备战高考物理易错题专题复习-电磁感应现象的两类情况练习题附答案解析

备战高考物理易错题专题复习-电磁感应现象的两类情况练习题附答案解析
备战高考物理易错题专题复习-电磁感应现象的两类情况练习题附答案解析

备战高考物理易错题专题复习-电磁感应现象的两类情况练习题附答案解析

一、电磁感应现象的两类情况

1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)

(1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离;

(3)在两根杆相互作用的过程中,求回路中产生的电能.

【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】

(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v

设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有

2h x v g =2h x s v g

+=根据动量守恒

012mv mv mv =+

求得:

210m/s v =

(2)ab 杆运动距离为d ,对ab 杆应用动量定理

1BIL t BLq mv ==V

设cd 杆运动距离为d x +?

22BL x

q r r

?Φ?=

= 解得

1

22

2rmv x B L ?=

cd 杆运动距离为

1

22

27m rmv d x d B L

+?=+

= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能

222

012111100J 222

Q mv mv mv =--=

2.某科研机构在研究磁悬浮列车的原理时,把它的驱动系统简化为如下模型;固定在列车下端的线圈可视为一个单匝矩形纯电阻金属框,如图甲所示,MN 边长为L ,平行于y 轴,MP 边宽度为b ,边平行于x 轴,金属框位于xoy 平面内,其电阻为1R ;列车轨道沿

Ox 方向,轨道区域内固定有匝数为n 、电阻为2R 的“

”字型(如图乙)通电后使

其产生图甲所示的磁场,磁感应强度大小均为B ,相邻区域磁场方向相反(使金属框的

MN 和PQ 两边总处于方向相反的磁场中).已知列车在以速度v 运动时所受的空气阻力

f F 满足2f F kv =(k 为已知常数).驱动列车时,使固定的“

”字型线圈依次通

电,等效于金属框所在区域的磁场匀速向x 轴正方向移动,这样就能驱动列车前进.

(1)当磁场以速度0v 沿x 轴正方向匀速移动,列车同方向运动的速度为v (0v <)时,金属框MNQP 产生的磁感应电流多大?(提示:当线框与磁场存在相对速度v 相时,动生电动势E BLv =相)

(2)求列车能达到的最大速度m v ;

(3)列车以最大速度运行一段时间后,断开接在“

” 字型线圈上的电源,使线圈

与连有整流器(其作用是确保电流总能从整流器同一端流出,从而不断地给电容器充电)的电容器相接,并接通列车上的电磁铁电源,使电磁铁产生面积为L b ?、磁感应强度为

B '、方向竖直向下的匀强磁场,使列车制动,求列车通过任意一个“

”字型线圈

时,电容器中贮存的电量Q .

【答案】

(1) 012() BL v v R - (2) 2222

101

22BL B L kR v B L kR +- (3) 2

4nB Lb R '

【解析】 【详解】

解:(1)金属框相对于磁场的速度为:0v v - 每边产生的电动势:0()E BL v v =- 由欧姆定律得:1

2E

I R = 解得:01

(2 )

BL v v I R -=

(2)当加速度为零时,列车的速度最大,此时列车的两条长边各自受到的安培力:

B F BIL =

由平衡条件得:20B f F F -= ,已知:2

f F kv =

解得:2222

101

22m BL B L kR v B L v kR +-=

(3)电磁铁通过字型线圈左边界时,电路情况如图1所示:

感应电动势:n E t

φ

?=?,而B Lb φ?=' 电流:12

E I R =

电荷量:11Q I t =? 解得:12

nB Lb

Q R '= 电磁铁通过

字型线圈中间时,电路情况如图2所示:B Lb φ?=',

2222E n

I R t

φ

?==? 22Q I t =?

解得:22

2nB Lb

Q R

'= 电磁铁通过

字型线圈右边界时,电路情况如图3所示:n E t

φ

?=

?, B Lb φ?=',32

E I R =

33Q I t =?

解得:32nB Lb

Q R '=

, 总的电荷量:123Q Q Q Q =++ 解得:2

4nB Lb

Q R '=

3.某兴趣小组设计制作了一种磁悬浮列车模型,原理如图所示,PQ 和MN 是固定在水平地面上的两根足够长的平直导轨,导轨间分布着竖直(垂直纸面)方向等间距的匀强磁场

1B 和2B ,二者方向相反.矩形金属框固定在实验车底部(车厢与金属框绝缘).其中ad

边宽度与磁场间隔相等,当磁场1B 和2B 同时以速度0m 10s

v =沿导轨向右匀速运动时,

金属框受到磁场力,并带动实验车沿导轨运动.已知金属框垂直导轨的ab 边长

0.1m L =m 、总电阻0.8R =Ω,列车与线框的总质量0.4kg m =,12 2.0T B B ==T ,悬

浮状态下,实验车运动时受到恒定的阻力1h N .

(1)求实验车所能达到的最大速率;

(2)实验车达到的最大速率后,某时刻让磁场立即停止运动,实验车运动20s 之后也停止运动,求实验车在这20s 内的通过的距离;

(3)假设两磁场由静止开始向右做匀加速运动,当时间为24s t =时,发现实验车正在向右做匀加速直线运动,此时实验车的速度为m 2s v =,求由两磁场开始运动到实验车开始运动所需要的时间.

【答案】(1)m 8s ;(2)120m ;(3)2s 【解析】 【分析】 【详解】

(1)实验车最大速率为m v 时相对磁场的切割速率为0m v v -,

则此时线框所受的磁场力大小为22

04-B L v v F R

=

()

此时线框所受的磁场力与阻力平衡,得:F f =

2m 02

8m/s 4fR

v v B L =-= (2)磁场停止运动后,线圈中的电动势:2E BLv =

线圈中的电流:E

I R

=

实验车所受的安培力:2F BIL =

根据动量定理,实验车停止运动的过程:m F t ft mv ∑?+=

整理得:224m B L v

t ft mv R

∑?+=

而v t x ∑?=

解得:120m x =

(3)根据题意分析可得,为实现实验车最终沿水平方向做匀加速直线运动,其加速度必须与两磁场由静止开始做匀加速直线运动的加速度相同,设加速度为a ,

则t 时刻金属线圈中的电动势 2)E BL

at v =-( 金属框中感应电流 2)BL at v I R

-=

( 又因为安培力22

4)

2B L at v F BIL R

(-==

所以对试验车,由牛顿第二定律得 22

4)

B L at v f ma R

(--=

得 21.0m/s a =

设从磁场运动到实验车起动需要时间为0t ,则0t 时刻金属线圈中的电动势

002E BLat =

金属框中感应电流0

02BLat I R

=

又因为安培力220

0042B L at F BI L R

==

对实验车,由牛顿第二定律得:0F f =

即2204B L at f R

= 得:02s t =

4.图中装置在水平面内且处于竖直向下的匀强磁场中,足够长的光滑导轨固定不动。电源

电动势为E (不计内阻),导体棒ab 初始静止不动,导体棒 ab 在运动过程中始终与导轨垂直, 且接触良好。已知导体棒的质量为m ,磁感应强度为B ,导轨间距为L ,导体棒及导轨电阻均不计,电阻R 已知。闭合电键,导体棒在安培力的作用下开始运动,则: (1)导体棒的最终速度?

(2)在整个过程中电源释放了多少电能? (3)在导体棒运动过程中,电路中的电流是否等于

E

R

,试判断并分析说明原因。

【答案】(1)E v BL =;(2) 2

22

2mE B L

;(3)见解析 【解析】 【分析】 【详解】

(1) 闭合电键,导体棒在安培力的作用下开始运动做加速运动,导体棒运动后切割磁感线产生感应电流,使得通过导体棒的电流减小,安培力减小,加速度减小,当加速度为0时,速度达到最大值,之后做匀速运动,此时感应电动势与电源电动势相等。设导体棒的最终速度v ,则有

E BLv =

解得

E

v BL

=

(2)在整个过程中电源释放的电能转化为导体棒的动能,导体棒获得的动能为

2

222

122k mE E mv B L

?== 所以在整个过程中电源释放的电能为2

22

2mE B L

(3)在导体棒运动过程中,闭合电键瞬间,电路中的电流等于

E

R

,导体棒在安培力的作用下开始运动做加速运动。之后导体棒运动后切割磁感线产生感应电流,使得通过导体棒的电流减小,当感应电动势与电源电动势相等时,电路中电流为0,因此在导体棒运动过程中,电路中的电流只有在闭合电键瞬间等于

E

R

,之后逐渐减小到0。

5.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始

运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求

(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.

【答案】0F E Blt g m μ??=- ??? ; R =220

B l t m

【解析】 【分析】 【详解】

(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②

当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ??

=-

???

④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=E

R

⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦

联立④⑤⑥⑦式得: R =220

B l t m

6.如图所示,空间存在竖直向下的匀强磁场,磁感应强度B =0.5T .在匀强磁场区域内,有一对光滑平行金属导轨,处于同一水平面内,导轨足够长,导轨间距L =1m ,电阻可忽略不计.质量均为m =lkg ,电阻均为R =2.5Ω的金属导体棒MN 和PQ 垂直放置于导轨上,且与导轨接触良好.先将PQ 暂时锁定,金属棒MN 在垂直于棒的拉力F 作用下,由静止开始以加速度a =0.4m /s 2向右做匀加速直线运动,5s 后保持拉力F 的功率不变,直到棒以最大速度v m 做匀速直线运动.

