一元一次不等式解法

合集下载

一元一次不等式(组)及其解法

一元一次不等式(组)及其解法
一元一次不等式(组 及其解法 一元一次不等式 组)及其解法
一.一元一次不等式的定义
只含有一个未知数, 只含有一个未知数,并且未知数的次数是一次的 不等式叫一元一次不等式. 不等式叫一元一次不等式.
二.形式: 形如 形式: 形如ax>b(a≠0)
如何解不等式ax>b(a ≠0)? 如何解不等式
b 分类讨论:a>0时,x> 分类讨论 时 a
1 − 3x 练习: (1)解不等式 − 7 ≤ <2 2 (2)解不等式组 : 4 + 2x > 7 x + 3 3x + 6 > 4 x + 5 2 x − 3 < 3x − 5
x+y=3 例8.方程组 8.方程组 的解满足 x-2y=-3+a 2y=-
x>0 ,求a的取值范围. 的取值范围. y>0
x
b a b a
x
b a<0时,x< 时 a
三.一元一次不等式的解法: 一元一次不等式的解法:
4 − 2x x −3 例1.解不等式 < 1− 3 4
去分母 去括号 移项b的形式 或 化成 的形式
练习:求不等式21 − 4 x > 5的非负整数解 1. 1 2 2.k取什么值时, 代数式 (1 − 5k ) − k的值为非负数. 2 3
2 3 x + 25 例2.关于x的方程 − ( x + m) = + 1的解是正数, 3 3 那么m的取值范围是什么?
四.一元一次不等式组
假设a>b 假设
x>a
(1)
x>b x>a
x>a
x<a

《一元一次不等式组的解法》PPT

《一元一次不等式组的解法》PPT

推论法实例
通过思考问题、总结经验和按照 经验解题,我们将找到一元一次 不等式组的解集。
检验题
选择题
通过选择题的方式检验你对一 元一次不等式组解法的理解。
计算题
通过计算题的方式巩固你的解 法技巧。
解答题
通过解答题的方式进一步运用 你的解题能力。
数学思维:从解题到应用
提高解题能力
学习一元一次不等式组的解法,提高你的解题能力, 培养数学思维。
1. 求出各个不等式的解析式。 2. 对解析式进行分类讨论。 3. 求出不等式考问题:仔细思考问题的条件和要求。 2. 总结经验:总结类似问题的解法经验。 3. 按照经验解题:根据经验解决问题。
一元一次不等式组的解法选择
适合图像法的情况
当不等式组的不等式比较简单 且数量较少时,图像法是一个 快速且直观的解法选择。
1
图像法
通过绘制不等式的图像来确定交点,从而获得解集。
2
代数法
通过求解不等式的解析式,对解进行分类讨论,从而获得解集。
3
推论法
通过思考问题,总结经验,并按照经验解题,从而获得解集。
图像法的具体步骤
1. 画图:绘制不等式的图像。 2. 判断交点:确定图像的交点。 3. 说明解集:给出交点的解集。
代数法的具体步骤
提高应用能力
了解一元一次不等式组的应用场景,提高你的应用 能力,解决实际问题。
总结
一元一次不等式组解法回顾
通过本PPT,你已经了解了一元一次不等式组的三种解法:图像法、代数法和推论法。
解题技巧总结
掌握了各种解法的具体步骤和选择条件,你能更好地解决一元一次不等式组问题。
知识拓展
继续学习数学知识,拓展你的数学思维和解题能力。

一元一次不等式组的解法步骤例题

一元一次不等式组的解法步骤例题

一元一次不等式组的解法步骤一元一次不等式组是数学中常见的一类问题,它可以通过一定的方法和步骤得到解决。

在本文中,我们将针对一元一次不等式组的解法步骤进行全面评估,并提供例题来帮助读者更深入理解。

解法步骤:1. 确定不等式组的条件:我们需要明确所给出不等式组的条件。

不等式组通常包括多个不等式,我们需要确保每个不等式都满足一元一次不等式的标准形式,即ax+b>c或ax+b<c。

2. 求出每个不等式的解集:针对每个不等式,我们需要求出其解集。

这一步骤需要运用代数式的加减乘除法,并结合不等式的性质来确定不等式的解集。

3. 得出整体的解集:在求出每个不等式的解集之后,我们需要将这些解集合并起来,求得整体的解集。

在合并解集的过程中,需要注意考虑每个不等式的关系,以确保得出正确的整体解集。

下面我们通过一个具体的例题来展示以上的解法步骤:例题:求解不等式组 {2x+1>5, 3x-2<7}解法步骤:1. 确定不等式组的条件:给出的不等式组已经满足一元一次不等式的标准形式,因此不需要进行进一步的调整。

