控制系统的频率特性分析
控制工程基础第4章控制系统的频率特性

插值计算可大致确定闭环截止频率为 b
=1.3rad/s。
非单位反馈系统的闭环频率特性
对于非单位反馈系统,其闭环频率特性可
写为
X X
o i
j j
1
G j G j H
j
H
1
j
1
G j H j G j H j
在求取闭环频率特性时,在尼柯尔斯图上画
出 G j H j 的轨迹,由轨迹与M轨线和N轨
频域法是一种工程上广为采用的分析 和综合系统间接方法。另外,除了电路 与频率特性有着密切关系外,在机械工 程中机械振动与频率特性也有着密切的 关系。机械受到一定频率作用力时产生 强迫振动,由于内反馈还会引起自激振 动。机械振动学中的共振频率、频谱密 度、动刚度、抗振稳定性等概念都可归 结为机械系统在频率域中表现的特性。 频域法能简便而清晰地建立这些概念。
如果M=1,由式(4.26)可求得X=-1/2,即为
通过点(-1/2,0)且平行虚轴的直线。
如果M≠1,式(4.26)可化成
X
M M2
2
2
1
Y
2
M2 M 2 1 2
(4.27)
该式就是一个圆的方程,其圆心为
M2
,半径为 M 。如下图。
[
M
2
, 1
j0]
M 2 1
在复平面上,等M轨迹是一族圆,对于给定 的M值,可计算出它的圆心坐标和半径。下 图表示的一族等M圆。由图上可以看出,当 M>1时,随着M的增大M圆的半径减小,最后 收敛于点(-1,j0)。当M<1时,随着M的 减小M圆的半径亦减小,最后收敛于点 ( 0 , j0)。M=1 时 , 其 轨 迹 是 过 点 ( 1/2,j0)且平行于虚轴的直线。
控制系统的频率特性

频率特性是一个复数,有三种表示:
代数式
极坐标式
G j U jV
G( j ) G( j ) G( j ) A( ) ( )
指数式
G( j ) G( j ) e jG ( j ) A( )e j ( )
A G j U 2 V 2
率特性是系统的固有特性,与输入信号无关,
即当输入为非正弦信号时,系统仍然具有自身的频率特性。
频率特性定义为输出量的Fourier变换与输入量
的Fourier变换之比,即
X 0 j G j X i j
频率特性的矢量图
jv V () A () () 0 U () u G(j)
2T 2 1
相频特性 arctan T 一阶惯性环节的幅相频率特性曲 线是一个半圆。
5. 一阶微分环节
频率特性
G j Tj 1
jv
2 45°
幅频特性 A 1 T 2 相频特性 实频特性
∞ ↑ =0 u
arctan T
r为谐振频率
Mr为谐振峰值
r n 1 2 2
M r A max
0.707
1 2 2
2 1 2
7. 二阶微分环节
jv
=0 0 1 u
8. 延迟环节
频率特性
G j e
A 1
jT
1 1 j T
1 TS 1 S j
定义:
A / 1 2T 2 1 稳态输出幅值 A( ) RC网络幅频 2 2 A 输入幅值 1 T 特性
( ) arctan T 稳态输出相位 输入相位 RC网络相频特性
控制工程基础课件第六章 频率特性分析

G
j
arctan
1
n 2
n2
当=0时,G j 1,G j 0;
当=n时,G j 2,G j 90; 当=时,G j ,G j 180。
二阶微分环节的极坐标图也于阻尼比有关,对应不同的 ξ值,形成一簇坐标曲线,不论ξ值如何,当ω=0时,极 坐标曲线从(1,0)点开始,在ω=∞时指向无穷远处。