(1)求棒MN 的最大速度v m ;

(2)当棒MN 达到最大速度v m 时,解除PQ 锁定,同时撤去拉力F ,两棒最终均匀速运动.求解除PQ 棒锁定后,到两棒最终匀速运动的过程中,电路中产生的总焦耳热.

(3)若PQ 始终不解除锁定,当棒MN 达到最大速度v m 时,撤去拉力F ,棒MN 继续运动多远后停下来?(运算结果可用根式表示)

【答案】(1)25m /s m v = (2)Q =5 J (3)5m x = 【解析】 【分析】 【详解】

(1)棒MN 做匀加速运动,由牛顿第二定律得:F -BIL =ma 棒MN 做切割磁感线运动,产生的感应电动势为:E =BLv 棒MN 做匀加速直线运动,5s 时的速度为:v =at 1=2m/s 在两棒组成的回路中,由闭合电路欧姆定律得:2E I R

=

联立上述式子,有:222B L at

F ma R

=+

代入数据解得:F =0.5N 5s 时拉力F 的功率为:P =Fv 代入数据解得:P =1W

棒MN 最终做匀速运动,设棒最大速度为v m ,棒受力平衡,则有:

0m m

P

BI L v -= 2m

m BLv I R

=

代入数据解得:25m/s m v =

(2)解除棒PQ 后,两棒运动过程中动量守恒,最终两棒以相同的速度做匀速运动,设速度大小为v ′,则有:2m mv mv '=

设从PQ 棒解除锁定,到两棒达到相同速度,这个过程中,两棒共产生的焦耳热为Q ,由能量守恒定律可得:2211

222

m Q mv mv '=-? 代入数据解得:Q =5J ;

(3)棒以MN 为研究对象,设某时刻棒中电流为i ,在极短时间△t 内,由动量定理得:-BiL △t =m △v

对式子两边求和有:()()m BiL t m v ∑-?=∑? 而△q =i △t

对式子两边求和,有:()q i t ∑?=∑? 联立各式解得:BLq =mv m , 又对于电路有:2E q It t R

==

由法拉第电磁感应定律得:BLx

E t

= 又2BLx

q R

=

代入数据解得:405m x =

7.如图,两足够长的平行金属导轨平面与水平面间夹角为=30θ?,导轨电阻忽略不计,二者相距l =1m ,匀强磁场垂直导轨平面,框架上垂直放置一根质量为m =0.1kg 的光滑导体棒ab ,并通过细线、光滑滑轮与一质量为2m 、边长为

2

l

正方形线框相连,金属框下方h =1.0m 处有垂直纸面方向的长方形有界匀强磁场,现将金属框由静止释放,当金属框刚进入磁场时,电阻R 上产生的热量为1Q =0.318J ,且金属框刚好能匀速通过有界磁场。已知两磁场区域的磁感应强度大小相等。定值电阻R =1Ω。导体棒ab 和金属框单位长度电阻r =1Ω/m ,g =10m/s 2,求

(1)两磁场区域的磁感应强度为多大?

(2)金属框刚离开磁场时,系统损失的机械能是多大? (3)金属框下方没有磁场时,棒的最大速度是多少?

【答案】(1)1T(2)2.136J(3)3m/s 【解析】 【详解】

(1)由题意知,导体棒ab 接入电路的电阻为

11ΩR rl ==

与定值电阻R 相等,故金属框由静止释放到刚进入磁场过程重金属导轨回路产生的总热量为

120.636J Q Q ==

此过程由动能定理得

21

2sin 30(2)2

mgh mgh Q m m v ?--=+

解得

v =2.4m/s

金属框的总电阻为

21

42Ω2

R l r =??=

金属框在磁场中做匀速运动时导体棒ab 产生的电动势为1E Blv =,则有

1

11E I R R

=

+ 金属框产生的电动势

212E Blv =

2

22

E I R =

金属框在磁场中做匀速运动时由平衡条件得

121

2sin 3002

mg mg BI l BI l ?---=

B =1T

(2)由于金属框刚好能做匀速通过有界磁场,说明磁场宽度与线框边长相等

0.52

l

d m =

= 根据能量守恒得

21

2(2)(2)sin 30(2)2

mg h d mg h d E m m v ?+-+=?++

2.136J E ?=

(3)金属框下没有磁场,棒的速度达到最大后做匀速运动,设此时速度为m v ,则

m

1Blv I R R

=

+ 根据平衡条件得

2sin 300mg mg BIl ?--=

解得

m 3m/s v =。

8.在如图甲所示的电路中,螺线管匝数n=1000匝,横截面积S=20cm 2.螺线管导线电阻r=1.0Ω,R 1=3.0Ω,R 2=4.0Ω,C=30μF .在一段时间内,穿过螺线管的磁场的磁感应强度B 按如图乙所示的规律变化.求:

(1)求螺线管中产生的感应电动势; (2)S 断开后,求流经R 2的电量. 【答案】(1)0.8V ;(2)41.210C -? 【解析】 【分析】 【详解】

(1)感应电动势:10.2

10000.00200.82

B E n n S V t t ?Φ?-===??=??; (2)电路电流120.8

0.1134

E I A r R R =

==++++,电阻2R 两端电压

220.140.4U IR V ==?=,

电容器所带电荷量65

230104 1.210Q CU C --==??=?,S 断开后,流经2R 的电量为

41.210C -?;

【点睛】

本题是电磁感应与电路的综合,知道产生感应电动势的那部分相当于电源,运用闭合电路欧姆定律进行求解.

9.如图所示,MN 、PQ 为足够长的平行金属导轨.间距L=0.50m ,导轨平面与水平面间夹角θ=37°,N 、Q 间连接一个电阻R=5.0Ω,匀强磁场垂直于导轨平面向上,磁感应强度B=1.0T .将一根质量m=0.05kg 的金属棒放在导轨的ab 位置,金属棒及导轨的电阻不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好.已知金属棒与导轨间的动摩擦因数0.50μ=,当金属棒滑至cd 处时,其速度大小开始保持不变,位置cd 与ab 之间的距离 2.0m s =.已知210m/s g =, sin370.60?=,

cos370.80?=.求:

(1)金属棒沿导轨开始下滑时的加速度大小; (2)金属棒达到cd 处的速度大小;

(3)金属棒由位置ab 运动到cd 的过程中,电阻R 产生的热量. 【答案】(1)22.0/a m s = (2) 2.0/v m s = (3)0.10Q J = 【解析】 【分析】

根据牛顿第二定律求加速度,根据平衡条件求金属棒速度大小,由能量守恒求电阻R 上产生的热量; 【详解】

(1)设金属杆的加速度大小a ,则sin cos mg mg ma θμθ-= 解得22.0m/s a =

(2)设金属棒达到cd 位置时速度大小为V ,电流为I ,金属棒受力平衡,有

sin cos mg BIL mg θμθ=+

BLv

I R

=

解得: 2.0m/s V =.

(3)设金属棒从ab 运动到cd 的过程中,电阻R 上产生的热量为Q ,由能量守恒,有

2

1sin cos 2

mgs mv mgs Q θμθ?=

+?+ 解得:0.10J Q =

10.如图所示,水平面上有一个高为d 的木块,木块与水平面间的动摩擦因数为μ=0.1.由均匀金属材料制成的边长为2d 、有一定电阻的正方形单匝线框,竖直固定在木块上表面,它们的总质量为m .在木块右侧有两处相邻的边长均为2d 的正方形区域,正方形底边离水平面高度为2d .两区域各有一水平方向的匀强磁场穿过,其中一个方向垂直于纸面向里,另一个方向垂直于纸面向外,区域Ⅱ中的磁感应强度为区域Ⅰ中的3倍.木块在水平外力作用下匀速通过这两个磁场区域.已知当线框右边MN 刚进入Ⅰ区时,外力大小恰好为0320

F g m =

,此时M 点电势高于N 点,M 、N 两点电势差U MN =U .试求:

(1)区域Ⅰ中磁感应强度的方向怎样?

(2)线框右边MN 在Ⅰ区运动过程中通过线框任一横截面的电量q . (3)MN 刚到达Ⅱ区正中间时,拉力的大小F . (4)MN 在Ⅱ区运动过程中拉力做的功W .