2. 求出每个不等式的解集:分别对每个不等式进行求解,得到2x>4和3x<9。

通过简单的代数运算,我们可以得到x>2和x<3。

3. 得出整体的解集:通过整合每个不等式的解集,我们可以得到最终的解集为2<x<3。

个人观点和理解:从上面的例题中可以看出,解决一元一次不等式组主要是通过逐步求解各个不等式,然后再将它们的解集合并起来,得到最终的整体解集。

在这个过程中,需要注意准确地运用代数运算,同时也要考虑不等式之间的关系,确保最终的解集是正确的。

总结回顾:通过本文的讲解和例题,我们对一元一次不等式组的解法步骤有了更深入的了解。

从确定条件、求解各个不等式到得出整体的解集,这些步骤是解决一元一次不等式组问题的关键。

我们也注意到在解题的过程中,需要不断地练习和总结,才能更熟练地应对各种类型的不等式组问题。

一元一次不等式的解法

一元一次不等式的解法

一元一次不等式的解法
解一元一次不等式的一般步骤是:①去分母;②去括号;③移项;④合并同类项;⑤
系数化为1;⑥其中当系数是负数时,不等号的方向要改变。

(1)去分母:根据不等式的性质2和3,把不等式的两边同时乘以各分母的最小公倍数,得到整数系数的小等式。

(2)去括号:根据上括号的法则,特别要注意括号外面是负号时,去掉括号和负号,括号里面的各项要改变符号。

(3)移项:根据不等式基本性质1,一般把含有未知数的项移到不等式的左边,常数项移到不等式的右边。

(4)合并同类项。

(5)将未知数的系数化为1:根据不等式基本性质2或3,特别要注意系数化为1时,系数是负数,不等号要改变方向。

(6)有些时候需要在数轴上表示不等式的解集。

不等式的基本性质1:不等式两边加或减同一个数或式子,不等号的方向不变。

用式子表示:如果a>b,那么a±c>b±c
不等式的基本性质2:不等式两边都乘或除以同一个正数,不等号的方向不变。

用式子表示:如果a>b,c>0,那么ac>bc
不等式的基本性质3:不等式两边乘或除以同一个负数,不等号的方向改变。

用式子表示:如果a>b,c<0,那么ac<bc
感谢您的阅读,祝您生活愉快。

一元一次不等式组的解法经典例题透析

一元一次不等式组的解法经典例题透析

经典例题透析类型一:解一元一次不等式组1、解不等式组,并把它的解集在数轴上表示出来。

思路点拨:先求出不等式①②的解集,然后在数轴上表示不等式①②的解集,求出它们的公共部分即不等式组的解集。

解析:解不等式①,得x≥-;解不等式②,得x<1。

所以不等式组的解集为-≤x<1在数轴上表示不等式①②的解集如图。

总结升华:用数轴表示不等式组的解集时,要切记:大于向右画,小于向左画。

有等号画实心圆点,无等号画空心圆圈。

举一反三:【变式1】解不等式组:解析:解不等式①,得:解不等式②,得:在数轴上表示这两个不等式的解集为:∴原不等式组的解集为:【变式2】解不等式组:思路点拨:在理解一元一次不等式组时要注意以下两点:(1)不等式组里不等式的个数并未规定;(2)在同一不等式组里的未知数必须是同一个.(3)注意在数轴表示解集时“空心点”与“实心点”的区别解法一:解不等式①,得:解不等式②,得:解不等式③,得:在数轴上表示这三个不等式的解集为:∴原不等式组的解集为:解法二:解不等式②,得:解不等式③,得:由与得:再与求公共解集得:.【变式3】解不等式组:解析:解不等式①得:x>-2解不等式②得:x<-7∴不等式组的解集为无解【变式4】解不等式:-1<≤5思路点拨:(1)把连写不等式转化为不等式组求解;(2)根据不等式的性质,直接求出连写不等式的解集。

解法1:原不等式可化为下面的不等式组解不等式①,得x>-1,解不等式②,得x≤8所以不等式组的解集为-1<x≤8。

即原不等式的解集为-1<x≤8解法2:-1<≤5,-3<2x-1≤15,-2<2x≤16,-1<x≤8。

所以原不等式的解集为-1<x≤8总结升华:对于连写形式的不等式可以化成不等式组来求解,而对于只有中间部分含有未知数的连写形式的不等式也可以按照解不等式的步骤求解,如解法2.【变式5】求不等式组的整数解。

