高三物理易错题6

合集下载

高三物理易错题整理

高三物理易错题整理

高三物理易错训练题1、如图所示,一木块放在水平桌面上,在水平面内共受三个力,F1,F2和摩擦力,F1,F2在同一直线,物体处于静止状态。

其中F1=10N ,F2=2N 。

若撤去力F1则木块在水平方向受到的合外力为(D )A.10N 向左B.6N 向右C.2N 向左D.02、如图所示,一质量为M 的直角劈放在水平面上,在劈的斜面上放一质量为m 的物体A ,用一沿斜面的力F 作用于A 上,使其沿斜面匀速下滑,在A 下滑的过程中,地面对劈的摩擦力f 及支持力N 满足( B )A .f=0 N=Mg+mgB .f 向左 N<Mg+mgC .f 向右 N<Mg+mgD .f 向左 N=Mg+mg 3、如图所示,一人站在岸上,利用绳和定滑轮,拉船靠岸,在某一时刻绳的速度为v ,绳AO 段与水平面夹角为θ,OC 段与水平方面夹角为α。

不计摩擦和轮的质量,则此时小船的速度多大? A 、v·cosθ B 、v/cos θ C 、v·cosα D 、v/cos αB4、水平面上有两个物体a 和b ,它们之间用轻绳连接,它们与水平面之间的滑动摩擦系数相同。

在水平恒力F 的作用下,a 和b 在水平面上作匀速直线运动,如图所示。

如果在运动中绳突然断了,那么a 、b 的运动情况可能是AA .a 作匀加速直线运动,b 作匀减速直线运动;B .a 作匀加速直线运动,b 处于静止;C .a 作匀速直线运动,b 作匀减速直线运动;D .a 作匀速直线运动,b 作匀速直线运动。

5、如图所示,在粗糙水平面上放一质量为M 的斜面,质量为m 的木块在竖直向上的力F 作用下,沿斜面匀速下滑,此过程中斜面保持静止,则地面对斜面( AD )A .无摩擦力B .有水平向左的摩擦力C .支持力为(M+m )gD .支持力小于(M+m )g6:在光滑水平面上停放着两木块A 和B ,A 的质量大,现同时施加大小相等的恒力F 使它们相向运动,然后又同时撤去外力F ,结果A 和B 迎面相碰后合在一起,问A 和B 合在一起后的运动情况将是( A )A.停止运动B.因A 的质量大而向右运动C.因B 的速度大而向左运动D.运动方向不能确定7:一辆小车在光滑的水平上匀速行使,在下列各种情况中,小车速度仍保持不变的是( BD )A .从车的上空竖直掉落车内一个小钢球B .从车厢底部的缝隙里不断地漏出砂子A B F v A O θα CC .从车上同时向前和向后以相同的对地速率扔出质量相等的两物体D. 从车上同时向前和向后以相同的对车速率扔出质量相等的两物体8、分析下列情况中系统的动量是否守恒( ABD )A .如图2所示,小车停在光滑水平面上,车上的人在车上走动时,对人与车组成的系统B .子弹射入放在光滑水平面上的木块中对子弹与木块组成的系统(如图3)C .子弹射入紧靠墙角的木块中,对子弹与木块组成的系统D .斜向上抛出的手榴弹在空中炸开时9、如图所示,位于光滑水平桌面上的小滑块A 和B 都可视作质点,质量相等。

高中物理易错题精选(含答案有解析分章节)

高中物理易错题精选(含答案有解析分章节)

⾼中物理易错题精选(含答案有解析分章节)⾼考物理易错题精选讲解1:质点的运动错题集⼀、主要内容本章内容包括位移、路程、时间、时刻、平均速度、即时速度、线速度、⾓速度、加速度等基本概念,以及匀变速直线运动的规律、平抛运动的规律及圆周运动的规律。

在学习中要注意准确理解位移、速度、加速度等基本概念,特别应该理解位移与距离(路程)、速度与速率、时间与时刻、加速度与速度及速度变化量的不同。

⼆、基本⽅法本章中所涉及到的基本⽅法有:利⽤运动合成与分解的⽅法研究平抛运动的问题,这是将复杂的问题利⽤分解的⽅法将其划分为若⼲个简单问题的基本⽅法;利⽤物理量间的函数关系图像研究物体的运动规律的⽅法,这也是形象、直观的研究物理问题的⼀种基本⽅法。

这些具体⽅法中所包含的思想,在整个物理学研究问题中都是经常⽤到的。

因此,在学习过程中要特别加以体会。

三、错解分析在本章知识应⽤的过程中,初学者常犯的错误主要表现在:对要领理解不深刻,如加速度的⼤⼩与速度⼤⼩、速度变化量的⼤⼩,加速度的⽅向与速度的⽅向之间常混淆不清;对位移、速度、加速度这些⽮量运算过程中正、负号的使⽤出现混乱:在未对物体运动(特别是物体做减速运动)过程进⾏准确分析的情况下,盲⽬地套公式进⾏运算等。

例1 汽车以10 m/s 的速度⾏使5分钟后突然刹车。

如刹车过程是做匀变速运动,加速度⼤⼩为5m/s 2 ,则刹车后3秒钟内汽车所⾛的距离是多少?【错解】因为汽车刹车过程做匀减速直线运动,初速v 0=10m/s 加速度a=5m/s 2,据S=2021at t v -,则位移S=9521310??-?=7.5(m )。