第6章 频率特性分析
本章介绍线性系统的频域分析方法。该方法是通 过控制系统对正弦函数的稳态响应来分析系统性能的。
频率特性不仅能反映系统的稳态性能,也可用来 研究系统的稳定性和动态性能。
6.2 频率响应与频率特性
一、频率特性的概念
1、频率响应:是系统对正弦输入的稳态响应。
2、频率特性:给线性系统输入某一频率的正弦波,
1 1 jT
G j 1 U jV
1 jT
1
1 T 22
j T 1 T 22
A e j
实频特性为U 虚频特性为V
1; 1+T 2 2
T。 1+T 2 2
幅频特性为A 1 ;
1 T 22
相频特性为 G j arctanT
特殊点:
当=0时,G j 1,G j 0; 当=1/T时,G j 1 ,G j 45;
取拉氏变换为: Xi s
A
s2
2
电路的输出为: X0 s G s Xi s 上式取拉氏反变换并整理得
1A Ts 1 s2 2
x0 t
AT 1 T2
e t/T
2
A sin t arctan T
1 T2 2
x0 t
AT 1 T2
e t/T
2
A sin t arctan T
孙炳达版 《自动控制原理》第5章 控制系统的频率特性分析法-1

5.1 频率特性的基本概念
在工程实践中, 往往并不需要准确地计算系 统响应的全部过程,而是希望避开繁复的计算, 简单、直观地分析出系统结构、参数对系统性能 的影响。因此,主要采用两种简便的工程分析方 法来分析系统性能,这就是根轨迹法与频率特性 法,本章将详细介绍控制系统的频率特性法。 控制系统的频率特性分析法是利用系统的频 率特性(元件或系统对不同频率正弦输入信号的 响应特性)来分析系统性能的方法,研究的问题 仍然是控制系统的稳定性、快速性及准确性等, 是工程实践中广泛采用的分析方法,也是经典控 制理论的核心内容。
5.1 频率特性的基本概念
二、频率特性和传递函数之间的关系
( j ) ( s ) s j
频率特性就是在s=jω时的传递函数,它也是 系统或环节的数学模型,描述了系统的运动规律 及其性能。 频率特性可以通过传递函数求取(解析法), 也可以用专门的仪器、通过实验的方法求取。
5.1 频率特性的基本概念
yss ( j 2) X sin(2t ) 0.35sin(2t 45 )
5.1 频率特性的基本概念
频率特性的物理意义
1、在某一特定频率下,系统输入输出的幅值比与相位差 是确定的数值,不是频率特性。当输入信号的频率ω在0→∞的 范围内连续变化时,则系统输出与输入信号的幅值比与相位差 随输入频率的变化规律将反映系统的性能,才是频率特性 。 2、频率特性反映系统本身性能,取决于系统结构、参数, 与外界因素无关。 3、 频率特性随输入频率变化的原因是系统往往含有电容、 电感、弹簧等储能元件,导致输出不能立即跟踪输入,而与输 入信号的频率有关。 4、频率特性表征系统对不同频率正弦信号的跟踪能力, 一般有“低通滤波”与“相位滞后”作用。
自动控制原理与系统控制系统的频率特性

如图4-6所示。
12
四、惯性环节 传递函数 : G(s) C(s) 1
R(s) Ts 1
频率特性 : G( j) C( j) 1
R( j) jT 1
对数频率特性 : L() 20lg
1
20lg
(T)2 1
(T)2 1
Bode图 : arctanT
▪对数幅频特性L(ω)是一条曲线,逐点描绘很烦琐,通常采用近似的 绘制方法,用两条渐进线近似表示.
