第七章_动态规划
第07章 动态规划 《运筹学》PPT课件

动态规划
模型分类
离散确定型 离散随机型 连续确定型 连续随机型
§1 多阶 段决 策过 程的 最优
化
多阶段决策问题
(Multi-Stage decision process)
决策u1 决策u2
决策uk
32
维护费
8 8 9 9 10 6 6 8 8 10 5 6 8 9 5 5 6 4 54Βιβλιοθήκη 新设备购置费 5050
52 52 55 60
旧设备折价
20 15 10 5 2 30 25 20 15 10 31 26 21 15 33 28 20 35 30
40
§1 多阶 段决 策过 程的 最优
化
3)连续生产过程的控制 问题:一般化工生产过程中,
本章 内容
多阶段决策过程的最优化 动态规划的基本概念和基本原理 动态规划模型的建立与求解 动态规划在经济管理中的应用 马氏决策规划简介
创始时间 创始人
上个世纪50年代
美国数学家贝尔曼 (Richard. Bellman)
是运筹学的一个主要分支 是解决多阶段决策过程的最优化的一
种方法多阶段决策过程: 多阶段决策过程的最优化的目标: 达到整个活动过程的总体效果最优 •主要用于解决:
不过,实际中尚有许多不包含时间 因素的一类“静态”决策问题,就其本 质而言是一次决策问题,是非动态决策 问题,但是也可以人为地引入阶段的概 念当作多阶段决策问题,应用动态规划 方法加以解决。
§1 多阶 段决 策过 程的 最优
化
4)资源分配问题:便属于这类静 态问题。如:某工业部门或公司,拟对 其所属企业进行稀缺资源分配,为此需 要制定出收益最大的资源分配方案。这 种问题原本要求一次确定出对各企业的 资源分配量,它与时间因素无关,不属 动态决策,但是,我们可以人为地规定 一个资源分配的阶段和顺序,从而使其 变成一个多阶段决策问题(后面我们将 详细讨论这个问题)。
动态规划

多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状 态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化 问题的方法为动态规划方法 。
任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适 用动态规划的问题必须满足最优化原理和无后效性 。
动态规划
运筹学的分支
01 原理
03 局限性
目录
02 分类
动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年 代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理, 从而创立了动态规划。动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域, 并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了 显著的效果 。
最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成 的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足 最优化原理又称其具有最优子结构性质 。
将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来 的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又 称为无后效性 。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称为不可控因 素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点 。
最优控制-第七章-动态规划法

当∆t很小时,有
t t
t
Lx, u, t d t Lx, u, t t
J x, t min
*
min
uU
uU
tf
t0
Lx, u, t d t Φ xt f
tf t t
t t
t
Lx, u, t d t
Lx, u, t d t Φ xt f
P1 11
7
P2 4 2
P3 4 4
12 A 4 8 Q1
4 3 2 2 Q3 B
5 Q2
第一段:P1、Q1的前站是始发站A。显见从
A到B的最优值为12,故得最优路线为AQ1P2Q3B。
综上可见,动态规划法的特点是: 1) 与穷举算法相比,可使计算量大大减少。如
上述最优路线问题,用动态规划法只须做10次
J x, t min Lx, u, t t J xt t , t t
* * uU
(8)
* J x , t J x, t * * J x x, t t J x, t t (12) x t x * T
A城出发到B城的行车时间最短。
P1 3 A 4 Q1 1
7
P2
2
P3 4
4
6 8 2 Q2
3 3 3
2 Q3 4
2
B
现将A到B分成四段,每一段都要作一最优决 策,使总过程时间为最短。所以这是一个多段最 优决策问题。 由图2可知,所有可能的行车路线共有8条。 如果将各条路线所需的时间都一一计算出来,并 作一比较,便可求得最优路线是AQ1P2Q3B,历时 12。这种一一计算的方法称为穷举算法。这种方 法计算量大,如本例就要做3×23=24次加法和7次 比较。如果决策一个n段过程,则共需(n-1)2n-1次 加法和(2n-1-1)次比较。可见随着段数的增多,计 算量将急剧增加。
动态规划的基本原理和基本应用