【错解原因】出现以上错误有两个原因。

⼀是对刹车的物理过程不清楚。

当速度减为零时,车与地⾯⽆相对运动,滑动摩擦⼒变为零。

⼆是对位移公式的物理意义理解不深刻。

位移S 对应时间t ,这段时间内a 必须存在,⽽当a 不存在时,求出的位移则⽆意义。

由于第⼀点的不理解以致认为a 永远地存在;由于第⼆点的不理解以致有思考a 什么时候不存在。

高考物理专题训练:50 个力学电学经典易错题

高考物理专题训练:50 个力学电学经典易错题

高考物理专题训练:50 个力学电学经典易错题最佳完成时间150min,可以每次30 分钟,每次做10 个。

一.选择题(共50 小题)1.如图,在倾角为α的固定光滑斜面上,有一用绳子栓着的长木板,木板上站着一只猫.已知木板的质量是猫的质量的2 倍.当绳子突然断开时,猫立即沿着板向上跑,以保持其相对斜面的位置不变.则此时木板沿斜面下滑的加速度为()A.B.gsinαC.gsinαD.2gsinα2.如图,滑块A 置于水平地面上,滑块B 在一水平力作用下紧靠滑块A(A、B 接触面竖直),此时A 恰好不滑动,B 刚好不下滑.已知A 与B 间的动摩擦因数为μ1,A 与地面间的动摩擦因数为μ2,最大静摩擦力等于滑动摩擦力.A 与B 的质量之比为()A.B.C.D.3.如图,一半径为R,粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ 水平,一质量为m 的质点自P 点上方高度R 处由静止开始下落,恰好从P 点进入轨道,质点滑到轨道最低点N 时,对轨道的压力为4mg,g 为重力加速度的大小,用W 表示质点从P 点运动到N 点的过程中克服摩擦力所做的功,则()A.W= mgR,质点恰好可以到达Q 点B.W>mgR,质点不能到达Q 点C.W= mgR,质点到达Q 点后,继续上升一段距离D.W<mgR,质点到达Q 点后,继续上升一段距离4.以不同初速度将两个物体同时竖直向上抛出并开始计时,一个物体所受空气阻力可忽略,另一物体所受空气阻力大小与物体速率成正比,下列用虚线和实线描述两物体运动的v﹣t 图象可能正确的是()A.B. C .D.5.如图,在固定斜面上的一物块受到一外力F 的作用,F 平行于斜面向上.若要物块在斜面上保持静止,F 的取值应有一定范围,已知其最大值和最小值分别为F1 和F2.由此可求出()A.物块的质量B.斜面的倾角C.物块与斜面间的最大静摩擦力D.物块对斜面的正压力6.假设地球可视为质量均匀分布的球体,已知地球表面重力加速度在两极的大小为g0,赤道的大小为g;地球自转的周期为T,引力常量为G.则地球的密度为()A.B.C.D.7.质点是一种理想化的物理模型,下面对质点的理解正确的是()A.只有体积很小的物体才可以看作质点B.只有质量很小的物体才可以看作质点C.研究月球绕地球运动的周期时,可将月球看作质点D.因为地球的质量、体积很大,所以在任何情况下都不能将地球看作质点8.物体A、B 的s﹣t 图象如图所示,由图可知()A.从第3s 起,两物体运动方向相同,且v A>v B B.两物体由同一位置开始运动,但物体A 比B 迟3s 才开始运动C.在5s 内物体的位移相同,5s 末A、B 相遇D.5s 内A、B 的平均速度相等9.一物体静止在粗糙水平地面上,现用一大小为F1 的水平拉力拉动物体,经过一段时间后其速度为v,若将水平拉力的大小改为F2,物体从静止开始经过同样的时间后速度变为2v,对于上述两个过程,用W F1、W F2 分别表示拉力F1、F2 所做的功,W f1、W f2 分别表示前两次克服摩擦力所做的功,则()A.W F2>4W F1,W f2>2W f1 B.W F2>4W F1,W f2=2W f1 C.W F2<4W F1,W f2=2W f1 D.W F2<4W F1,W f2<2W f110.一汽车在平直公路上行驶.从某时刻开始计时,发动机的功率P 随时间t 的变化如图所示.假定汽车所受阻力的大小 f 恒定不变.下列描述该汽车的速度v 随时间t 变化的图线中,可能正确的是()A.B. C .D.11.如图,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内:套在大环上质量为m 的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g,当小环滑到大环的最低点时,大环对轻杆拉力的大小为()A.Mg﹣5mg B.Mg+mg C.Mg+5mg D.Mg+10mg12.如图,在光滑水平面上有一质量为m1 的足够长的木板,其上叠放一质量为m2 的木块.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等.现给木块施加一随时间t 增大的水平力F=kt(k 是常数),木板和木块加速度的大小分别为a1 和a2,下列反映a1 和a2 变化的图线中正确的是().A .B .C .D 13.甲乙两汽车在一平直公路上同向行驶,在 t=0 到 t=t 1 的时间内,它们的 v ﹣t 图象如图所示.在这段时间内( )A .汽车甲的平均速度比乙的大B .汽车乙的平均速度等于 C .甲乙两汽车的位移相同D .汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大14.如图所示,两段等长细线串接着两个质量相等的小球 a 、b ,悬挂于 O 点.现 在两个小球上分别加上水平方向的外力,其中作用在 b 球上的力大小为 F 、作用 在 a 球上的力大小为 2F ,则此装置平衡时的位置可能是下列哪幅图( )B .C . 15.假设地球是一半径为 R 、质量分布均匀的球体.一矿井深度为 d .已知质量 分布均匀的球壳对壳内物体的引力为零.矿井底部和地面处的重力加速度大小之 比为( )A .1﹣B .1+C .( )2D .( )2A . D .16.一带负电荷的质点,在电场力作用下沿曲线abc 从a 运动到c,已知质点的速率是递减的.关于b 点电场强度E 的方向,下列图示中可能正确的是(虚线是曲线在b 点的切线)()A.B.C.D.17.如图,直线a、b 和c、d 是处于匀强电场中的两组平行线,M、N、P、Q 是它们的交点,四点处的电势分别为φM,φN,φP,φQ,一电子由M 点分别到N 点和P 点的过程中,电场力所做的负功相等,则()A.