【答案】(1)向外 (2)340mgd q U = (3)

4750mg (4)47

25

mgd 【解析】 【详解】

(1)因为线框从左向右匀速通过这两个磁场区域,所以拉力方向向右,安培力方向向左。 因为M 点电势高于N 点,由右手定制可判断区域Ⅰ中磁感应强度的方向向外。 (2)设线框的总电阻为R ,磁场Ⅰ区的磁感强度为B ,线框右边MN 在Ⅰ区运动过程中有一半长度切割磁感线产生感应电动势,有

Bdv I R

R

ε

=

=

,33

44U I R Bdv =?=

线框右边MN 在Ⅰ区运动过程中,木块与线框受力平衡,有

0A F F mg μ--=

解得

31

0.12020

A F BId mg mg mg ==

-= 通过线框任一横截面的电量q 为q It =,其中2d

t v

= 联立以上各式,解得

340mgd

q U

=

(3)MN 刚到达Ⅱ区正中间时,流过线框的电流为

34'4Bdv Bdv Bdv

I I R R

+=

== 线框左、右两条边均受到向左的安培力作用,总的安培力大小为

4

''3'165

A A F BI d BI d F mg =+==

由于线框上边各有一半处在磁场Ⅰ区、Ⅱ区中,所以分别受到向上与向下的安培力作用,此时木块受到的支持力N 为

7

3''85

A N mg BI d BI d mg F mg =+-=+=

木块与线框组成的系统受力平衡,因此拉力F 为

4747

'55050

A F F N mg mg mg μ=+=+=

(4)随着MN 在磁场Ⅱ区的运动,木块受到的支持力N x 随发生的位移x 而变化,有

3''(2)2'4'x N mg BI x BI d x mg BI d BI x =+--=-+

由于N x 随位移x 线性变化,因此MN 在Ⅱ区运动过程中木块受到的平均支持力为

4'27

2'

2'25

BI d N mg BI d mg BI d mg ?=-+

=+= 此过程中拉力做的功W 为

4747

'222255025

A W F d N d mg d mg d mgd μ=?+?=?+?=

11.如图所示(俯视图),两根光滑且足够长的平行金属导轨固定在同一水平面上,两导轨间距 L =1m 。导轨单位长度的电阻 r =1Ω/m ,左端处于 x 轴原点,并连接有固定电阻 R 1=1Ω(与电阻 R 1 相连的导线电阻可不计)。导轨上放置一根质量 m =1kg 、电阻 R 2=1Ω的金属杆ab ,整个装置处于磁感应强度B = B 0+kx (B 0=1T ,k =1T/m )的磁场中,磁场方向竖直向下。用一外力F 沿水平方向拉金属杆ab ,使其从原点处开始以速度v =1m/s 沿 x 轴正方向做匀速运动,则:

(1)当 t =1s 时,电阻R 1上的发热功率。 (2)求 0-2s 内外力F 所做的功。

(3)如果t =2s 调整F 的大小及方向,使杆以1m/s 2 的加速度做匀减速运动,定性讨论F 的大小及方向的变化情况。

【答案】(1)0.25W (2) 2J (3) 见解析 【解析】 【详解】

(1)当t =1s 时,x =vt =1m ,B =B 0+kx =2T ,所以R 1上的电流为120.52BLv

I R R xr

==++A ,得

21P I R ==0.25W

(2)电流与导体棒位置的关系为012()0.52B kx Lv

I R R xr

+=

=++A ,得回路中的电流与导体棒位置

无关,由F ILB =得0F ILB ILkx =+,画出F -x 图象,求0-2s 内图象下面的“面积”,即是导体棒在运动过程中克服安培力所做的功

当t =0,B =1T ,所以0.5N F ILB ==,当t =2s ,B =3T ,所以 1.5N F ILB ==,x =2m ,所以做功的“面积”为2J 。

因导体棒是匀速运动,合力做功为0,所以外力克服安培力做功为2 J

(3)当t =2s 时 1.5N F ILB ==安,方向向左,此时合外力1N F ma ==合,方向向左,所以

此时F应向右,大小为0.5N。随着速度的减小,安培力将减小,F先减小。当安培力等于1N时,F减至0。当速度更小是,安培力也更小,此时F应反向增大,当速度接近为0时,安培力也接近为0, F接近1N。

12.如图所示,一对光滑的平行金属导轨(电阻不计)固定在同一水平面内,导轨足够长且间距为L,左端接有阻值R的电阻,一质量m、长度L的金属棒MN放置在导轨上,棒的电阻为r,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度为B,棒在水平向右的外力作用下,由静止开始做加速运动,保持外力的功率为P不变,经过时间t导体棒最终做匀速运动.求:

(1)导体棒匀速运动时的速度是多少?

(2)t时间内回路中产生的焦耳热是多少?

【答案】(1);(2)

【解析】

【分析】

(1)金属棒在功率不变的外力作用下,先做变加速运动,后做匀速运动,此时受到的安培力与F二力平衡,由法拉第定律、欧姆定律和安培力公式推导出安培力与速度的关系式,再由平衡条件求解速度;

(2)t时间内,外力F做功为Pt,外力F和安培力对金属棒做功,根据动能定理列式求出金属棒克服安培力做功,即可得到焦耳热.

【详解】

(1)金属棒匀速运动时产生的感应电动势为 E=BLv

感应电流I=

金属棒所受的安培力 F安=BIL

联立以上三式得:F安=

外力的功率 P=Fv

匀速运动时,有F=F安

联立上面几式可得:v=

(2)根据动能定理:W F+W安=

其中 W F=Pt,Q=﹣W安

可得:Q=Pt ﹣

答:

(1)金属棒匀速运动时的速度是.

(2)t 时间内回路中产生的焦耳热是Pt ﹣.

【点睛】

金属棒在运动过程中克服安培力做功,把金属棒的动能转化为焦耳热,在此过程中金属棒做加速度减小的减速运动;对棒进行受力分析、熟练应用法拉第电磁感应定律、欧姆定律、动能定理等正确解题.

13.如图所示,固定位置在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上磁感应强度大小为B 的匀强磁场中.一质量为m (质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ.现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直).设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g .求:此过程中,

(1)导体棒刚开始运动时的加速度a (2)导体棒速度的最大值v m (3)导体棒中产生的焦耳热Q (4)流过电阻R 的电量q 【答案】(1)F mg a m μ-= (2)22

()()

m F mg r R v B d μ-+= (3){2221()()[]2r F mg r R Q FL mgL m r R B d μμ-+?=--?

+?

(4)BLd

q R r =+ 【解析】 【详解】

(1)导体棒刚开始运动时,水平方向只受拉力F 和摩擦力作用,则F-μmg=ma,解得

F mg a m

μ-=

(2)杆受到的安培力:F B =BId=22 m

B d v R r

+,

杆匀速运动时速度最大,由平衡条件得:F=F B +f ,

即:F=22 m

B d v R r

++μmg , 解得:()()22

m F mg r R v B d μ-+=

(3)开始到达到最大速度的过程中,由能量守恒定律得:FL-μmgL=Q+1

2

mv m 2, 导体棒上产生的热流量:Q R =

r

R r

+Q , 解得:Q R =

r R r + [(F-μmg )L-22

44

()()2m F mg R r B d μ-+]; (4)电荷量:()E BdL BdL

q I t t t R r R r t

R r ==

=?=+++V V V V ; 【点睛】当杆做匀速运动时速度最大,应用平衡条件、安培力公式、能量守恒定律即可正确解题.分析清楚杆的运动过程,杆做匀速运动时速度最大;杆克服安培力做功转化为焦耳热,可以从能量角度求焦耳热.

14.如图,光滑的平行金属导轨水平放置,导轨间距为L ,左侧接一阻值为R 的电阻,导轨其余部分电阻不计。矩形区域abfe 内存在垂直轨道平面向下的有界匀强磁场,磁感应强度大小为B ,一质量为m 的金属棒MN 置于导轨上,连人电路部分的电阻为r ,与导轨垂直且接触良好。金属棒受到一个水平拉力作用,从磁场的左边界由静止开始作匀加速直线运动,加速度大小为a 。棒运动到cd 处撤去外力,棒继续运动到磁场右边界ef 处恰好静止。已知ac=bd=x 1,求:

(1)金属棒在区域abdc 内切割磁感线时产生的感应电动势E 随位移x (相对b 点)的表达式; (2)撤去外力后继续运动到ef 的位移x 2;

(3)金属棒整个运动过程中电阻R .上的最大热功率。 【答案】(1)()120E BL ax

x x =剟

(2)1

2()2m R r ax x +=

(3)

2

()R r +【解析】 【详解】

(1)金属棒产生的感应电动势

E BLv =

金属棒由静止开始作匀加速直线运动,则有

22v ax =

联立得

()

10E x x =剟

(2)当位移为x 1时,有

1v =回路总电阻

R R r =+总

根据动量定理得

10BIL t mv -?=-

通过金属棒的电荷量q I t =?, 又有

2BLx q R r R r

φ?=

=++ 解得

2x =

(3)金属棒运动到cd 时电动势最大

E =热功率

2P I R =

回路电流

E

I R r

=

+ 电阻R 的最大热功率

2212

2()

ax B L P R R r =+

答案:(1)()10E x x =剟

(2)2x =

(3)

2

+

R r

()

15.如图所示,两平行光滑的金属导轨MN、PQ固定在水平面上,相距为L,处于竖直向下的磁场中,整个磁场由n个宽度皆为x0的条形匀强磁场区域1、2、3、…n组成,从左向右依次排列,磁感应强度的大小分别为B、2B、3B、…nB,两导轨左端MP间接入电阻R,一质量为m的金属棒ab垂直于MN、PQ放在水平导轨上,与导轨电接触良好,不计导轨和金属棒的电阻。

(1)对导体棒ab施加水平向右的力,使其从图示位置开始运动并穿过n个磁场区,求导体棒穿越磁场区1的过程中,通过电阻R的电荷量q。

(2)对导体棒ab施加水平向右的恒力F0,让它从磁场1左侧边界处开始运动,当向右运

动距离为时做匀速运动,求棒通过磁场区1所用的时间t。

(3)对导体棒ab施加水平向右的恒定拉力F1,让它从距离磁场区1左侧x=x0的位置由静止开始做匀加速运动,当棒ab进入磁场区1时开始做匀速运动,此后在不同的磁场区施加不同的水平拉力,使棒ab保持该匀速运动穿过整个磁场区,求棒ab通过第i磁场区时的水平拉力Fi和棒ab通过整个磁场区过程中回路产生的电热Q。

【答案】⑴;⑵;⑶

【解析】

试题分析:⑴电路中产生的感应电动势。通过电阻的电荷量。导体棒穿过1区过程。解得

(2)棒匀速运动的速度为v,则

设棒在前x0/2距离运动的时间为t1,则

由动量定律:F0 t1-BqL=mv;解得:

设棒在后x0/2匀速运动的时间为t2,则

所以棒通过区域1所用的总时间:

(3)进入1区时拉力为,速度,则有。

解得;。进入i区时的拉力。导体棒以后通过每区都以速度做匀速运动,由功能关系有

解得。

考点:动能定理的应用;导体切割磁感线时的感应电动势;电磁感应中的能量转化

2010高中物理易错题分析集锦——11电磁感应

第11单元电磁感应 [内容和方法] 本单元内容包括电磁感应现象、自感现象、感应电动势、磁通量的变化率等基本概念,以及法拉第电磁感应定律、楞次定律、右手定则等规律。 本单元涉及到的基本方法,要求能够从空间想象的角度理解法拉第电磁感应定律。用画图的方法将题目中所叙述的电磁感应现象表示出来。能够将电磁感应现象的实际问题抽象成直流电路的问题;能够用能量转化和守恒的观点分析解决电磁感应问题;会用图象表示电磁感应的物理过程,也能够识别电磁感应问题的图像。 [例题分析] 在本单元知识应用的过程中,初学者常犯的错误主要表现在:概念理解不准确;空间想象出现错误;运用楞次定量和法拉第电磁感应定律时,操作步骤不规范;不会运用图像法来研究处理,综合运用电路知识时将等效电路图画错。 例1在图11-1中,CDEF为闭合线圈,AB为电阻丝。当滑动变阻器的滑动头向下滑动时,线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,电源的哪一端是正极? 【错解分析】错解:当变阻器的滑动头在最上端时,电阻丝AB因被短路而无电流通过。由此可知,滑动头下移时,流过AB中的电流是增加的。当线圈CDEF中的电流在G处产生的磁感强度的方向是“·”时,由楞次定律可知AB中逐渐增加的电流在G处产生的磁感强度的方向是“×”,再由右手定则可知,AB中的电流方向是从A流向B,从而判定电源的上端为正极。 楞次定律中“感生电流的磁场总是要阻碍引起感生电流的磁通量的变化”,所述的“磁通量”是指穿过线圈内部磁感线的条数,因此判断感应电流方向的位置一般应该选在线圈的内部。 【正确解答】 当线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,它在线圈内部产生磁感强度方向应是“×”,AB中增强的电流在线圈内部产生的磁感强度方向是“·”,所以,AB中电流的方向是由B流向A,故电源的下端为正极。 【小结】 同学们往往认为力学中有确定研究对象的问题,忽略了电学中也有选择研究对象的问题。学习中应该注意这些研究方法上的共同点。 例2长为a宽为b的矩形线圈,在磁感强度为B的匀强磁场中垂直于磁场的OO′轴以恒定的角速度ω旋转,设t= 0时,线圈平面与磁场方向平行,则此时的磁通量和磁通量的变化率分别是[ ]

2014初中物理经典易错题100列

2010年物理中易错题集锦 一、开放性易错题 1:甲、乙两辆汽车分别在平直的公路上作匀速直线运动且方向相同,以甲车为参照物,乙车向东运动,若以地面为参照物,则乙车向________运动,且v Z______v甲(选填“大于”、“等于”或“小于)。 【分析与解】这是一道条件、结果开放问题。通过审题可看出解答本题的关键是:以地面为参照物,甲车运动的方向不确定,因此要分两种可能的情况讨论。 (1)以地面为参照物,如果甲车向东运动,由甲、乙两车同向运动可知, 乙车也向东运动,又由以甲车为参照物时,乙车向东运动可知:v乙> v甲; (2)以地面为参照物,如果甲车向西运动,由甲、乙两车同向运动可知、乙车也向西运动。又由以甲车为参照物时,乙车向东运动可知:v乙< v甲。 根据以上分析可知,本题答案应为:“东,大于”或“西,小于”。 2:一个物体受到同一直线上两个力F1和 F2的作用,它们的合力为F,则( )。 A、如果F1≠ F2,那么F的方向总是跟较大的那个力相同 B、如果F1= F2,那么F=0 C、如果F1> F2,那么F= F1- F2 D、F总大于F1和 F2的任意一个 【分析与解】这是一道条件开放的问题,本题中的 F1、 F2两个力在同一直线上,它们的大小关系已在各选项中作了假设,但各个力的方向未说明,两个力可能同向,也可能反向,那么合力的情况就不同了,所以只有选项A是正确的。 3:重为100牛的长方体放在水平地面上,与地面的接触面积为0.1米2,现用一个大小为20牛的力竖直作用在物体中央,则物体对地面的压强 ( )。 A、一定是200帕 B、可能是1000帕 C、可能是800帕 D、可能是200帕 【分析与解】这是一道条件开放的问题,解答本题常见的错误是选择答案A,其原因是认为作用在物体中央的大小为20牛的力方向竖直向下,而实际上题目中并没有明确给出力的方向,只是说明力竖直用在物体中央,所以该力有竖直向下和竖直向上两种可能。当力的方向竖直向下时,物体对地面的压力F为120牛,则物体对地面的压强为:p1=F1/S1=120牛/(0.1米2)=1200帕 p2=F2/S2=120牛/(0.1米2)=800帕本题正确选项为C。 4:某物体重为0.5牛,把它放入盛有水的烧杯中,溢出重为0.3牛的水,则它受到的浮力( )。 A、一定为0.3牛 B、可能为0.2牛 C、一定为0.5牛 D、可能为0.4牛 【分析与解】这是一道条件、结果开放的问题。在容器中放入物体后,根据阿基米德原理,物体所受的浮力等于物体排开水的重力,而物体排开的水的重力不一定等于容器中溢出水的重力。当容器中盛满水时,两者相等;当容器中未盛满水时,物体排开水的重力大于容器中溢出水的重力,而本题中没有明确烧杯中水是否盛满,所以应分盛满水和未盛满水两种情况讨论: (1)当烧杯中盛满水时:物体所受浮力F浮=0.3牛。 (2)当烧杯中未盛满水时:由于物体排开水的重力大于容器中溢出水的重力, 所以浮力F浮>0.3牛。又因为物体所受最大浮力为0.5牛(当物体漂浮或悬浮时),所以物体所受的浮力应是0.3牛< F浮≤0.5牛。本题的正确选项为D。 【说明】通过本题的讨论要明确物体排开液体的重力和从容器中溢出液体的重力的区别,两者不是同一概 念,只有在容器中盛满液体时,两者才是相等的。 5:如图1 所示,一个重为10牛的实心金属块,挂在弹簧秤下并浸入水中(弹簧秤未画出),当金属块的体积的1/3浸入水中静止时,弹簧秤的示数为8牛,当把金属块全部浸入水中并碰到杯底时,弹簧秤的示数( )。 A、可能是2牛 B、可能是6牛 C、可能是8牛 D、以上答案均错 【分析与解】这是一道条件、结果开放的问题。由题意已知,物

(完整)九年级物理经典易错题答案.doc

初中物理经典错题----- 密度部分 1. 盛氧气的钢瓶内氧气的密度为6kg/m 3, , 工人使用氧气进行焊接用去了1/3, 瓶内氧气的密度为( ) A 6 kg/m 3, B 12kg/m 3, C.4 kg/m 3 , D无 法确定 2. 一个铜球在酒精灯上烧了一会, 铜球的质量和密度将( ) A 不变、变大 B 、不变、变小 C 不变、不变D变小、不变 3. 一个瓶子能装下1kg 的盐水 , 它一定能装下1kg 的( ) A 水银 B 水 C 煤油 D 酒精 4.三个质量相等的实心铅球、铁球和铝球,分别放入盛有等量水的相同的量筒中,三只量筒中水面最高 的是 () A. 三水面一样高 B. 放入铅球的量筒 C.放入铝球的量筒 D. 放入铁球的量筒 5.三个同样大小、质量相等的空心球,它们分别由铝、铁、铜制成,球空心部分的体积最小的是() A. 铝球 B.铁球 C.铜球 6. 有三个质量和体积均相同的小球, D. 一样大 一个为铜球 , 一个为铁球, 一个为铝球, 则_________ 一定为空心 球。可能为空心球. 7.小新和小杨同学分别设计了一种实验方案,请在方案中的空白处填空: 方案一:( 1)用调节好的天平测出空烧杯的质量m1;(2)向烧杯中倒人一些食用油,测出它们的总质量 m2,则这些食用油的质量为;(3)再将烧杯中的食用油倒人量筒中,测出食用油的体积 V;(4)计算出食用油的密度ρ=. 方案二 :(1)将天平置于水平台后,立即调节平衡螺母,使横梁平衡; ( 2)用天平测出装有适量食用油的 烧杯的总质量m1;( 3)将烧杯中的一部分食用油倒人量筒中,记录量筒中食用油的体积V;(4)测出烧 杯及剩下食用油的总质量m2;( 5)计算出食用油的密度ρ =. (1) 请分别找出两种方案中的不足之处: 方案一:;方案二:; ( 2)你准备选择方案来做实验,为顺利完成该实验,该方案中不足之处应改 为: 。 压力、压强部分 1.下列说法中正确的是() A.物体的重力越大,产生的压力越大; B.受力面积越小,产生的压强越大; C.压强与物体的重力成正比,与受力面积成反比; D.在压力相同情况下,受力面积越大,产生的压强越小。 2.有三个相同材料制成的圆柱体,高度相同 ,它们的质量比为m1:m2:m3=2:3:5, 把它们竖直放在水平面上 ,则水平受到的压强之比为() A. 2:3:5 B.5:3:2 C.1:1:1 D.15:10:6 3、重为 100 牛的长方体放在水平地面上,与地面的接触面积为0.1 米 2,现用一个大小为 20 牛的力竖直作用在物体中央,则物体对地面的压强( )。 A. 一定是 200 帕 B.可能是 1000 帕 C.可能是 800 帕 D. 可能是 200 帕 4.质量为 7.9kg 的正方体铁块放置在面积为0.5m 2的水平面桌面上,它对水平桌面产生的压强是 ________ (ρ铁 =7.9*10 3千克 / 立方米) 5.将一重 100N, 边长为 20cm 的均匀正方体 ,放置在水平的边长10cm 桌面正中 ,则正方体对桌面的压强为 _______ 6.一平底装3N 水的轻质玻璃杯放在水平桌面上,杯子与桌面的接触面积为20cm 2,杯内水面高度 10cm,则水对杯底的压力是 _______,杯子对桌面的压强为。

