。
稳态输出与输入 r Asint 比较可得:
幅值比 B
K
A 1 T 22
相位差 2 arctg(T )
2
KU 2 U2 V 2
整理:U 2
V
2
KU
经配方,
即:
U
K 2
2
U V 2
K 2
2
圆的方程。圆心 (K/2, j0),半径K/2。
G( j 与G( j 为共轭复数。
当ω: -∞→+∞,得到完整的频率特性。 顺时针方向是频率特性变化的方向,即ω增加的方向。
Im
K Re
G( j) 为频率特性,是一复数,模 K 为系统的幅
1 T 22
值比
B ,其相角 A
2 为系统的相位差。
推广到一般的情况,对于任何线性定常系统,只 要将传递函数中的变量s用jω代替,便得到了系统的 频率特性。
频率特性分析

弹簧阻尼系统对正弦输入的稳态响应
例:机械系统如下图所示,k为弹簧刚度系数,c为阻尼系数, 当输入正弦力信号 f(t)=Fsinωt时,求位移x(t)的稳态输出。
解 该系统的传递函数为:
f(t)=Fsinωt
输入信号的拉氏变换为:
k
位移输出的拉氏变换为:
c
取拉氏反变换,位移输出为
如果系统稳定,频率响应包含二部分:瞬态响应和稳态响 应。瞬态响应不是正弦波,趋于0;稳态响应部分,是与 输入信号频率相同的正弦波,但幅值、相位不同。 所以稳态位移输出为:
10
0
10
1
10
2
2.积分环节
1 G(j) j
L() 20lg
1 20lg j
() 90
各型乃氏图的低频段
对于0型系统,当ω→∞时,幅角为-90°(m-n)
乃氏图的高频段
通常,机电系统频率特性分母的阶次 大于分子的阶次,故当 时,乃氏图 曲线终止于坐标原点处;而当频率特性分 母的阶次等于分子的阶次,当 时, 乃氏图曲线终止于坐标实轴上的有限值。 一般在系统频率特性分母上加极点, 使系统相角滞后;而在系统频率特性分子 上加零点,使系统相角超前。
当 当
ω=0
时, G(jω)= +∞∠−90°
ω = +∞时, G(jω)= 0∠−270°
其相角范围从-90º ~-270º ,因此必有与负实轴 的交点。
解方程G(j) 90º arctan() arctan(2) 180º
即
arctan(2) 90º arctan()
First-order components
4.一阶惯性环节
u ( )
机械工程控制基础(第4章 系统的频率特性分析)

(4.1.10)
根据频率特性的定义可知,系统的幅频特性和相频特性分别为:
G ( j ) Xi ( ) G ( j ) A ( ) X o ( )
(4.1.11)
故 G ( j ) G ( j ) e
j G ( j )
就是系统的频率特性,它是将 G ( s )
d dt
微分方程
dt
s 传递函数 s
系统
j
频率特性
j
图4.1.2 系统的微分方程、传递 函数和频率特性相互转换关系图
中原工学院
机电学院
4.1.4 频率特性的特点和作用
第1
系统的频率特性就是单位脉冲响应函数的Fourier变换,即频谱。 所以,对频率特性的分析就是对单位脉冲响应函数的频谱分析。
第2
K
所以
A
X o Xi
1 T
2
2
arctan T
或
K 1 T
2 2
e
j arctan T
中原工学院
机电学院
2. 将传递函数中的s换为 j (s=j )来求取
由上可知,系统的频率特性就是其传递函数G(s)中复变量s j 的特殊情况。由此得到一个极为重要的结论与方法,即将系统的传递
G
j 端点的轨迹即为频率特性的极坐标图, 或称为Nyquist 图, 如
中原工学院
机电学院
图4.2.1所示。它不仅表示幅频特性和相频特性, 而且也表示实频特性和
虚频特性。图中的箭头方向为从小到大的方向。
正如4.1节所述, 系统的幅频特性和相频特
性分别为
A ( ) X o ( ) Xi G
自动控制原理第5章频率特性

自动控制原理第5章频率特性频率特性是指系统对输入信号频率的响应特点。
在自动控制系统设计中,了解和分析系统的频率特性是非常重要的,因为它可以帮助工程师评估系统的稳定性,性能和稳定裕度。
本章主要介绍频率特性的相关概念和分析方法,包括频率响应函数、频率幅频特性、相频特性、对数坐标图等。
1.频率响应函数频率响应函数是描述系统在不同频率下的输出和输入之间的关系的函数。