思路点拨:按照不等式组的解法,先求出每个不等式的解集,在数轴上表示出各个不等式的解集,取其公共部分得到不等式的解集,再在不等式组的解集内求出符合要求的整数解。

一元一次不等式的解法

一元一次不等式的解法

一元一次不等式的解法在代数学中,一元一次不等式是一个包含一个未知数的一次多项式不等式。

解一元一次不等式是找到使得不等式成立的未知数的取值范围。

本文将介绍常见的一元一次不等式的解法。

一、一元一次不等式的基本形式一元一次不等式的基本形式如下:ax + b > 0 (或ax + b ≥ 0)其中,a和b是已知实数,x是未知数。

二、两种基本解法解一元一次不等式有两种基本的解法:图解法和代数解法。

1. 图解法图解法是通过在数轴上绘制函数图像来找到不等式的解。

首先,我们将不等式中的等号改为等号,并根据系数a的正负性质判断函数图像的开口方向。

如果a > 0,函数图像开口向上;如果a < 0,函数图像开口向下。

然后,根据b的正负性质确定函数图像与x轴的交点。

如果b > 0,交点在x轴上方;如果b < 0,交点在x轴下方。

最后,确定不等式的解集。

如果不等式是大于号(>),解集为交点右侧的所有实数;如果不等式是大于等于号(≥),解集为交点及其右侧的所有实数。

图解法直观明了,可以直接观察出解集的范围。

2. 代数解法代数解法是通过对不等式进行变形和运算来找到不等式的解。

首先,根据不等式的形式,确定变式的目标。

如果目标是求x的取值范围,则可以将不等式进行变形,以消去a的系数。

然后,进行变形和运算,使得不等式的形式简化。

例如,可以根据a的正负性质将不等式改写为:x > -b/a 或x ≥ -b/a。

最后,根据不等式的形式确定解集的范围,并将解集用集合的符号表示出来。

代数解法较为繁琐,但可以精确得出解集的范围。

三、示例解析现以一个具体的例子来说明一元一次不等式的解法。

例:2x + 3 > 51. 图解法根据不等式的形式,将等号改为等号,得到2x + 3 ≥ 5。

由于a > 0,函数图像开口向上。

由于b > 0,交点在x轴上方。

解集为交点右侧的所有实数:x > 1。

微专题六 一元一次不等式(组)的解法及其应用

20
B品牌运动服/件
30
累计采购款/元
10 200
(1)A,B两种品牌运动服的进货单价各是多少元?
解:(1)设 A,B 两种品牌运动服的进货单价分别为 x 元和 y 元.
根据题意,得
+ = ,
= ,
解得
= ,
+ = ,
∴A,B 两种品牌运动服的进货单价分别为 240 元和 180 元.
①有哪几种购买方案?
②若每包儿童口罩8元,每包成人口罩25元,哪种方案总费用最少?
解:(2)①设购买儿童口罩 m 包,则购买成人口罩(5-m)包.
+ (-) ≥ ,
根据题意,得
解得 2≤m≤3.
+ (-) ≤ ,
∵m 为整数,∴m=2 或 m=3.∴共有两种购买方案:
-
解不等式 x-4<

,得 x<2,
则不等式组的解集为-3≤x<2,
∴不等式组的所有负整数解为-3,-2,-1.
一元一次不等式的应用
6.某商城的运动服装专柜,对A,B两种品牌的运动服分两次采购试销后,效益可观,计划继续采购进行
销售.已知这两种服装过去两次的进货情况如表所示:
进货批次
第一次
A品牌运动服/件
故此商场至少需购进6件A种商品.
一元一次不等式组的应用
8.小明网购了一本课外书,同学们想知道书的价格,小明让他们猜.甲说:“至少25元”.乙说:“至多
22元,”丙说:“至多20元,”小明说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为(
)
B
A.20<x<22
B.22<x<25

一元一次不等式的解题方法与技巧

一元一次不等式的解题方法与技巧
一、解题方法:
1、将不等式变形:检查判断不等式符号,如果不等式两边可交换,对等号右边的项进行变形,去除公因子,移项,若存在未知数的右边,将其移至左边;
2、将存在多个未知数的一元一次不等式化为线性方程:将不等式变为方程形式,使用消元法求解线性方程,会得到未知数的唯一解;
3、将存在一个未知数的一元一次不等式解析解:检查判断不等式符号,最终把不等式转化为等式,直接代入未知数求解;
4、将存在一个未知数的一元一次不等式画图解:将不等式作图,用解析法求出极限解,检查变化点,划出解集;
二、技巧:
1、检查判断不等式符号:当不等式可以交换,而符号不可交换时,应注意变形时,保证不等式符号不变;
2、移动公式项:一般在题目中有部分未知数排在右边,可以将这部分未知数的项移动至左边;
3、注意数字变换:若有数字较为复杂,可以将较复杂的数字改为简单的数字;
4、求出极限解:在画图解时,一定要能够求出图像对于x轴和y轴的各种极限解,以此判断图像的正负递增等特点。