高一物理易错题(整理)

易错题第四季 【例1】 如图所示,质量为M 的楔形木块放在水平桌面上,它的顶角为90 ,两 底角为α和β.a 、b 为两个位于斜面上的质量均为m 的小木块,已 知所有的接触面都是光滑的,现发现a 、b 沿斜面下滑,而楔形木块不 动,这时楔形木块对水平桌面的压力等于( ) A .Mg mg + B .2Mg mg + C .(sin sin )Mg mg αβ++ D .(cos cos )Mg mg αβ++ 例题1: 【答案】A 【解析】本体最好以整体的方法受力分析,直接就可以得到N F Mg mg =+ 下面我们用隔离的方法来解决一下: 取a 为研究对象,受到重力和支持力的作用,则加速度沿斜面向下,设大小为1a ,由牛顿第二定律得1sin mg ma α= ?1sin a g α= 同理,b 的加速度也沿斜面向下,大小为2sin a g β=. 将1a 和2a 沿水平方向和竖直方向进行分解,a 、b 竖直方向的分加速度分别为 2212sin sin y y a g a g αβ== 再取a 、b 和楔形木块的组成的整体作为研究对象,仅在竖直方向受到重力和桌面支持力N F ,由牛顿第二定律得22(2)sin sin N M m g F mg mg αβ+-=+ 又o 90αβ+=,所以sin cos αβ= 则(2)N M m g F mg +-= ? N F Mg mg =+ 【例2】 如图所示,用三根轻绳将质量均为m 的A 、B 两小球以及水平天花板上的固 定点O 之间两两连接.然后用一水平方向的力F 作用于A 球上,此时三根轻 绳均处于直线状态,且OB 绳恰好处于竖直方向,两球均处于静止状态.三根 轻绳的长度之比为::3:4:5OA AB OB =.则下列说法正确的是( ) A .O B 绳中的拉力小于mg B .OA 绳中的拉力大小为53 mg C .拉力F 大小为45mg D .拉力F 大小为43 mg 例题2: 【答案】BD 易错:先分析B 球,根据平衡应该知道AB 绳子是不受力的,而不是受到三个力。 【解析】由于A 、B 两球均处于静止状态,且OB 绳中的拉力等于mg ,AB 绳中的拉力为零,此时,A 球受重力、 拉力F 、OA 绳拉力T F 三个力作用处于平衡,据平衡条件可求得5/3,4/3T F mg F mg = =,故B D 、正确. 【例3】 一根轻质弹簧一端固定,用大小为1F 的力压弹簧的另一端,平衡时长度为1l ;改用大小为2F 的力拉弹簧, 平衡时长度为2l 。弹簧的拉伸或压缩均在弹性限度内,该弹簧的劲度系数为 A .2121F F l l -- B .2121F F l l ++ C .2121F F l l +- D .2 121F F l l -+ b a β α

高中物理易错题分析集锦——7热学之令狐文艳创作

第七单元:热学 令狐文艳 [内容和方法] 本单元内容包括两部分,一是微观的分子动理论部分,一是宏观的气体状态变化规律。其中分子动理论部分包括分子动理论的基本观点、分子热运动的动能、分子间相互作用的势能和物体的内能等概念,及分子间相互作用力的变化规律、物体内能变化的规律、能量转化和守恒定律等基本规律;气体状态变化规律中包括热力学温度、理想气体和气体状态参量等有关的概念,以及理想气体的等温、等容、等压过程的特点及规律(包括公式和图象两种描述方法)。 本单元中所涉及到的基本方法是理想化的模型方法,其中在分子动理论中将微观分子的形状视为理想的球体,这是通过阿伏伽德罗常数对微观量进行估算的基础;在气体状态变化规律中,将实际中的气体视为分子没有实际体积且不存在相互作用力的理想气体,从而使气体状态变化的规律在误差允许的范围内得以大大的简化。 [例题分析] 在本单元知识应用的过程中,初学者常犯的错误主要表现在:对较为抽象的分子热运动的动能、分子相互作用的势能及分子间相互作用力的变化规律理解不到位,导致这些微观量及规律与宏观的温度、物体的体积之间关系不能建立起正确的关系。

对于宏观的气体状态的分析,学生的问题通常表现在对气体压强的分析与计算方面存在着困难,由此导致对气体状态规律应用出现错误;另外,本单元中涉及到用图象法描述气体状态变化规律,对于p—V,p—T,V—T图的理解,一些学生只观注图象的形状,不能很好地理解图象上的点、线、斜率等的物理意义,因此造成从图象上分析气体温度变化(内能变化)、体积变化(做功情况)时出现错误,从而导致利用图像分析气体内能变化等问题时的困难。 例1 下列说法中正确的是[ ] A.温度低的物体内能小 B.温度低的物体分子运动的平均速率小 C.做加速运动的物体,由于速度越来越大,因此物体分子的平均动能越来越大 D.外界对物体做功时,物体的内能不一定增加 【错解分析】错解一:因为温度低,动能就小,所以内能就小,所以应选A 而温度低的物体分子平均动能小,所以速率也小。所以应选B。 错解三:由加速运动的规律我们了解到,物体的速度大小由初速和加速度与时间决定,随着时间的推移,速度肯定越来越快再由动能公式

初中物理经典易错题

初中物理经典易错题 1.在湖中划船时,使船前进的的动力是() A.桨划水的推力 B.水直接对船的推力 C.人对船的推力 D.水对桨的推力 2.踢到空中的足球,受到哪些力的作用( ) A受到脚的作用力和重力 B受到重力的作用C只受到脚的作有力 D没有受到任何力的作用 3.一辆汽车分别以6米/秒和4米/秒的速度运动时,它的惯性大小:() A.一样大; B.速度为4米/秒时大; C.速度为6米/秒时大; D.无法比较 4.站在匀速行驶的汽车里的乘客受到几个力的作用( ) A.1个 B.2 个 C.3个 D.4个 5.甲、乙两个同学沿相反的方向拉测力计,各用力200牛.则测力计的示数为( ) A、100牛 B、200牛 C、0牛 D、400牛 6.一物体受到两个力的作用,这两个力三要素完全相同,那么这两个力( ) A 一定是平衡力 B 一定不是平衡力 C 可能是平衡力 D 无法判断 7.体育课上,小明匀速爬杆小刚匀速爬绳。有关他们受到的摩擦力下面说法正确的是() A、因为爬杆时手握杆的压力大,所以小明受到的摩擦力一定大 B、因为绳子粗糙,所以小刚受到的摩擦力一定大 C、小明和小刚受到的摩擦力一定相等 D、若小明的体重大,则他受到的摩擦力一定大 8.如图所示,物体A在水平力F的作用下,静止在竖直墙壁上.当水平力减小为F/2时,物体A恰好沿竖直墙壁匀速下滑.此时物体A所受摩擦力的大小() A.减小为原来的1/2 B.和原来一样 C.增大为原来的2倍 D.无法判断 9..某同学用刻度尺测量钢球的直径,测得的四次结果是 1.82cm,1.87cm,1.68cm,1.81cm,则小球的直径应取() A.1.83cm B.1.833cm C.1.76cm D.1.759cm 10.用拉长的刻度尺测量物体的长度,测量结果是() A 偏大 B 一样 C 偏小 D 无法确定 11.盛氧气的钢瓶内氧气的密度为 6kg/m3, ,工人使用氧气进行焊接用去了1/3,瓶内氧气的密度为() A 6 kg/m3, B 12kg/m3, C.4 kg/m3, D 无法确定 12.一个瓶子能装下1kg的盐水,它一定能装下1kg的( ) A 水银 B 水 C 煤油 D酒精