(极坐标表示法)
U () jV ()
(直角坐标表示法)
(A指(数表)e示j法 ())
图4-2
A() G(j) U 2 () V 2 ()
() G( j) arctan 1 V () U ()
6
例4-1 写出惯性环节的幅频特性、相频特性和频率特性。
解:惯性环节的传递函数为
G(s) 1 Ts 1
2
• 系统(或环节)输出量与输入量幅值之比为幅值频率特性, 简称幅频特性,它随角频率ω变化,常用M(ω)表示。
A()
A c
A r
• 输出量与输入量的相位差为相位频率特性,简称相频特性,它 也随角频率ω变化,常用φ(ω)表示,
c r
幅频特性和相频特性统称为频率特性,用G( jω)表示
3
频率特性就是线性系统(或环节)在正弦输入信号 作用下稳态时输出相量与输入相量之比。
G (j) G(j) G(j)
A() G(j)
() G(j)
幅频特性是输出量与输入量幅值之比M(ω),描述系统 对不同频率正弦输入信号在稳态时的放大(或衰减) 特性。
相频特性是输出稳态相对于正弦输入信号的相位差 φ(ω),描述系统稳态输出时对不同频率正弦输入信号 在相位上产生的相角迟后(或超前)的特性。
控制系统频域分析

控制系统频域分析控制系统频域分析是对控制系统的频率特性进行研究和评估的方法。
它通过在频域上分析信号的幅值和相位响应,帮助我们了解系统的稳定性、性能以及对不同频率输入的响应。
一、引言控制系统在现代工程中起着至关重要的作用。
通过对系统的频域特性进行分析,我们可以更好地理解和优化控制系统的性能。
二、频域分析的基本概念1. 频率响应控制系统的频率响应描述了系统对不同频率输入信号的响应能力。
通过频率响应,我们可以了解系统在不同频率下的增益和相位特性。
2. 幅频特性幅频特性是指系统输出信号的幅度与输入信号的频率之间的关系。
通常用幅度曲线图来表示,可以帮助分析系统的放大或衰减程度。
3. 相频特性相频特性描述了系统输出信号的相位与输入信号的频率之间的关系。
相位曲线图可以帮助评估系统的相位延迟或提前程度。
三、常见的频域分析方法1. 频率响应函数频率响应函数是一个复数函数,可以描述系统的幅频和相频特性。
常见的频率响应函数包括传递函数和振荡函数等。
2. Bode图Bode图是一种常用的频域分析工具,可以将系统的幅频和相频特性直观地表示出来。
它以频率为横轴,幅度或相位为纵轴,通过线性坐标或对数坐标来绘制。
3. Nyquist图Nyquist图是一种使用复平面来表示频率响应的图形。
它可以帮助我们判断系统的稳定性,并评估系统的相位边界和幅度边界。
四、频域分析的应用频域分析在控制系统设计和优化中有着广泛的应用。
以下是几个常见的应用领域:1. 系统稳定性分析通过频域分析,我们可以判断系统是否稳定,以及如何设计控制器来维持或改善系统的稳定性。
2. 性能评估频域分析可以帮助我们评估系统的性能,比如响应时间、超调量等。
通过调整系统的频率响应,我们可以提高系统的性能。
3. 滤波器设计频域分析在滤波器设计中起着重要的作用。
通过分析系统的频率响应,我们可以设计出满足特定要求的滤波器。
4. 控制系统建模频域分析可以帮助我们建立控制系统的数学模型,从而更好地理解和优化系统的性能。
控制系统的频率特性分析实验报告

竭诚为您提供优质文档/双击可除控制系统的频率特性分析实验报告篇一:控制系统频率特性实验实验名称控制系统的频率特性实验序号3实验时间学生姓名学号专业班级年级指导教师实验成绩一、实验目的:研究控制系统的频率特性,及频率的变化对被控系统的影响。
二、实验条件:1、台式计算机2、控制理论&计算机控制技术实验箱ThKKL-4系列3、ThKKL仿真软件三、实验原理和内容:1.被测系统的方块图及原理被测系统的方块图及原理:图3—1被测系统方块图系统(或环节)的频率特性g(jω)是一个复变量,可以表示成以角频率ω为参数的幅值和相角。
本实验应用频率特性测试仪测量系统或环节的频率特性。
图4—1所示系统的开环频率特性为:采用对数幅频特性和相频特性表示,则式(3—2)表示为:将频率特性测试仪内信号发生器产生的超低频正弦信号的频率从低到高变化,并施加于被测系统的输入端[r(t)],然后分别测量相应的反馈信号[b(t)]和误差信号[e(t)]的对数幅值和相位。