一元一次不等式的解法


最大利润问题


某工厂要招聘甲、乙两个工种的工 人150人,甲、乙两种工人的月工资 分别是600元和1000元,现要求乙种 工人的人数不少于甲种工人人数的2 倍, 请你设计一个招聘方案,既满足人 数的要求,又能使付的工资最少?
相等关系:甲种工人+乙种工人=150人; 不等关系:
乙种工人的人数不少于甲种工人人数的2倍

设:出一般情况下的x 找:出题目中的不等关系;

列:出一元一次不等式;

步 骤
解:出不等式,得到一个解 集(x的取值范围) 答:求出特殊情况下的x的值。
知识竞赛中的趣题:


一次知识竞赛共有15道题目,竞赛规 则是: 答对1题记8分,答错1题扣4分,不答 得0分, 结果1班两题没答, 2班答了所有的题, 两个班的成绩都超过了90分, 请你分析两个班分别至少答对了几道题?
实际问题,引入新课
一双鞋成本是50元,打八折吸引 顾客,但是不能亏本,请问,我应该标 价多少元? 未知量是什么?已知数据是什么?条件 是什么? “不想亏本”是什么意思呢?用么不等 号表示才“准确”?

实 际 生 活 同 类 数 量
相 等 关 系
等 式
等式的 基本性 质
一元一次方 程的解法和 应用
一元一次不等式的解法
温故知新: x 1 2(2 x 1) 解一元一次方程
2
3
讲什么?



1、一元一次不等式和一元一次方程的 概念有什么异同?(涉及到的方面越 多越好); 2、同解一元一次方程类似,解一元一 次不等式的过程,就是利用不等式的 基本性质将不等式变形成x<a,x>a的形 式。 3、对应的,移项,去分母,去括号, 在解不等式中发生变化了吗?

一元一次不等式的解题方法与技巧

一元一次不等式的解题方法与技巧1.化简不等式:对于一元一次不等式,我们可以通过移项和合并同类项的方法将其化简,使其方便计算和求解。

例如,对于不等式2x+3>5-x,我们可以将其化简为3x>2,然后除以3得到x>2/32.确定解集的范围:在解一元一次不等式时,需要确定解的范围。

常用的方法有分析法和试验法。

分析法是通过对不等式的系数和常数项进行分析,确定解的范围。

例如,对于不等式2x+3>5-x,我们可以发现当x取较小的值时,不等式成立,而当x取较大的值时,不等式不成立。

因此,解集的范围是负无穷到2/33.图像法:对于一元一次不等式,我们可以通过绘制函数图像来分析和解题。

对于不等式2x+3>5-x,我们可以将其转化为函数y=2x+3-(5-x),然后绘制出该函数的图像,通过观察图像来确定解的范围。

4.区间法:对于一元一次不等式,我们可以通过设定合适的区间来确定解的范围。

例如,对于不等式2x+3>5-x,我们可以设定区间[0,+∞),然后将x带入不等式中验证,确定解的范围。

5.代入法:对于一元一次不等式,我们可以通过代入特定的值来验证不等式的成立与否。

例如,对于不等式2x+3>5-x,我们可以代入x=1,得到2(1)+3>5-1,经计算可知不等式成立。

6.注意特殊情况:在解一元一次不等式时,需要注意特殊情况的处理。

特殊情况包括分母为零、开方的符号等情况。

在进行计算时,我们需要排除这些特殊情况,以免出现错误的结果。

7.多步解题:有时候,一元一次不等式需要通过多步计算才能得到最终的解。

在进行多步计算时,需要注意每一步的变形和运算,避免出现计算错误。

8.前后关系:在解多个一元一次不等式时,我们需要注意不等式之间的前后关系。

例如,对于不等式2x-1>3和x-2<0,我们可以通过将其合并为一个复合不等式2x-1>3>x-2,然后分别解得2x>4和x<1,最终得到解的范围是负无穷到19.检查解的合法性:在解一元一次不等式后,我们需要检查解的合法性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档