(完整)九年级物理经典易错题答案

初中物理经典错题-----密度部分 1.盛氧气的钢瓶内氧气的密度为 6kg/m3, ,工人使用氧气进行焊接用去了1/3,瓶内氧气的密度为( ) A 6 kg/m3, B 12kg/m3, C.4 kg/m3, D 无法确定 2.一个铜球在酒精灯上烧了一会,铜球的质量和密度将( ) A 不变、变大 B、不变、变小 C 不变、不变 D 变小、不变 3.一个瓶子能装下1kg的盐水,它一定能装下1kg的( ) A 水银 B 水 C 煤油 D酒精 4.三个质量相等的实心铅球、铁球和铝球,分别放入盛有等量水的相同的量筒中,三只量筒中水面最高的是( ) A.三水面一样高 B.放入铅球的量筒 C.放入铝球的量筒 D.放入铁球的量筒 5.三个同样大小、质量相等的空心球,它们分别由铝、铁、铜制成,球空心部分的体积最小的是( ) A.铝球 B.铁球 C.铜球 D.一样大 6.有三个质量和体积均相同的小球, 一个为铜球,一个为铁球,一个为铝球,则 _________一定为空心球。可能为空心球. 7.小新和小杨同学分别设计了一种实验方案,请在方案中的空白处填空: 方案一:(1)用调节好的天平测出空烧杯的质量m1;(2)向烧杯中倒人一些食用油,测出它们的总质量m2,则这些食用油的质量为;(3)再将烧杯中的食用油倒人量筒中,测出食用油的体积V;(4)计算出食用油的密度ρ= . 方案二:(1)将天平置于水平台后,立即调节平衡螺母,使横梁平衡;(2)用天平测出装有适量食用油的烧杯的总质量m1;(3)将烧杯中的一部分食用油倒人量筒中,记录量筒中食用油的体积V;(4)测出烧杯及剩下食用油的总质量m2;(5)计算出食用油的密度ρ= . (1)请分别找出两种方案中的不足之处: 方案一:;方案二:; (2)你准备选择方案来做实验,为顺利完成该实验,该方案中不足之处应改为: 。 压力、压强部分 1.下列说法中正确的是() A.物体的重力越大,产生的压力越大; B.受力面积越小,产生的压强越大; C.压强与物体的重力成正比,与受力面积成反比; D.在压力相同情况下,受力面积越大,产生的压强越小。 2.有三个相同材料制成的圆柱体,高度相同,它们的质量比为m1:m2:m3=2:3:5,把它们竖直放在水平面上,则水平受到的压强之比为( ) A. 2:3:5 B.5:3:2 C.1:1:1 D.15:10:6 3、重为100牛的长方体放在水平地面上,与地面的接触面积为0.1米2,现用一个大小为20牛的力竖直作用在物体中央,则物体对地面的压强( )。 A.一定是200帕 B.可能是1000帕 C.可能是800帕 D.可能是200帕 4.质量为7.9kg的正方体铁块放置在面积为0.5m 2的水平面桌面上,它对水平桌面产生的压强是________(ρ铁=7.9*103千克/立方米) 5.将一重100N,边长为20cm的均匀正方体,放置在水平的边长10cm桌面正中,则正方体对桌面的压强为_______

高一物理下册 圆周运动易错题(Word版 含答案)

一、第六章 圆周运动易错题培优(难) 1.如图所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的物体A 和B ,A 和B 质量都为m .它们分居在圆心两侧,与圆心距离分别为R A =r ,R B =2r ,A 、B 与盘间的动摩擦因数μ相同.若最大静摩擦力等于滑动摩擦力,当圆盘转速加快到两物体刚好还未发生滑动时,下列说法正确的是( ) A .此时绳子张力为T =3mg μ B .此时圆盘的角速度为ω2g r μC .此时A 所受摩擦力方向沿半径指向圆外 D .此时烧断绳子物体A 、B 仍将随盘一块转动 【答案】ABC 【解析】 【分析】 【详解】 C .A 、B 两物体相比,B 物体所需要的向心力较大,当转速增大时,B 先有滑动的趋势,此时B 所受的静摩擦力沿半径指向圆心,A 所受的静摩擦力沿半径背离圆心,故C 正确; AB .当刚要发生相对滑动时,以B 为研究对象,有 22T mg mr μω+= 以A 为研究对象,有 2T mg mr μω-= 联立可得 3T mg μ= 2g r μω= 故AB 正确; D .若烧断绳子,则A 、B 的向心力都不足,都将做离心运动,故D 错误. 故选ABC. 2.如图,质量为m 的物块,沿着半径为R 的半球形金属壳内壁滑下,半球形金属壳竖直放置,开口向上,滑到最低点时速度大小为v ,若物体与球壳之间的摩擦因数为μ,则物体在最低点时,下列说法正确的是( )

A .滑块对轨道的压力为2 v mg m R + B .受到的摩擦力为2 v m R μ C .受到的摩擦力为μmg D .受到的合力方向斜向左上方 【答案】AD 【解析】 【分析】 【详解】 A .根据牛顿第二定律 2 N v F mg m R -= 根据牛顿第三定律可知对轨道的压力大小 2 N N v F F mg m R '==+ A 正确; BC .物块受到的摩擦力 2 N ()v f F mg m R μμ==+ BC 错误; D .水平方向合力向左,竖直方向合力向上,因此物块受到的合力方向斜向左上方,D 正确。 故选AD 。 3.如图所示,两个啮合的齿轮,其中小齿轮半径为10cm ,大齿轮半径为20cm ,大齿轮中C 点离圆心O 2的距离为10cm ,A 、B 两点分别为两个齿轮边缘上的点,则A 、B 、C 三点的( ) A .线速度之比是1:1:2 B .角速度之比是1:2:2 C .向心加速度之比是4:2:1 D .转动周期之比是1:2:2 【答案】CD 【解析】 【分析】

高中物理易错题分析集锦——4动量

第四单元:动量、动量守恒定律 [内容和方法] 本单元内容包括动量、冲量、反冲等基本概念和动量定理、动量守恒定律等基本规律。冲量是物体间相互作用一段时间的结果,动量是描述物体做机械运动时某一时刻的状态量,物体受到冲量作用的结果,将导致物体动量的变化。冲量和动量都是矢量,它们的加、减运算都遵守矢量的平行四边形法则。 本单元中所涉及到的基本方法主要是一维的矢量运算方法,其中包括动量定理的应用和动量守定律的应用,由于力和动量均为矢量。因此,在应用动理定理和动量守恒定律时要首先选取正方向,与规定的正方向一致的力或动量取正值,反之取负值而不能只关注力或动量数值的大小;另外,理论上讲,只有在系统所受合外力为零的情况下系统的动量才守恒,但对于某些具体的动量守恒定律应用过程中,若系统所受的外力远小于系统内部相互作用的内力,则也可视为系统的动量守恒,这是一种近似处理问题的方法。 [例题分析] 在本单元知识应用的过程中,初学者常犯的错误主要表现在:只注意力或动量的数值大小,而忽视力和动量的方向性,造成应用动量定理和动量守恒定律一列方程就出错;对于动量守恒定律中各速度均为相对于地面的速度认识不清。对题目中所给出的速度值不加分析,盲目地套入公式,这也是一些学生常犯的错误。 例1 、从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是:[ ] C.掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢 D.掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时间长。 【错解分析】错解:选B。 认为水泥地较草地坚硬,所以给杯子的作用力大,由动量定理I=△P,即F·t =△P,认为F大即△P,大,所以水泥地对杯子的作用力大,因此掉在水泥地上的动量改变量大,所以,容易破碎。 【正确解答】设玻璃杯下落高度为h。它们从h高度落地瞬间的 量变化快,所以掉在水泥地上杯子受到的合力大,冲力也大,所以杯子 所以掉在水泥地受到的合力大,地面给予杯子的冲击力也大,所以杯子易碎。正确答案应选C,D。 【小结】判断这一类问题,应从作用力大小判断入手,再由动量

八年级(上)物理经典易错题集锦71例(带答案)Word版可打印

八年级上物理经典易错题71例(带答案)可打印 1、小明搬新居,在测量窗户玻璃的长度和测量窗帘的长度时应分别选用分度值是多少的刻度尺?()A.cm,dm B.mm,cm C.um,mm D.mm,m 2、测量一个人的脉搏时,1min跳动了75次,这个人的脉搏跳动一次所用的时间是_____S. 3、一个做匀速直线运动的物体,8S内通过的路程是20m,那么它在前1.75s时的速度大小是() A.12.5m/s B.2.5m/s C.0.4m/s D.1.25m/s 4、小李骑车从家到学校的平均速度是5m/s,小陈骑车从家到学校的平均速度是4m/s,这说明() A.上学时,小李骑车比小陈快 B.小李家到学校的距离比小陈家到学校的距离远 C.小李到学校所用的时间比小陈到学校所用的时间少 D.任何时候小李骑车的速度都比小陈快 5、物体在一条平直公路上运动,已知该物体在第1s内运动了2m,第2s内运动了4m,,第3s内运动了6m,第4s内运动了8m,以此类推,则物体在整个过程中() A .先做匀速直线运动,后做变速直线运动; B .先做变速直线运动,后做匀速直线运动; C .一定做变速直线运动; D .一定做匀速直线运动 6、日常生活中我们常用两种方法来比较物体运动的快慢,请借助如图中的短跑比赛来说明这两种方法: a图表明__________________________________

; b图表明______________________________________ . 7、三个做匀速运动的物体A、B、C,速度大小分别是:V A=180m/min,V B=12m/s,V C=3.6km/h,其中运动速度最快的是______,运动最慢的是______. 8、飞机沿直线,快慢不变地飞行了15min,通过的路程是270km,则它的飞行速度是______km/h,合______m/s. 9、在学校的橱窗里贴出了一个通知,如右图所示,小聪和小明积极的谈论这个问题: (1)降落伞下落得越慢,说明其运动速度越________ (2)要测量降落伞的下落速度,要测量物理量有_____、_____; (3)用的实验器材是:________、________; 4)请你帮他们设计一个用来记录实验数据的表格. 5)在这次比赛中也可以通过相同___________比较__________来判断降落伞下落的快慢. 6)如果要想在比赛中取胜,可以对降落伞进行改造,请你帮他们出谋划策:____________________________ 10、小明家离学校600m远,他步行到学校要花10min,那么他步行的平均速度为() A.60 m/s B.6 m/s C.1 m/s D.1 m/min