频率特性测试仪测试数据经相关器件运算后在显示器中显示。
根据式(3—3)和式(3—4)分别计算出各个频率下的开环对数幅值和相位,在半对数坐标纸上作出实验曲线:开环对数幅频曲线和相频曲线。
根据实验开环对数幅频曲线画出开环对数幅频曲线的渐近线,再根据渐近线的斜率和转角频确定频率特性(或传递函数)。
所确定的频率特性(或传递函数)的正确性可以由测量的相频曲线来检验,对最小相位系统而言,实际测量所得的相频曲线必须与由确定的频率特性(或传递函数)所画出的理论相频曲线在一定程度上相符。
如果测量所得的相位在高频(相对于转角频率)时不等于-90°(q-p)[式中p和q分别表示传递函数分子和分母的阶次],那么,频率特性(或传递函数)必定是一个非最小相位系统的频率特性。
2.被测系统的模拟电路图被测系统的模拟电路图:见图3-2注意:所测点-c(t)、-e(t)由于反相器的作用,输出均为负值,若要测其正的输出点,可分别在-c(t)、-e(t)之后串接一组1/1的比例环节,比例环节的输出即为c(t)、e(t)的正输出。
自动控制原理第5章_线性控制系统的频率特性分析法

5. 2控制系统开环传递函数的对数频率特性
5.2.2 系统伯德图的绘制
开环对数幅频渐近特性曲线的绘制步骤: (1)把系统开环传递函数化为标准形式,即化为典型环节的传递函
数乘积,分析它的组成环节; (2)确定一阶环节、二阶环节的转折频率,由小到大将各转折频率
标注在半对数坐标图的频率轴上; (3)绘制低频段渐近特性线; (4)以低频段为起始段,从它开始每到一个转折频率,折线发生转
开环极点的个数。
5. 4 频域稳定判据与系统稳定性
5.4.4 控制系统的相对稳定性
开环频率特性 G( j)H( j)在剪切频率 c处所对应的相角与 180 之差称为相角裕度,记为 ,按下式计算
(c ) (180 ) 180 (c )
开环频率特性 G( j)H的( 相j)角等于 时所1对80应的角频率称为相
闭环系统稳定的充要条件是,当 由 0 时0,开 环奈奎斯 特曲线逆时针方向包围( )点 周1, j。0 是具P有2 正实部P 的开 环极点的个数。 需注意,若开环传递函数含有 v 个积分环节,所谓 由 0 0 ,指的 是由 0 0 0 ,此时奈 奎斯特曲线需顺时针增补 v 角度的无穷大半径的圆弧。
5. 4 频域稳定判据与系统稳定性
5.4.1 奈奎斯特稳定判据
若闭环系统在[ s]右半平面上有 个P开环极点,当 从 变化到
时,奈奎斯特曲线 G( j对)H点( j) 的包围1周, j数0 为 ( 为逆时N针,
为顺N 时 0针),则系统N<在0[ ]右半平面上的闭环极点s的个数为 。
折,斜率变化规律取决于该转折频率对应的典型环节的种类; (5)如有必要,可对上述折线渐近线加以修正,一般在转折频率处
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验六 控制系统的频率特性分析
1.已知系统传递函数为:1
2.01)(+=s s G ,要求: (1) 使用simulink 进行仿真,改变正弦输入信号的频率,用示波器观察输
出信号,记录不同频率下输出信号与输入信号的幅值比和相位差,即
可得到系统的幅相频率特性。
F=10时
输入: 输出:
F=50时
输入:输出:
(2)使用Matlab函数bode()绘制系统的对数频率特性曲线(即bode图)。
提示:a)函数bode()用来绘制系统的bode图,调用格式为:
bode(sys)
其中sys为系统开环传递函数模型。
参考程序:
s=tf(‘s’); %用符号表示法表示s
G=1/(0.2*s+1); %定义系统开环传递函数
bode(G) %绘制系统开环对数频率特性曲线(bode图)
实验七连续系统串联校正
一.实验目的
1.加深理解串联校正装置对系统动态性能的校正作用。
2. 对给定系统进行串联校正设计,并通过matlab实验检验设计的正确性。
二.实验内容
1.串联超前校正
系统设计要求见课本例题6-3,要求设计合理的超前校正环节,并完成以下内容用matlab画出系统校正前后的阶跃相应,并记录系统校正前后的超调量及调节时间