直线a 位于某一等势面内,φM>φQ B.直线c 位于某一等势面内,φM>φN C.若电子由M 点运动到Q 点,电场力做正功D.若电子由P 点运动到Q 点,电场力做负功18.分别将带正电、负电和不带电的三个等质量小球,分别以相同的水平速度由P 点射入水平放置的平行金属板间,已知上板带负电,下板接地.三小球分别落在图中A、B、C 三点,则错误的是()A.A 带正电、B 不带电、C 带负电B.三小球在电场中加速度大小关系是:a A<a B<a C C.三小球在电场中运动时间相等D.三小球到达下板时的动能关系是Ek C>Ek B>Ek A19.如图,P 为固定的点电荷,虚线是以P 为圆心的两个圆.带电粒子Q 在P 的电场中运动.运动轨迹与两圆在同一平面内,a、b、c 为轨迹上的三个点.若Q 仅受P 的电场力作用,其在a、b、c 点的加速度大小分别为a a、a b、a c,速度大小分别为v a、v b、v c,则()A.a a>a b>a c,v a>v c>v b B.a a>a b>a c,v b>v c>v aC.a b>a c>a a,v b>v c>v a D.a b>a c>a a,v a>v c>v b20.由库仑定律可知,真空中两个静止的点电荷,带电量分别为q1 和q2,其间距离为r 时,它们之间相互作用力的大小为F=k,式中k 为静电力常量.若用国际单位制的基本单位表示,k 的单位应为()A.kg•A2•m3 B.kg•A﹣2•m3•s﹣4C.kg•m2•C﹣2 D.N•m2•A﹣221.直角坐标系xOy 中,M、N 两点位于x 轴上,G、H 两点坐标如图.M、N 两点各固定一负点电荷,一电量为Q 的正点电荷置于O 点时,G 点处的电场强度恰好为零.静电力常量用k 表示.若将该正点电荷移到G 点,则H 点处场强的大小和方向分别为()A.,沿y 轴正向B.,沿y 轴负向C.,沿y 轴正向D.,沿y 轴负向22.如图所示,质量为m,带电量为q 的粒子,以初速度v0,从A 点竖直向上射入空气中的沿水平方向的匀强电场中,粒子通过电场中B 点时,速率v B=2v0,方向与电场的方向一致,则A,B 两点的电势差为()A.B.C.D.23.如图,一半径为R 的圆盘上均匀分布着电荷量为Q 的电荷,在垂直于圆盘且过圆心c 的轴线上有a、b、d 三个点,a 和b、b 和c、c 和d 间的距离均为R,在a 点处有一电荷量为q(q>0)的固定点电荷.已知b 点处的场强为零,则d点处场强的大小为(k 为静电力常量)()A.B.C.D.24.如图所示为某示波管内的聚焦电场.实线和虚线分别表示电场线和等势线,两电子分别从a、b 两点运动到c 点,设电场力对两电子做的功分别为W a 和W b,a、b 点的电场强度的大小分别为E a 和E b,则()A.W a=W b,E a>E b B.W a≠W b,E a>E b C.W a=W b,E a<E b D.W a ≠W b ,E a <E b25.空间中P、Q 两点处各固定一个点电荷,其中P 点处为正电荷,P、Q 两点附近电场的等势面分布如图所示,a、b、c、d 为电场中的 4 个点,则()A.P、Q 两点处的电荷等量同种B.a 点和b 点的电场强度相同C.c 点的电势低于d 点的电势D.负电荷从a 到c,电势能减少26.在如图所示的电路中,电源的负极接地,其电动势为E、内电阻为r,R1、R2 为定值电阻,R3 为滑动变阻器,C 为电容器.在滑动变阻器滑动头P 自a 端向 b 端滑动的过程中,下列说法中正确的是()A.电压表示数变小B.电流表示数变小C.电容器C 所带电荷量增多D.a 点的电势降低27.重离子肿瘤治疗装置中的回旋加速器可发射+5 价重离子束,其束流强度为1.2×10﹣5A,则在1s内发射的重离子个数为(e=1.6×10﹣19C)()A.3.0×1012 B.1.5×1013 C.7.5×1013 D.3.75×101428.在输液时,药液有时会从针口流出体外,为了及时发现,设计了一种报警装置,电路如图所示.M 是贴在针口处的传感器,接触到药液时其电阻R M 发生变化,导致S 两端电压U 增大,装置发出警报,此时()A.R M 变大,且R 越大,U 增大越明显B.R M 变大,且R 越小,U 增大越明显C.R M 变小,且R 越大,U 增大越明显D.R M 变小,且R 越小,U 增大越明显29.如图所示的电路中,电源的电动势为E,内阻为r.当可变电阻的滑片P 向b 移动时,电压表V1 的示数U1 与电压表V2 的示数U2 的变化情况是()A.U1 变大,U2 变小B.U1 变大,U2 变大C.U1 变小,U2 变小D.U1 变小,U2 变大30.如图所示的电路中,R1、R2 是定值电阻,R3 是滑动变阻器,电源的内阻不能忽略,电流表A 和电压表V 均为理想电表.闭合开关S,当滑动变阻器的触头P 从右端滑至左端的过程,下列说法中正确的是()A.电压表V 的示数增大B.电流表A 的示数减小C.电容器C 所带的电荷量减小D.电阻R1 的电功率增大31.如图,一段导线abcd 位于磁感应强度大小为B 的匀强磁场中,且与磁场方向(垂直于纸面向里)垂直.线段ab、bc 和cd 的长度均为L,且∠abc=∠bcd=135°.流经导线的电流为I,方向如图中箭头所示.导线段abcd 所受到的磁场的作用力的合力()A.方向沿纸面向上,大小为(+1)ILB B.方向沿纸面向上,大小为(﹣1)ILB C.方向沿纸面向下,大小为(+1)ILB D.方向沿纸面向下,大小为(﹣1)ILB32.空间有一圆柱形匀强磁场区域,该区域的横截面的半径为R,磁场方向垂直横截面.一质量为m、电荷量为q(q>0)的粒子以速率v0 沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向60°.不计重力,该磁场的磁感应强度大小为().A .B .C .D .33.如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度 v 从 A 点沿直径 AOB 方向射入磁场,经过△t 时间从 C 点射出磁场,OC 与 OB 成 60°角.