高一物理必修一精题易错题

高一物理必修一精题易 错题 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

1.如图所示,在一辆表面光滑且足够长的小车上,有质量为m1、m2的两个小球(m1> m2),原来随车一起运动,当车突然停止时,如不考虑其他阻力,则两个小球 B A.一定相碰 B.一定不相碰 C.不一定相碰 D.无法确定,因为不知小车的运动方向 2.如图所示,置于水平地面的三脚架上固定着一质量为m的照相机,三脚架的三根轻质支架等长,与竖直方向均成30°角,则每根支架中承受的压力大小为() A.mg B. C. D. 【解析】 要使相机受力平衡,则三根支架竖直向上的力的合力应等于重力, 即3Fcosθ=mg; 解得F=mg; 3.如图所示,一个物体放在斜面上处于静止状态,斜面对这个物体的作用力的合力为F.下面哪个图中表示的F是正确的( D ) 4.如图所示,人重600N,木板重400N,人与木板、木板与地面间的动摩擦因数均为,现在人用水平拉力拉绳,使他与木板一起向右匀速运动,则 (BC ) A.人拉绳的力是200N

B.人拉绳的力是100N C.人的脚给木板的摩擦力方向水平向右 D.人的脚给木板的摩擦力方向水平向左 5.如图1-4所示,物体M通过与斜面平行的细绳与小物块m相连,斜面的倾角θ可以改变,讨论物块M对斜面的摩擦力的大小,则一定有(D) A.若物块M保持静止,则θ角越大,摩擦力越大 B.若物块M保持静止,则θ角越大,摩擦力越小 C.若物块M沿斜面下滑,则θ角越大,摩擦力越大 D.若物块M沿斜面下滑,则θ角越大,摩擦力越小 6.如图所示,A、B两棒长均为 L=1m,A的下端和 B的上端相距 s=20m.若 A、B同时运动,A做自由落体、 B做竖直上抛,初速度v0=40m/s,求: (1) A、 B两棒何时相遇; (2)从相遇开始到分离所需的时间. (1)(2) 7.光滑半球固定在水平面上,球心O的正上方有一定滑轮,一根轻绳跨过滑轮将一小球从图13所示的A位置开始缓慢拉至B位置。试判断:在此过程中,绳子的拉力T和球面支持力N怎样变化 T减小, F N不变。解析: 对小球受力分析如图:(1分) 由于小球缓慢移动,故小球受力合力为零 由数学知识可得△ABC与△01A0相似(2分) 有 010/G=L/T (1分) 因010、G大小不改变 L减小所以T减小(1分) 有 010/G=R/FN (1分) 因010、G、 R大小都不改变所以F N不变(1分) 8.作用于同一点的两个力大小分别为F1=10N,F2=6N,这两个力的合力F与 F1的夹角为θ,则θ可能为( A B ) A.0 B.30° C.60° D.120°

高三试题解析高中物理易错题热学

热学 [内容和方法] 本单元内容包括两部分,一是微观的分子动理论部分,一是宏观的气体状态变化规律。其中分子动理论部分包括分子动理论的基本观点、分子热运动的动能、分子间相互作用的势能和物体的内能等概念,及分子间相互作用力的变化规律、物体内能变化的规律、能量转化和守恒定律等基本规律;气体状态变化规律中包括热力学温度、理想气体和气体状态参量等有关的概念,以及理想气体的等温、等容、等压过程的特点及规律(包括公式和图象两种描述方法)。 本单元中所涉及到的基本方法是理想化的模型方法,其中在分子动理论中将微观分子的形状视为理想的球体,这是通过阿伏伽德罗常数对微观量进行估算的基础;在气体状态变化规律中,将实际中的气体视为分子没有实际体积且不存在相互作用力的理想气体,从而使气体状态变化的规律在误差允许的范围内得以大大的简化。 [例题分析] 在本单元知识应用的过程中,初学者常犯的错误主要表现在:对较为抽象的分子热运动的动能、分子相互作用的势能及分子间相互作用力的变化规律理解不到位,导致这些微观量及规律与宏观的温度、物体的体积之间关系不能建立起正确的关系。对于宏观的气体状态的分析,学生的问题通常表现在对气体压强的分析与计算方面存在着困难,由此导致对气体状态规律应用出现错误;另外,本单元中涉及到用图象法描述气体状态变化规律,对于p—V,p—T,V —T图的理解,一些学生只观注图象的形状,不能很好地理解图象上的点、线、斜率等的物理意义,因此造成从图象上分析气体温度变化(内能变化)、体积变

化(做功情况)时出现错误,从而导致利用图像分析气体内能变化等问题时的困难。 例1 下列说法中正确的是[ ] A.温度低的物体内能小 B.温度低的物体分子运动的平均速率小 C.做加速运动的物体,由于速度越来越大,因此物体分子的平均动能越来越大 D.外界对物体做功时,物体的内能不一定增加 【错解分析】错解一:因为温度低,动能就小,所以内能就小,所以应选A 而温度低的物体分子平均动能小,所以速率也小。所以应选B。 错解三:由加速运动的规律我们了解到,物体的速度大小由初速和加速度与时间决定,随着时间的推移,速度肯定越来越快再由动能公式 错解一是没有全面考虑内能是物体内所有分子的动能和势能的总和。温度低只表示物体分子平均动能小,而不表示势能一定也小,也就是所有分子的动能和势能的总和不一定也小,所以选项A是错的。 实际上因为不同物质的分子质量不同,而动能不仅与速度有关,也与分子质量有关,单从一方面考虑问题是不够全面的,所以错解二选项B也是错的。 错解三的原因是混淆了微观分子无规则运动与宏观物体运动的差别。分子的平均动能只是分子无规则运动的动能,而物体加速运动时,物体内所有分子

中考物理经典易错题解析电学部分

中考物理经典易错题解析—电学部分 以下是2019中考物理经典错题解析: 例1.一个验电器带有正电,它的箔片张开某一角度,用另一个有绝缘手柄的导体靠近验电器的金属球,发现验电器的箔片的张角减小,关于导体的带电情况,下面的说法正确的是( ) A.只可能带负电 B.只可能带正电 B.可能带负电或不带电 D.可能带正电或不带电 [解析] 验电器的箔片的张角减小说明箔片上正电荷减小,而金属球上的正电荷增加,显然这是导体的异种电荷吸引的结果。这说明导体是不可能带正电的,导体带负电是可能的。但如果导体不带电,靠近带正电的金属球时,由于静电感应,导体的近端会出现异种电荷──负电荷,远端会出现同种电荷──正电荷,这种感应电荷也会对金属球的正电荷有吸引作用,使箔片上的正电荷减小,所以完整的答案是:带负电或不带电都可能。正确答案为C。 例2.一个灯泡的铭牌上标着PZ220──100,在室温下用伏安法测得它的灯丝电阻为R1,后在正常工作时再用伏安法测得它的灯丝电阻为R2=48.4欧,发现R2比R1大10倍以上,这是由于( ) A.前一次测得的阻值必定是错的 B.后一次测得的阻值是错的 C.对大多数导体来说,温度越高,电阻越大,灯丝属于这种导体 D.不论什么导体,都是温度越高电阻越大 [解析] 此题是分析判断实验结果的正误,主要是让学生通过了解灯丝在不同条件(温度)下的电阻值不同,加深学生对影响导体电阻大小因素的理解。导体电阻的大小跟导体的长度、截面积、材料以及温度有关,大部分导体的电阻值随温度的升高而增大(个别除外)。灯泡正常发光时灯丝的电阻欧,灯泡不发光时灯丝电阻很小,所以正确的说法是C。 例3.把一个1.5欧的电阻与一个用电器串联后接到电压是7伏的电源上,要想使用电器消耗的功率是8瓦,则这个电源供给用电器的电流可能是( ) A. 2安 B. 3.5安 C. 2.67安 D. 2.31安 [解析] 本题将用电器消耗功率P限定为8瓦,其所加电压U、通过电流I和自身电阻R 均不知,用电器是与1.5欧的电阻串联在7伏电源上的,通过用电器的电流和整个电路中的电流相同,I1=I2,即,解得用电器的电阻分别为R=2欧和R=1.125欧,代入可得电流强度的可能值为I=2安和I=2.67安。正确选项为A、C。 例4. 一盏电灯接到220V的电源上使用时,功率为100W,如果将这个电源连上长导线, 再接这盏灯使用,它的功率为81W,求导线上消耗的电功率? [解析] 灯光电压U=220V时的功率P=100W,功率为时的电压为U,且灯泡电阻不变。根据P=U2/R,得:P/P=U2/U1,所以 。这时,灯泡两端的电压U灯=I灯R灯=4849/22=198V。这时,加在导线上的电压为:U导=U-U灯=220V-198V=22V。则导线上消耗的电功率是P导/P=IU导/IU(灯

高一物理上册 运动的描述易错题(Word版 含答案)