num=10;
1)figure(1)
2)hold on
3)figure(1)
4)den1=[1 1 0];
5)Gs1=tf(num,den1);
6)G1=feedback(Gs1,1,-1);
7)Step(G1)
8)
9)k=10;
10)figure(2)
11)GO=tf([10],[1,1,0]);
12)Gc=tf([0.456,1],[1,00114]); 13)G=series(G0,Gc);
14)G1=feedback(G,1);
15)step(G1);grid
2)使用Matlab函数bode()绘制系统的对数频率特性曲线,记录系统校正前后的幅值裕度和相角裕度。
k=1/0.1;
G0=zpk([],[0 -1],k);
[h0,r,wx,wc]=margin(G0);
wm=4.4;
L=bode(G0,wm);
Lwc=20*log10(L);
a=10^(-0.1*Lwc);
T=1/(wm*sqrt(a));
phi=asin((a-1)/(a+1));
Gc=(1/a)*tf([a*T 1],[T 1]);
Gc=a*Gc;
G=Gc*G0;
bode(G,'r',G0,'b--');grid;
[h,r,wx,wc]=margin(G)
2.串联滞后校正
系统设计要求见课本例题6-4,要求按题目要求设计合理的滞后校正环节,并完
成以下内容
1)用matlab画出系统校正前后的阶跃相应,并记录系统校正前后的超调量及调节时间
2)使用Matlab函数bode()绘制系统的对数频率特性曲线,记录系统校正前后的幅值裕度和相角裕度。
num=30; num=30;
den=conv([1 0],conv([0.1 1],[0.2 1])); den=conv([1 0],conv([0.1 1],[0.2 1]));
Gc=tf(num,den); G1=tf(num,den);
G1=feedback(Gc,1);
Gd=tf([3.7,1],[41,1]); Gd=tf([3.7,1],[41,1]);
Ge=tf(num,den); Ge=tf(num,den);
Gs=series(Gd,Ge); G2=series(Gd,Ge);
G2=feedback(Gs,1);
subplot(2,1,1);step(G1);grid;
subplot(1,2,1);bode(G1);grid;
subplot(2,1,2);step(G2);grid;
subplot(1,2,2);bode(G2);grid;
3.串联超前—滞后校正
系统设计要求见课本例,要求设计合理的超前—滞后校正环节,并完成以下内容
1)用matlab画出系统校正前后的阶跃相应,并记录系统校正前后的超调量及调节时间
2)使用Matlab函数bode()绘制系统的对数频率特性曲线,记录系统校正前后的幅值裕度和相角裕度。
num=180; num=180;
den=conv([1 0],conv([1/6 1],[0.5 1])); den=conv([1 0],conv([1/6 1],[0.5 1]));
Gc=tf(num,den); G1=tf(num,den);
G1=feedback(Gc,1);
num1=conv([1.28 1],[0.5 1]); num1=conv([1.28 1],[0.5 1]);
den1=conv([64 1],[0.01 1]); den1=conv([64 1],[0.01 1]);
Gd=tf(num1,den1); Gd=tf(num1,den1);
Ge=tf(num,conv([1 0],[0.167 1])); Ge=tf(num,conv([1 0],[0.167 1])); Gs=series(Gd,Ge); G2=series(Gd,Ge);
G2=feedback(Gs,1);
subplot(2,1,1);step(G1);grid; subplot(1,2,1);bode(G1);grid; subplot(2,1,2);step(G2);grid; subplot(1,2,2);bode(G2);grid;
三.实验结果。