现将带电粒子的速度变为 ,仍从 A 点射入磁场,不计重力,则粒子在 磁场中的运动时间变为( )A . △tB .2△tC .△tD .3△t34.如图,两平行的带电金属板水平放置.若在两板中间 a 点从静止释放一带电 微粒,微粒恰好保持静止状态.现将两板绕过 a 点的轴(垂直于纸面)逆时针旋 转 45°,再由 a 点从静止释放一同样的微粒,该微粒将( )A .保持静止状态B .向左上方做匀加速运动C .向正下方做匀加速运动 D .向左下方做匀加速运动35.如图,足够长的直线 ab 靠近通电螺线管,与螺线管平行.用磁传感器测量 ab 上各点的磁感应强度 B ,在计算机屏幕上显示的大致图象是( )B .C . D36.如图,MN 为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场 (未画出),一带电粒子从紧贴铝板上表面的 P 点垂直于铝板向上射出,从 Q 点 穿越铝板后到达 PQ 的中点 O .已知粒子穿越铝板时,其动能损失一半,速度方A .向和电荷量不变,不计重力,铝板上方和下方的磁感应强度大小之比为()A.2 B.C.1 D.37.如图所示,带异种电荷的粒子a、b 以相同的动能同时从O 点射入宽度为d 的有界匀强磁场,两粒子的入射方向与磁场边界的夹角分别为30°和60°,且同时到达P 点.a、b 两粒子的质量之比为()A.1:2 B.2:1 C.3:4 D.4:338.关于通电直导线周围磁场的磁感线分布,下列示意图中正确的是()A.B. C .D.39.如图,一平行板电容器的两极板与一电压恒定的电源相连,极板水平放置,极板间距为d,在下极板上叠放一厚度为l 的金属板,其上部空间有一带电粒子P 静止在电容器中,当把金属板从电容器中快速抽出后,粒子P 开始运动,重力加速度为g.粒子运动加速度为()A.g B.g C.g D.g40.如图所示,平行金属板A、B 水平正对放置,分别带等量异号电荷,一带电微粒水平射入板间,在重力和电场力共同作用下运动,轨迹如图中虚线所示,那么()A.若微粒带正电荷,则A 板一定带正电荷B.微粒从M 点运动到N 点电势能一定增加C.微粒从M 点运动到N 点动能一定增加D.微粒从M 点运动到N 点机械能一定增加41.表面粗糙的斜面固定于地面上,并处于方向垂直纸面向外、强度为B 的匀强磁场中.质量为m、带电量为+Q 的小滑块从斜面顶端由静止下滑.在滑块下滑的过程中,下列判断正确的是()A.滑块受到的摩擦力不变B.滑块到达地面时的动能与B 的大小无关C.滑块受到的洛伦兹力方向垂直斜面向下D.B 很大时,滑块可能静止于斜面上42.如图,一束电子沿z 轴正向流动,则在图中y 轴上A 点的磁场方向是()A.+x 方向B.﹣x 方向C.+y 方向D.﹣y 方向43.一个带电粒子,沿垂直于磁场的方向射入一匀强磁场,粒子的一段径迹如图所示,径迹上的每小段都可近似看成圆弧,由于带电粒子使沿途空气电离,粒子的能量逐渐减少(带电荷量不变),从图中情况可以确定()A.粒子从a 运动到b,带正电B.粒子从b 运动到a,带正电C.粒子从a 运动到b,带负电D.粒子从b 运动到a,带负电44.如图所示,半径为R 的圆形区域内有垂直于纸面向里的匀强磁场.重力不计、电荷量一定的带电粒子以速度v 正对着圆心O 射入磁场,若粒子射入、射出磁场点间的距离为R,则粒子在磁场中的运动时间为()A.B.C.D.45.如图,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a、b、c 三点的电势分别为U a、U b、U c.已知bc 边的长度为l.下列判断正确的是()A.U a>U c,金属框中无电流B.U b>U c,金属框中电流方向沿a﹣b﹣c﹣a C.U bc=﹣Bl2ω,金属框中无电流D.U bc= Bl2ω,金属框中电流方向沿a﹣c﹣b﹣a46.如图所示,一正方形线圈的匝数为 n ,边长为 a ,线圈平面与匀强磁场垂直, 且一半处在磁场中,在△t 时间内,磁感应强度的方向不变,大小由 B 均匀的增 大到 2B .在此过程中,线圈中产生的感应电动势为( )C .D .47.如图为无线电充电技术中使用的受电线圈示意图,线圈匝数为 n ,面积为 S , 若在 t 1 到 t 2 时间内,匀强磁场平行于线圈轴线向右穿过线圈,其磁感应强度大 小由 B 1 均匀增加到 B 2,则该段时间线圈两端 a 和 b 之间的电势差 φa ﹣φb 是( )A .恒为B .从 0 均匀变化到C .恒为D .从 0 均匀变化到48.如图所示,光滑金属导轨 AC 、AD 固定在水平面内,并处在方向竖直向下、 大小为 B 的匀强磁场中.有一质量为 m 的导体棒以初速度 v 0 从某位置开始在导 轨上水平向右运动,最终恰好静止在 A 点.在运动过程中,导体棒与导轨始终构 成等边三角形回路,且通过 A 点的总电荷量为 Q .已知导体棒与导轨间的接触电 阻阻值恒为 R ,其余电阻不计.则( )A .B .A.该过程中导体棒做匀减速运动B.该过程中接触电阻产生的热量为mv02C.开始运动时,导体棒与导轨所构成回路的面积为S=D.当导体棒的速度为v0 时,回路中感应电流大小为初始时的一半49.英国物理学家麦克斯韦认为,磁场变化时会在空间激发感生电场.如图所示,一个半径为r 的绝缘体圆环水平放置,环内存在竖直向上的匀强磁场B,环上套一带电荷量为+q 的小球.已知磁感应强度B 随时间均匀增加,其变化率为k,若小球在环上运动一周,则感生电场对小球的作用力所做功的大小是()A.0 B.r2qk C.2πr2qk D.πr2qk50.如图1 所示,光滑平行金属导轨MN、PQ 所在平面与水平面成θ角,M、P 两端接有阻值为R 的定值电阻.阻值为r 的金属棒ab 垂直导轨放置,其它部分电阻不计.整个装置处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向上.从t=0 时刻开始棒受到一个平行于导轨向上的外力F,由静止开始沿导轨向上运动,运动中棒始终与导轨垂直,且接触良好,通过R 的感应电流随时间t 变化的图象如图2 所示.下面分别给出了穿过回路abPM 的磁通量φ、磁通量的变化率、棒两端的电势差U ab 和通过棒的电荷量q 随时间变化的图象,其中正确的是()A.B. C .D.。