在连续时间系统中,频率响应函数可以表示为H(jω),其中j是虚数单位,ω是频率。
频率响应函数通常是复数形式,它包含了系统的振幅和相位信息。
2.频率幅频特性频率幅频特性是频率响应函数的模的图形表示,通常用于表示系统的增益特性。
频率幅频特性通常用对数坐标图绘制,以便更好地显示系统在不同频率下的增益特性。
对数坐标图上,增益通常以分贝(dB)为单位表示。
3.相频特性相频特性是频率响应函数的相角的图形表示,通常用于表示系统的相位特性。
相频特性可以让我们了解系统对输入信号的相位延迟或提前情况。
在相频特性图上,频率通常是以对数坐标表示的。
4. Bode图Bode图是频率幅频特性和相频特性的综合图形表示。
它将频率幅频特性和相频特性分别绘制在纵轴和横轴上,因此可以直观地了解系统在不同频率下的增益和相位特性。
5.系统的稳定性分析频率特性可以帮助工程师判断系统的稳定性。
在Bode图上,当系统的相位角趋近于-180度,且增益在此处为0dB时,系统即将变得不稳定。
对于闭环控制系统,我们希望系统在特定频率范围内保持稳定,以便实现良好的控制性能。
6.频率特性的设计频率特性的设计是自动控制系统设计中的一个重要任务。
工程师需要根据系统对不同频率下的增益和相位的要求,设计出合适的控制器。
常见的设计方法包括校正器设计、分频补偿、频率域设计等。
总结:本章重点介绍了自动控制系统的频率特性,包括频率响应函数、频率幅频特性、相频特性和Bode图。
频率特性的分析和设计对于掌握自动控制系统的稳定性、性能和稳定裕度非常重要。
第四章 频率特性分析

B( s)
(s p )
i i 1
n
A s
2 2
为简单起见,设G(s)的极点均为相异的极点,则将 Xo(s)的表达式进行部分分式分解,得
X o ( s)
i 1
n
bi s pi
n
a1 s j
a2 s j
xo (t ) bi e
i 1
pi t
变乘除运算为加减运算
Bode图的横坐标ω采用对数分度,单位rad/s 线性分度:
0 1 2 3 4 5 6 7
对数分度:
小结
纵坐标:L( ) 20 lg G( j ) 对数幅频特性图
(单位:分贝(dB),线性分度)
横坐标:频率ω Bode图
(单位:rad/s),对数分度)
纵坐标:G ( j ) 对数相频特性图
一、频率特性的图示方法(重点)
1.频率特性的Nyquist图(也叫极坐标图、幅 相频率特性图)
Nyquist图
把频率特性G(j ω)看作ω的复变函数
jG ( j )
G( j ) G( j ) e
u ( ) jv( )
虚频特性
实频特性
2 2
G( j ) u ( ) v ( ) G ( j ) arctan
j
112 0.4 10
3 3
实频特性u(ω)
虚频特性v(ω)
ω
u(ω)
v(ω)
0
20
-2.24
-1.93
-∞
-4.89
30
40
-1.64
-1.36
-2.75
-1.7
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X o ( ) G( j ) Xi
,
u( )
(4)虚频特性:
v( )
G ( j ) u 2 ( ) v 2 ( ) v( ) ( ) arctg u ( )
G( j ) Re[G( j )] Im[G( j )] ( ) j ( )
4.1.1 频率响应与频率特性
xo (t )响应的特点 设输入 xi (t ) X i sin t ,
(1)输出与输入为同频率的谐波信号; (2)输出响应中振幅和相位差都是输入 信号频率的非线性函数,表示为
Xi Xo
xi(t )
xo(t )
xo (t ) X o ( ) sin ( t ( ))
X i s2 2
根据频率特性的定义即可求出其幅频特性和相频特性。
2.令s =jω
将传递函数中的s 用 j 代替, [s] [
j ]
G( s) G( j ) G( j ) 就是系统的频率特性。
(1)幅频特性: (2)相频特性: (3)实频特性:
A( )
() G( j)
Im
G ( jபைடு நூலகம் ) -90 1 ) (0 , -j Re
4.2
4.2.1
典型环节的频率特性
频率特性图概述
1.奈奎斯特图:在 [G( j )] 平面上取Re及Im轴,以作参变量,当 从 0→∞变化时 , G( j ) 端点的轨迹为频率特性的极坐标图,称为 Nyquist图。