一、第一章 运动的描述易错题培优(难) 1.质点做直线运动的 v-t 图象如图所示,则( ) A .3 ~ 4 s 内质点做匀减速直线运动 B .3 s 末质点的速度为零,且运动方向改变 C .0 ~ 2 s 内质点做匀加速直线运动,4 ~ 6 s 内质点做匀减速直线运动,加速度大小均为 2 m/s 2 D .6 s 内质点发生的位移为 8 m 【答案】BC 【解析】 试题分析:矢量的负号,只表示物体运动的方向,不参与大小的比较,所以3 s ~4 s 内质点的速度负方向增大,所以做加速运动,A 错误,3s 质点的速度为零,之后开始向负方向运动,运动方向发生变化,B 错误,图线的斜率表示物体运动的加速度,所以0~2 s 内质点做匀加速直线运动,4 s ~6 s 内质点做匀减速直线运动,加速度大小均为2 m/s 2,C 正确,v-t 图像围成的面积表示物体的位移,所以6 s 内质点发生的位移为0,D 错误, 考点:考查了对v-t 图像的理解 点评:做本题的关键是理解v-t 图像的斜率表示运动的加速度,围成的面积表示运动的位移,负面积表示负方向位移, 2.一个质点做变速直线运动的v-t 图像如图所示,下列说法中正确的是 A .第1 s 内与第5 s 内的速度方向相反 B .第1 s 内的加速度大于第5 s 内的加速度 C .OA 、AB 、BC 段的加速度大小关系是BC OA AB a a a >> D .OA 段的加速度与速度方向相同,BC 段的加速度与速度方向相反 【答案】CD 【解析】

【分析】 【详解】 A .第1s 内与第5s 内的速度均为正值,方向相同,故A 错误; B .第1 s 内、第5 s 内的加速度分别为: 2214m/s 2m/s 2 a == 22504m/s 4m/s 1 a -==- 1a 、5a 的符号相反,表示它们的方向相反,第1s 内的加速度小于于第5 s 内的加速度,故B 错误; C .由于AB 段的加速度为零,故三段的加速度的大小关系为: BC OA AB a a a >> 故C 正确; D .OA 段的加速度与速度方向均为正值,方向相同;BC 段的加速度为负值,速度为正值,两者方向相反,故D 正确; 故选CD 。 3.甲、乙两辆赛车从同一地点沿同一平直公路行驶。它们的速度图象如图所示,下列说法正确的是( ) A .60 s 时,甲车在乙车的前方 B .20 s 时,甲、乙两车相距最远 C .甲、乙加速时,甲车的加速度大于乙车的加速度 D .40 s 时,甲、乙两车速度相等且相距900m 【答案】AD 【解析】 【详解】 A 、图线与时间轴包围的面积表示对应时间内的位移大小,由图象可知60s 时,甲的位移大于乙的位移,所以甲车在乙车前方,故A 正确; B 、40s 之前甲的速度大于乙的速度,40s 后甲的速度小于乙的速度,所以40s 时,甲乙相距最远,在20s 时,两车相距不是最远,故B 错误; C 、速度?时间图象斜率表示加速度,根据图象可知,甲加速时的加速度小于乙加速时的加速度,故C 错误; D 、根据图象可知,40s 时,甲乙两车速度相等都为40m /s ,甲的位移

高中物理高三试题解析高中物理易错题分析集锦——光学

第13单元:光学 [内容和方法] 本单元内容包括光的直线传播、棱镜、光的色散、光的反射、光的折射、法线、折射率、全反射、临界角、透镜(凸、凹)的焦点及焦距、光的干涉、光的衍射、光谱、红外线、紫外线、X射线、γ射线、电磁波谱、光电子、光子、光电效应、等基本概念,以及反射定律、折射定律、透镜成像公式、放大率计算式,光的波粒二象性等基本规律,还有光本性学说的发展简史。 本单元涉及到的方法有:运用光路作图法理解平面镜、凸透镜、凹透镜等的成像原理,并能运用作图法解题;根据透镜成像规律,运用逻辑推理的方法判断物象变化情况。 [例题分析] 在本单元知识应用的过程中,初学者常犯的错误主要表现在:解题操作过程不规范导致计算错误;将几何光学与物理光学综合时概念不准确;不善于用光路图对动态过程作分析。 例1 光从玻璃射入空气里时传播方向如图13-l所示,请在图中标出入射角和折射角。 【错解分析】错解: 如图13-2所示,α为入射角,β为折射角。 错解原因一是受思维定势的影响,不加分析地认定玻璃与空气总是上下接触的;二是对光的折射及其规律未吃透,将题设文字条件与图形条件结合起来的分析能力差。根据光的折射规律,光从水或玻璃等透明物质射入空气里时,折射角大于入射角,题设文字条件是“从玻璃射入空气”,因此折射角大于入射角,再结合题设所给图形,可知CD为界面,AB为法线。 【正确解答】 如图 13-3所示,α′为入射角,β′折射角(CD左面为玻璃,右面为空气)。

【小结】 解光的折射现象的题目,首先应对光线是从光疏媒质进入光密媒质呢?还是光线是从光密媒质进入光疏媒质作出判断。为了保证你每次做题时,能够不忘判断,建议同学们做光的折射题时,先画出光路图,标出入射光线和出射光线的方向,在界面处标出哪一个是光密媒质,哪一个是光疏媒质。然后再解题。 例2 一束白光从玻璃里射入稀薄空气中,已知玻璃的折射率为1.53,求入射角为下列两种情况时,光线的折射角各为多少? (1)入射角为50° (2)入射角为30° 【错解分析】错解: r=30°3′ r=19°4′ 此解法中没有先分析判断光线是从光疏媒质进入光密媒质,还是从光密媒质进入光疏媒质,会不会发生全反射。而是死套公式,引起错误。 【正确解答】 光线由玻璃里射入空气中,是由光密媒质射入光疏媒质,其临界角为 由已知条件知,当i=50°时,i>A,所以光线将发生全反射,不能进入空气中。当i=30°时,i<A,光进入空气中发生折射现象。 sinr=n·sini=1.53×sin30°=0.765 r= 49°54′ 【小结】 解光的折射现象的题目时,首先应做出判断:光线是从光疏媒质进入光密媒质,还是光线是从光密媒质进入光疏媒质。如是前者则i>r,如是后者则i<r。其次,如果是从光密媒质进入光疏媒质中,还有可能发生全反射现象,应再判断入射角是否大于临界角,明确有无折射现象。 例3如图13-4所示,放在空气中折射率为n的平行玻璃砖,表面M和N平行,P,Q两个面相互平行且与M,N垂直。一束光射到表面M上(光束不与M平行),则: [ ]

初中物理经典易错题 100 有答案

初中物理经典易错题 100 例- 力和运动 1.在湖中划船时,使船前进的的动力是() A.桨划水的推力 B.水直接对船的推力 C.人对船的推力 D.水对桨的推力 2.踢到空中的足球,受到哪些力的作用( ) A 受到脚的作用力和重力 B 受到重力的作用 C 只受到脚的作有力 D 没有受到任何力的作用 3.一辆汽车分别以 6 米/秒和 4 米/秒的速度运动时,它的惯性大小:() A.一样大; B.速度为 4 米/秒时大; C.速度为 6 米/秒时大; D.无法比较 4.站在匀速行驶的汽车里的乘客受到几个力的作用() A.1 个 B.2 个 C.3 个 D.4 个 5.甲、乙两个同学沿相反的方向拉测力计,各用力 200 牛.则测力计的示数为( ) A、100 牛 B、200 牛 C、0 牛 D、400 牛 6.一物体受到两个力的作用,这两个力三要素完全相同,那么这两个力( ) A 一定是平衡力 B 一定不是平衡力 C 可能是平衡力 D 无法判断 7.体育课上,小明匀速爬杆小刚匀速爬绳。有关他们受到的摩擦力下面说法正确的是() A、因为爬杆时手握杆的压力大,所以小明受到的摩擦力一定大 B、因为绳子粗糙,所以小刚受到的摩擦力一定大 C、小明和小刚受到的摩擦力一定相等 D、若小明的体重大,则他受到的摩擦力一定大 8.如图所示,物体 A 在水平力 F 的作用下,静止在竖直墙壁上.当水平力减小为 F/2 时, 物体 A 恰好沿竖直墙壁匀速下滑.此时物体 A 所受摩擦力的大小() A.减小为原来的 1/2 B.和原来一样 C.增大为原来的 2 倍 D.无法判断 9.蹦极游戏是将一根有弹性的绳子一端系在身上,另一端固定在高处,从高处跳下,a 是弹性绳自然下垂的位置,C 点是游戏者所到达的最低点,游戏者从离开跳台到最低点的过程 中,物体速度是如何变化的?_______________ 10.A、B 两物体叠放在水平桌面上,在如图所示的三种情况下:①甲图中两物体均处于静止 状态;②乙图中水平恒力 F 作用在 B 物体上,使 A、B 一起以 2m/s 的速度做匀速直线运动; ③丙图中水平恒力 F 作用在 B 物体上,使 A、B 一起以 20m/s 的速度做匀速直线运动。比较 上述三种情况下物体 A 在水平方向的受力情况,以下说法正确的是() A、三种情况下,A 在水平方向都不受力 B 三种情况下,A 在水平方向都受力且受力相同C、①中 A 在水平方向不受力,②、③中A 在水平方向都受力但受 力不同 D、①中 A 在水平方向不受力,②、③中A 在水平方向都受力但受 力相同 11.饮料厂生产的饮料装瓶后,要在自动化生产线上用传送带传送。如图所示,一瓶饮料与 传送带一起水平向左匀速运动,不计空气阻力。请在图中画出饮料瓶受力的示意图。 (图

相关文档
最新文档