物理必考53个易错题

物理必考53个易错题

物理必考53个易错题以下是物理必考53个易错题:1. 一个物体从高处自由落下,它的势能随时间变化的图象是?2. 一颗质量为 m 的子弹以速度 V0 射入质量为 M 的木块中,穿透了木块并在木块的另一侧停下来,求木块的运动速度?3. 相同质量的物体从相同高度自由落下,如果滑轮和细绳质量可以忽略不计,则运动较快的物体运动的路程?4. 在重力场中,当两个物体速度相同时,如果它们相对运动方向相同,则其动能大小?5. 一个铁球和一个木球从相同高度自由落下,其中木球的重量为铁球的四倍,若空气阻力等于它们中任何一个遇到阻力后停下来的重量,则最先落地的是?6. 一个力为 F 的物体在做直线运动,如果加上一个与其相等反向的恒力,则此时加速度?7. 洛伦兹力在均匀磁场中的作用方向与电子飞行方向?8. 物体的弹性势能公式中的 k 代表?9. 一个质点做匀速圆周运动,则它的加速度大小?10. 在微观尺度下,电流的流动速率是?11. 一个物体贴在一个光滑的圆形坑中运动,设坑的半径为 R,物体最大速度可达到 V,则物体所受到的最大向心力等于?12. 一个锥形物体从倾角为α 的斜面上滑落,求滑落加速度的大小?13. 当两个相同的带电物体间的距离减半,它们之间的作用力会?14. 一束射在菲涅尔镜(Fresnel mirror)上的光线,经过反射后,则反射光线的振动方向?15. 一个电子在电场中做运动,当与电场方向垂直时运动轨迹?16. 静止的带正电的两个粒子间的距离为 r,它们所受的电势能为 U,如果这两个粒子具有相同的电荷,则放到无限远处所需的能量?17. 一根杆的一头系在固定点上后以ω 角速度作匀速圆周运动,杆的中间有一个质量为 m 的物块,它受到的离心力大小?18. 某物体在弹簧上做简谐振动,如果振动频率加倍,则振幅会发生什么变化?19. 绝热过程中的热容比等于?20. 用水冷却某物体,如果水的温度变化为ΔT,某物体的温度变化为Δt,则水的热容等于?21. 一个长度为 L、质量为 M 的均匀细杆以一端为轴心作匀角速度转动,则轴所受的拉力大小为?22. 一个悬挂在线上的物体在做简谐振动,此时它受到的重力对它的影响?23. 在某地有一个时钟,它与 Greenwich Mean Time(GMT)之间有一个差值Δt,则当时的地理经度?24. 飞机在飞行过程中要降落,目标地点与起点的距离为 S,飞机降落的高度为 h,则降落数组为?25. 一个物体在一段时间内从 a 到 b 的位置变化为ΔS,设此时物体在 b 处速度方向与加速度方向相反,则其所受到的摩擦力?26. 在任何情况下,滑动摩擦力的大小?27. 一个物体初始速度为 V0,经过势能为 EP 的区域后速度变为 V,则通过此区域时所受到的非保守力的功?28. 一束入射光线在菲涅尔镜(Fresnel mirror)上反射后发生相位反转的条件是?29. 在匀强电场中,电离能最小的气体原子为?30. 一个物体由平行于地平面的轨道上带着 v 的速度沿轨道竖直下降,其初始动能等于其所受到的空气阻力做的功,则物体最终停止的速度?31. 两个小球间有一个势能坑,小球由静止位置下落式路径一达到势能坑底部,高度差为 H,则小球的动能?32. 单色光由光密介质射入光疏介质,此时发生什么现象?33. 在相对运动的两个不同参考系中,两个粒子的相对速度值?34. 在微观尺度下,一个电子如果穿过两块不同材料的交界面,则它的反向变化?35. 匀速圆周运动中,角速度与线速度之间的关系?36. 一根刚性杆平放在摩擦系数为μ的地面上,上面的物体静止不动,则在x处受到的支持力的大小?37. 一根弹性绳两端分别固定在两个点上,细小的时间内一点被拉出偏移,则它在恢复运动的过程中最大速度达到V的时间?38. 一个材料的割薄时,它的截面积与长度之比?39. 一个物体在水中的深度达到了其自身的 1/3,质量等于水的密度,则物体所受到的浮力?40. 一个质量为 M 的单摆在最高点处所受到的张力是多少?41. 当一个物体施加作用力时,它所受到的反向力的大小?42. 一个半径为 R 的球形物体放在半径为 L 的球形碗中,两个中心点之间的距离为 2h,则物体所受到的引力大小?43. 一个弹性物体在振动时,其频率与其弹性力常数之间的关系?44. 某地的地球重力加速度为g,则在相同质量的物体在这里与月球上所受到的重力?45. 一个质量为 M 的物体在水平弹簧上做简谐振动,弹簧的弹性力常数为 k,则物体振动的频率是?46. 两个带电粒子之间的万有引力大小与它们之间的电场力的大小相等时,两个粒子间的距离?47. 在真空中,两个电荷之间的电势能与它们之间的距离的平方之间的关系?48. 一个物体从静止状态开始做匀加速直线运动,它运动的总路程为S,则它的运动时间?49. 一个发光物体与一个收光物体之间的距离越远,它们之间的色散现象越小,为什么?50. 删除物体表面上的电荷时,电势能变化的大小?51. 当一个物体向上升时它所受的重力后向或向前?52. 某物体在半径为 R 半球上沿它的一条直径运动,当到达半球顶点时受到最大的向心力大小?53. 一颗地球上表面质点的质量为m,球心距离为 R,则沿着球半径向下的自由落体加速度大小?。

高考物理易错题汇总及答案.

高考物理易错题汇总及答案.

高考物理易错题汇总及答案气体 1、(06重庆)16.如图,某同学将空的薄金属筒开口向下压入水中。

设水温均匀且恒定,筒内空气无泄漏,不计气体分子间相互作用,则被掩没的金属筒在缓慢下降过程中,筒内空气体积减小.A.从外界吸热B.内能增大C.向外界放热D.内能减小 2、(04广东)8.如图所示,密闭绝热的具有一定质量的活塞,活塞的上部封闭着气体,下部为真空,活塞与器壁的摩擦忽略不计,置于真空中的轻弹簧的一端固定于容器的底部.另一端固定在活塞上,弹簧被压缩后用绳扎紧,此时弹簧的弹性势能为P E (弹簧处于自然长度时的弹性势能为零),现绳突然断开,弹簧推动活塞向上运动,经过多次往复运动后活塞静止,气体达到平衡态,经过此过程 A 、P E 全部转换为气体的内能B 、P E 一部分转换成活塞的重力势能,其余部分仍为弹簧的弹性势能C 、P E 全部转换成活塞的重力势能和气体的内能D 、P E 一部分转换成活塞的重力势能,一部分转换为气体的内能,其余部分仍为弹簧的弹性势能在交变电场下带电粒子的运动(此类型题目可参考v-t 图象,要抓住当v=0时力的方向来判断下一时刻的运动的方向) 1、(93高考)19.图中A 、B 是一对中间开有小孔的平行金属板,两小孔的连线与金属板面相垂直,两极板的距离为l 。