Im
j v ( )
[G ( j ) ]
=∞ ( )
u ( ) G ( j ) A ( )
u ( ) =0
Re
v ( )
= 1
2.Bode图:以的常用对数值为横坐标,分别以 20 lg A( ) 和 ( ) 为纵坐标画出的曲线,称为对数幅频特性图和对数相频特性 图,统称为频率特性的对数坐标图,又称为Bode图。
dB
(1) 纵坐标单位为分贝,线性分度
A( ) =20 lg G( j )
( ) =∠ A( )
900 450 0
0
-450 -900
0.1
1
10
102
4.2.2 典型环节的频率特性图
1.比例环节
传递函数: G ( s) K 频率特性: G( j) K 实频特性: u( ) K 虚频特性: v( ) 0 幅频特性: A() G( j) K
3.用试验方法求取
根据频率特性的定义,首先,改变输入谐波信号 ( ) 的频 jt 率ω ,并测出与此相应的稳态输出的幅值 X o ( ) 与相移xi e 。然 后,作出幅值比 X o ( ) / X i 对频率ω 的函数曲线,此即幅频特性曲 线;作出相移 ( ) 对频率 ω 的函数曲线,此即相频特性曲线。 最后,对以上曲线进行辨识即可得到系统的频率特性。
20
0 -20 -40 10 -1 0 -90 -180 10 -1 10 0 10 1 10 0 10 1
x
=0.1
x
=0.1
4.1.3
频率特性的物理意义
1.频率特性实质上是系统的单位脉冲响应函数的Fourier变换。 即 G( j) F[w(t )] 。 2.频率特性分析通过分析不同的谐波输入时的稳态响应,揭示 系统的动态特性。 3.频率特性分析主要针对系统的稳态响应而言,应用频率特性 的概念可以非常容易求系统在谐波输入 微分 作用下系统的稳态响应。另外,系统频 方程 p p 率特性在研究系统的结构与参数对系统 j s 性能的影响时,比较容易。 系统 4.频率特性分析在实验建模和复杂系统分 传递 频率 析方面的应用要比时域分析法更方便。 函数 特性 s j 5. 微分方程、传函、频率特性的关系如图。
0 0
Im
G ( j ) ( K , j 0) Re
奈氏图
dB 20lg K
0.1 1 10
(s
-1
)
对数幅频特性: L() 20lg G( j) 20lg K
相频特性: G( j ) 0
0.1
1
10
( s -1 )
Bode图
2.积分环节
1 G ( s ) 传递函数: s
一个稳定的线性定常系统,在谐波函数作用下,其输出的稳态 分量(频率响应)也是一个谐波函数,而且其角频率与输入信号的 角频率相同,但振幅和相位则一般不同于输入信号的振幅与相位, 而随着角频率的改变而改变。
2.幅频特性∶输出信号与输入信号的幅值之比随变化的特性。
X o ( ) A( ) Xi
本章重点
1.频率特性基本概念、代数表示法及其特点。
2.频率特性的图示法的原理、典型环节的图示法及其特点和一般系统 频率特性的两种图形的绘制。
3.频域中的性能指标。
本章难点
1.一般系统频率特性图的画法以及对图形的分析。 2.频域性能指标和时域性能指标之间的基本关系。
4.1
频率特性的基本概念
1. 频率响应:线性定常系统对正弦信号(谐波输入)的稳态响应称 为频率响应。
3.相频特性:输出信号与输入信号的相位差(或相移)随变化的特性。
( ) 0 表超前; (1) ( ) 按逆时针方向旋转为正值, (2) ( ) 按顺时针方向旋转为负值, ( ) 0 表滞后。
4.频率特性:通常将幅频特性和相频特性统称为频率特性。
A( )e j ( )
40 20
1 dB 20lg G( j)
(2) 横坐标单位为rad/s或1/s,对数分 度。 (3) 10倍频程(dec):若ω 2=10ω 1, 则称从ω 1到ω 2为10倍频程。每10 倍频程对数差1。但习惯上仍标真数 值,即横坐标按10倍频程均匀分 度。
0
-20 -40
0.1
1
10
102
4.1.2 频率特性的求法
1.用拉氏逆变换求取
xi (t ) X i sin t
X i (s) L[ xi (t )] L[ X i sin t ]
X o ( s ) G( s ) X i s2 2 X i 1 xo (t ) L [G(s) 2 ] 2 s