两极板间加上低频交流电压,A 板电势为零,B 板电势u=U 0cost ωt 。

现有一电子在t=0时穿过A 板上的小孔射入电场。

设初速度和重力的影响均可忽略不计。

则电子在两极板间可能 ( )(A)以AB 间的某一点为平衡位置来回振动(B)时而向B 板运动,时而向A 板运动,但最后穿出B 板 (C)一直向B 板运动,最后穿出B 板,如果ω小于某个值ω0, l 小于某个值l 0 (D)一直向B 板运动,最后穿出B 板,而不论ω、l 为任何值2、(94高考) (5分) 19.图19-11中A 、B 是一对平行的金属板。

在两板间加上一周期为T 的交变电压u 。

高中物理易错题50道

高中物理易错题50道

高中物理易错题50道1.质量为M 的人抓住长为l 的轻绳一端.另一端系一质量为m 的小球,今使小球在竖直平面内做圆周运动,若小球通过轨道最高点时速率为v ,则此时人对地面的压力大小为 ;若小球通过轨道最低点时速率为u ,则此时小球所受向心力大小为 . 答案:l v m mg Mg 2-+ lu m 22.如图所示,小物块与圆筒内壁间的动摩擦因数为μ,圆筒的横截面半径为R ,设最大静摩擦力等于滑动摩擦力,则圆筒绕竖直轴心的转动角速度至少为网 ,小物块才不至滑下. 答案:R g μ3.如图所示,支架质量为M ,始终静止在水平地面上,转轴O处用长为l 的线悬挂一个质量为m 的小球.(1)把线拉至水平静止释放小球.小球运动到最低点处时,水平面对支架的支持力N 为多大?(2)若使小球在竖直平面内做圆周运动,当小球运动到最高点处时,支架恰好对水平地面无压力,则小球在最高点处的速度v 为多大?答案:⑴Mg +3mg ;⑵mgl m M v )(+= 4.如图所示,质量分别为m A 、m B 的两只小球用轻弹簧连在一起,且m A =4m B ,并以L 1=40cm ,不可伸长的细线拴在轴OO '上,m A 与m B 均以n =120r /min 绕轴在光滑的水平面上匀速转动,当两球间的距离L 2=0.6 m 时将线烧断,试求线被烧断后的瞬间,两球加速度a A 和a B 的大小和方向.答案:16π2m /s 2,水平向左; 4π2m /s 2,水平向右.5.关于平抛运动的下列说法中,正确的是:(A)平抛运动是匀变速曲线运动.(B)平抛运动在相等的时间内速度的变化量相同.(C)平抛运动的加速度方向与运动轨迹切线方向相同.(D)平抛运动任一时刻的速度沿水平方向上的分量都相同.答案:ABD6.如上图所示,在倾角为θ的斜面上的O 点处以速度v 0水平抛出一小球,使小球沿光滑斜面做曲线运动而到达斜面底端的P 点,若O 点与P 点间的竖直高度差为h ,则小球到达P 点时速度大小为v = ;小球从O到P 所经历的时间为t = . 答案:gh v 220+,θ2sin 2g h7.某物体做平抛运动,若以抛出点为坐标原点,初速度方向为x 轴正方向,竖直向下为y 轴正方向建立直角坐标系,物体运动轨迹上三点的坐标值分别为A(20,5),B(40,20),C(60,45),单位为cm ,于是知:当P 点的横坐标值为x =80 cm 时,相应的纵坐标值y = cm ,从抛出到运动至P 点,共历时t = s .(g=10 m /s 2)答案:80,0.48.如图所示,OO '为竖直转轴,MN 为固定在轴上的水平光滑杆,今有质量相同的a 、b 两小球套在杆上,并用同样的线系在轴上的C点,当转轴转动而线均被拉直时,a 、b 两小球转动半径之比为12∶1,今使转速逐渐增大,则ac 与bc 两根线中先断的一根是 .答案:ac 绳9.如图所示,一根长为l 的均匀细杆OA 可以绕通过其一端的水平轴。

2020-2021学年高三物理一轮复习易错题06 机械能守恒定律

2020-2021学年高三物理一轮复习易错题06 机械能守恒定律

易错点05 机械能守恒定律易错题【01】对机械能守恒定律分析有误一、重力做功与重力势能1.重力做功的特点:重力做功与路径无关,只与始、末位置的高度差有关。

2.重力势能(1)表达式:E p=mgh。

[注1](2)重力势能的特点:重力势能的大小与参考平面的选取有关,但重力势能的变化与参考平面的选取无关。

3.重力做功与重力势能变化的关系(1)定性关系:重力对物体做正功,重力势能减小;重力对物体做负功,重力势能增大。

(2)定量关系:重力对物体做的功等于物体重力势能的减小量。

即W G=E p1-E p2=-ΔE p。

二、弹性势能1.定义:发生弹性形变的物体的各部分之间,由于有弹力的相互作用而具有的势能。

2.弹力做功与弹性势能变化的关系[注2]:弹力做正功,弹性势能减小;弹力做负功,弹性势能增大。

即W=-ΔE p。

三、机械能守恒定律1.内容:在只有重力或弹力做功的物体系统内,动能与势能可以互相转化,而总的机械能保持不变。

[注3]2.表达式:E k1+E p1=E k2+E p2。

易错题【02】对机械能守恒定律的判断方法有误1.对机械能守恒条件的理解第1页共17页(1)只受重力作用,例如做平抛运动的物体机械能守恒。

(2)除重力外,物体还受其他力,但其他力不做功或做功代数和为零。

(3)除重力外,只有系统内的弹力做功,并且弹力做的功等于弹性势能减少量,那么系统的机械能守恒。

注意:并非物体的机械能守恒,如与弹簧相连的小球下摆的过程,小球机械能减少。

2.机械能是否守恒的三种判断方法(1)利用做功及守恒条件判断。

(2)利用机械能的定义判断:若物体或系统的动能、势能之和保持不变,则机械能守恒。

(3)利用能量转化判断:若物体或系统与外界没有能量交换,内部也没有机械能与其他形式能的转化,则机械能守恒。

1.机械能守恒的三种表达式对比2.求解单个物体机械能守恒问题的基本思路第2页共17页(1)选取研究对象——物体。

(2)根据研究对象所经历的物理过程,进行受力、做功分析,判断机械能是否守恒。

高中物理易错题150道(附参考答案).

高中物理易错题150道(附参考答案).

高中物理易错题150道1.如图所示,一弹簧秤放在光滑水平面上,外壳质量为m ,弹簧及挂钩的质量不计,施以水平力F 1、F 2.如果弹簧秤静止不动,则弹簧秤的示数应为 .如果此时弹簧秤沿F 2方向产生了加速度n ,则弹簧秤读数为 .解析:静止不动,说明F l =F 2.产生加速度,即F 2一F l =ma ,此时作用在挂钩上的力为F l ,因此弹簧秤读数为F 1.2.如图所示,两木块质量分别为m l 、m 2,两轻质弹簧劲度系数分别为k l 、k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态,现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为 .答案:21k g m . 3.如图所示,在倾角α为60°的斜面上放一个质量为l kg 的物体,用劲度系数100 N /m 的弹簧平行于斜面吊住,此物体在斜面上的P 、Q 两点间任何位置都能处于静止状态,若物体与斜面间的最大静摩擦力为7 N ,则P 、Q 问的长度是多大?解析: PQ=Xp 一Xq=[(mgsin α+fm)一(mgsin α-fm)]/k=0.14m .4.如图所示,皮带平面可当作是一个与水平方向夹角为a 的斜面,皮带足够长并作逆时针方向的匀速转动,将一质量为m 的小物块轻轻放在斜面上后,物块受到的摩擦力: l J(A)一直沿斜面向下.(B)一直沿斜面向上.(C)可能先沿斜面向下后沿斜面向上.(D)可能先沿斜面向下后来无摩擦力.答案:C .5.某人推着自行车前进时,地面对前轮的摩擦力方向向 ,地面对后轮的摩擦力方向向 ;该人骑着自行车前进时,地面对前轮的摩擦力向 ,对后轮的摩擦力向 .(填“前”或“后”)答案:后,后;后,前.6.如图所示,重50 N 的斜面体A 放在动摩擦因数为0.2的水平面上,斜面上放有重10 N的物块B .若A 、B 均处于静止状态,斜面倾角θ为30°, 则A 对B 的摩擦力为 N ,水平面对A 的摩擦力为 N7.如图所示,A 、B 两物体均重G=10N ,各接触面问的动摩擦因数均为μ=0.3,同时有F=1N 的两个水平力分别作用在A 和B上,则地面对B 的摩擦力等于 ,B 对A 的摩擦力等于解析:整体受力分析,如图(a),所以地面对B 没有摩擦力.对A 受力分析,如图(b),可见B 对A 有一个静摩擦力,大小为F BA =F=1 N .8.如图所示,一直角斜槽(两槽面夹角为90°),对水平面夹角为30°,一个横截面为正方形的物块恰能沿此槽匀速下滑,假定两槽面的材料和表面情况相同,问物块和槽面间的动摩擦因数为多少?解析:因为物块对直角斜槽每一面的正压力为mgcos α.cos45°,所以当物体匀速下滑时,有平衡方程:mgsin α=2μmgcos αcos45°=2μmgcos α,所以μ=66)33(21tan 21==α.9.如图所示,重为G 的木块放在倾角为θ的光滑斜面上,受水平推力F 作用而静止,斜面体固定在地面上,刚木块对斜面体的压力大小为: [ ] (A)22F G + (B)Gcos θ. (C)F /sin θ. (D)Gcos θ+Fsin θ.答案:A 、C 、D .10.如图所示,物体静止在光滑水平面上,水平力F 作用于0点,现要使物体在水平面上沿OO’方向作加速运动,必须在F 和OO"所决定的水平面内再加一个力F’,那么F ,的最小值应为: [ ](A)Fcos θ. (B)Fsin θ. (C)Ftan θ. (D)Fcot θ.答案:B .11.两个共点力的合力为F ,若两个力间的夹角保持不变,当其中一个力增大时,合力F 的大小: [ ](A)可以不变. (B)一定增大.成部分 (C)一定减小. (D)以上说法都不对.12.如图所示,水平横梁的一端A 在竖直墙内,另一端装有一定滑轮.轻绳的一端固定在墙壁上,另一端跨过定滑轮后悬挂一质量为10 kg 的重物,∠CBA=30。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三物理易错题六
1、如图a 所示,在光滑水平面上用恒力F 拉质量为m 的单匝均匀正方形铜线框,边长为a ,在1位置以速度v 0进入磁感应强度为B 的匀强磁场并开始计时t =0,若磁场的宽度为b (b >3a ),在3t
0时刻线框到达2位置速度又为v 0并开始离开
匀强磁场.此过程中v -t 图象如图b 所示,则( )
A .t =0时,线框右侧边MN 的两端电压为Ba v 0
B .在t 0时刻线框的速度为v 0-Ft 0m
C .线框完全离开磁场的瞬间(位置3)的速度一定比t 0时刻线框的速度大
D .线框从进入磁场(位置1)到完全离开磁场(位置3)的过程中产生的电热为2Fb
2、如图所示,在水平桌面上放置两条相距l 、电阻不计的平行光滑金属导轨ab 、cd ,阻值为R 的电阻与导轨的a 、c 端相连.质量为m 、电阻不计的滑杆MN 垂直于导轨并可在导轨上滑动.整个装置放置于竖直方向的匀强磁场中,磁感应强度的大小为B .滑杆的中点系一不可伸长的轻绳,绳绕过固定在桌边的光滑轻滑轮后,与另一质量也为m 的物块相连,绳
处于拉直状态.现从静止开始释放物块,若当物块下落高度h =2m 2gR 2
(Bl )4
时恰好达到最大速度,用g 表示重力加速度,则( )
A .物块最大速度为2mgR (Bl )2
B .物块最大速度为mgR (Bl )2
C .在此过程中电阻R 放出的热量为m 3g 2R 2
(Bl )4
D .物块达到最大速度时刻,电阻R 消耗的功率为m 2g 2R (Bl )2
3、如图,光滑斜面的倾角为θ,斜面上放置一矩形导体线框abcd ,ab 边的边长为l 1,bc 边的边长为l 2,线框的质量为m ,电阻为R ,线框通过绝缘细线绕过光滑的滑轮与重物相连,重物质量为M ,斜面上ef 线(ef 平行底边)的右方有垂直斜面向上的匀强磁场,磁感应强度为B ,如果线框从静止开始运动,进入磁场的最初一段时间是做匀速运动的,且线框的ab 边
始终平行底边,则下列说法正确的是( )
A .线框进入磁场前运动的加速度为Mg -mg sin θm
B .线框进入磁场时匀速运动的速度为(Mg -mg sin θ)R Bl 1
C .线框做匀速运动的总时间为B 2l 21(Mg -mg sin θ)R
D .该匀速运动过程产生的焦耳热为(Mg -mg sin θ)l 2
4、如图,上下边界间距为l 、方向水平向里的匀强磁场区域位于地面上方高l 处。

质量为m 、边长为l 、电阻为R 的正方形线框距离磁场的上边界l 处,沿水平方向抛出,线
框的下边界进入磁场时加速度为零。

则线框从抛出到触地的过程中
A .沿水平方向的分运动始终是匀速运动 B
C .产生的电能为2mgl
D .运动时间为 5、如图所示,同一竖直面内的正方形导线框a 、b 的边长均为l ,电阻均为R ,质量分别为2m 和m 。

它们分别系在一跨过两个定滑轮的轻绳两端,在两导线框之间有一宽度为2l 、磁感应强度大小为B 、方向垂直竖直面的匀强磁场区域。

开始时,线框b 的上边与匀强磁场的下边界重合,线框a 的下边到匀强磁场的上边界的距离为l 。

现将系统由静止释放,当线框b 全部进入磁场时,a 、b 两个线框开始做匀速运动。

不计摩擦和空气阻
力,则
A.a 、b 两个线框匀速运动的速度大小为222mgR B l
B.线框a 从下边进入磁场到上边离开磁场所用时间为23
3B l mgR
C.从开始运动到线框a 全部进入磁场的过程中,线框a 所产生的焦耳热为mgl
D.从开始运动到线框a 全部进入磁场的过程中,两线框共克服安培力做功为2mgl 6、如图甲所示,水平直线MN 上方有竖直向下的匀强电场,场强大小E =π×103
N/C ,MN 下方有垂直于纸面的磁场,磁感应强度B 随时间t 按如图乙所示规律做周期性变化,规定垂直纸面向外为磁场正方向.t =0时将一重力不计、比荷=106
C/kg 的正点电荷从电场中的O 点由静止释放,在t 1
=1×10-5
s 时恰通过MN 上的P 点进入磁场,P 点左方d =105 cm 处有
一垂直于MN 且足够大的挡板.求:(1)电荷从P 点进入磁场时速度的大小v 0
; (2)电荷在t 2=4×10-5 s 时与P 点的距离Δs ; (3)从O 点到达板的时间
7、如图所示,第四象限内有互相正交的电场强度为E 的匀强电场与磁感应强度为B 1
=0.25 T 的匀强磁场,第一象限的某个矩形区域内,有方向垂直纸面向里、磁感应强度为B 2
的匀
强磁场,磁场的下边界与x 轴重合.质量m =×10
-10 kg 、带电荷量q =+1×10-6 C 的微粒
以速度v =1×103 m/s 从y 轴上的M 点开始沿与y 轴正方向成60°角的直线匀速运动,经P 点进入处于第一象限内的匀强磁场区域.一段时间后,微粒经过y 轴上的N 点并与y 轴正方向成60°角的方向进入第二象限.M 点的坐标为(0,-10),N 点的坐标为(0,30),不计粒
子的重力,g 取10 m/s 2
.求:(1)第四象限内匀强电场的电场强度E . (2)第一象限内匀强磁场的磁感应强度B 2
的大小.
(3)第一象限内矩形匀强磁场区域的最小面积S min
.
8、如图所示,质量M 为5.0 kg 的小车以2.0 m/s 的速度在光滑的水平面上向左运动,小车
上AD 部分是表面粗糙的水平轨道,DC 部分是14
光滑圆弧轨道,整个轨道都是由绝缘材料制成的,小车所在空间内有竖直向上的匀强电场和垂直于纸面向里的匀强磁场,电场强度E 大小为50 N/C ,磁感应强度B 大小为2.0 T 。

现有一质量m 为2.0 kg 、带负电且电荷量为0.10 C 的滑块以10 m/s 的水平速度向右冲上小车,当它运动到D 点时速度为5 m/s 。

滑块可视为质点,g 取10 m/s 2,计算结果保留两位有效数字。

(1)求滑块从A 到D 的过程中,小车与滑块组成的系统损失的机械能。

(2)如果滑块刚过D 点时对轨道的压力为76 N ,求圆弧轨道的半径r 。

(3)当滑块通过D 点时,立即撤去磁场,要使滑块冲出圆弧轨道,求此圆弧轨道的最大半径。

9、如图所示,将带电荷量Q =+0.3 C 、质量m ′=0.3 kg 的滑块放在小车的水平绝缘板的右端,小车的质量M =0.5 kg ,滑块与绝缘板间的动摩擦因数μ=0.4,小车的绝缘板足够长,它们所在的空间存在磁感应强度B =20 T 的水平方向的匀强磁场(垂直于纸面向里)。

开始时小车静止在光滑水平面上,一摆长L =1.25 m 、质量m =0.15 kg 的摆从水平位置由静止释放,摆到最低点时与小车相撞,碰撞后摆球恰好静止,g 取10 m/s 2。

求:(1)与小车碰撞前摆球到达最低点时对摆线的拉力;(2)摆球与小车的碰撞过程中系统损失的机械能ΔE ;(3)碰撞后小车的最终速度。

8、两根平行的金属导轨,固定在同一水平面上,磁感强度50T 0B .=的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计。

导轨间的距离20m 0l .=。

两根质量均为10kg 0m .=的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为Ω=500R .,在t =0时刻,两杆都处于静止状态。

现有一与导轨平行、大小为20N 0.的
恒力F作用于金属杆甲上,使金属杆在导轨上滑动。

经过0s
t.
=,金属杆甲的加速度为
5
2
.
=,问此时两金属杆的速度各为多少?
a/
37m
s
1
9、两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为l。

导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示.两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B.设两导体棒均可沿导轨无摩擦地滑行。

开始时,棒cd静止,棒ab有指向棒cd的初速度
υ.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少?
(2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多
少?
10、如图甲所示,有一竖直方向的匀强磁场区域,磁场方向垂直纸面向里,区域的上下边缘间距为H=85 cm,磁感应强度B随时间t的变化关系如图乙所示。

有一长L1=20 cm、宽L2=10 cm、匝数n=5的矩形线圈,其总电阻R=0.2 Ω、质量m=0.5 kg,在t=0时刻,线圈从离磁场区域的上边缘高为h=5 cm处由静止开始下落,0.2 s时线圈刚好全部进入磁场,0.5 s时线圈刚好开始从磁场中出来。

不计空气阻力,重力加速度g取10 m/s2。

求:(1)线圈穿过磁场区域所经历的时间t;(2)线圈穿过磁场区域产
生的热量Q。

相关文档
最新文档