动态规划的基本原理和基本应用动态规划(Dynamic Programming)是一种通过将一个问题分解为较小的子问题并存储子问题的解来解决复杂问题的方法。
动态规划的基本原理是通过记忆化或自底向上的迭代方式来求解问题,以减少不必要的重复计算。
它在计算机科学和数学中具有广泛的应用,尤其是在优化、组合数学和操作研究等领域。
1.确定最优子结构:将原问题分解为较小的子问题,并且子问题的最优解能够推导出原问题的最优解。
2.定义状态:确定存储子问题解的状态变量和状态方程。
3.确定边界条件:确定初始子问题的解,也称为边界状态。
4.递推计算:利用状态方程将子问题的解计算出来,并存储在状态变量中。
5.求解最优解:通过遍历状态变量找到最优解。
1.背包问题:背包问题是动态规划的经典应用之一、它有多种变体,其中最基本的是0/1背包问题,即在限定容量的背包中选择物品,使得所选物品的总价值最大。
可以使用动态规划的思想来解决背包问题,确定状态为背包容量和可选物品,递推计算每个状态下的最优解。
2. 最长递增子序列:最长递增子序列(Longest Increasing Subsequence)是一种常见的子序列问题。
给定一个序列,找到其中最长的递增子序列。
可以使用动态规划来解决这个问题,状态可以定义为以第i个元素为结尾的最长递增子序列的长度,并递推计算每个状态的解。
3.矩阵链乘法:矩阵链乘法是一种优化矩阵连乘计算的方法。
给定一系列矩阵,求解它们相乘的最小计算次数。
可以使用动态规划解决矩阵链乘法问题,状态可以定义为矩阵链的起始和结束位置,递推计算每个状态下最小计算次数。
4.最短路径问题:最短路径问题是在有向图或无向图中找到两个节点之间最短路径的问题。
可以使用动态规划解决最短路径问题,状态可以定义为起始节点到一些节点的最短距离,递推计算每个状态的最优解。
动态规划(生产和存储问题)

动态规划(生产和存储问题)一、动态规划法的发展及其研究内容动态规划是运筹学的一个分支,是求解决策过程最优化的数学方法。
20世纪50年代初美国数学家R.E.BELLMAN等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,把多阶段问题转化为一系列的单阶段问题,逐个求解创立了解决这类过程优化问题的新方法——动态规划。
1957年出版的他的名著《Dynamic Proggramming》,这是该领域的第一本著作。
动态规划问世以来,在经济管理·生产调度·工程技术和最优控制等方面得到了广泛的应用。
例如最短路线·库存管理·资源分配·设备更新·组合·排序·装载等问题,采用动态规划法求解比用其他方法更为简便。
二、动态规划法基本概念一个多阶段决策过程最优化问题的动态规划模型通常包括以下几个要素:1.阶段阶段(stage)是对整个过程的自然划分。
通常根据时间顺序或是空间特征来划分阶段,对于与时间,空间无关的“静态”优化问题,可以根据其自然特征,人为的赋予“时段”概念,将静态问题动态化,以便按阶段的顺序解优化问题。
阶段变量一般用k=1.2….n.表示。
1.状态状态(state)是我们所研究的问题(也叫系统)在过个阶段的初始状态或客观条件。
它应能描述过程的特征并且具有无后效性,即当某阶段的状态给定时,这个阶段以后的过程的演变与该阶段以前各阶段的状态无关。
通常还要求状态是可以直接或者是间接可以观测的。
描述状态的变量称为状态变量(State Virable)用s 表示,状态变量的取值集合称为状态集合,用S表示。
变量允许取值的范围称为允许状态集合(set of admissble states).用x(k)表示第k阶段的状态变量,它可以是一个数或者是一个向量。
用X(k)表示第k阶段的允许状态集合。
n 个阶段的决策过程有n+1个状态变量,x(n+1)是x(n)的演变的结果。
动态规划算法教学PPT

03
动态规划算法的实现步骤
明确问题,建立数学模型
1
确定问题的目标和约束条件,将其转化为数学模 型。
2
理解问题的阶段划分,将问题分解为若干个子问 题。
3
确定状态变量和决策变量,以便描述子问题的状 态和决策。
划分阶段,确定状态变量和决策变量
01
根据问题的阶段划分,将问题分解为若干个子问题。
02
确定状态变量和决策变量,以便描述子问题的状态 和决策。
02
将子问题的最优解组合起来,得到原问题的最优解。
对最优解进行验证和性能评估,确保其满足问题的要求。
03
04
动态规划算法的优化技巧
分支定界法
分支定界法是一种求解优化问题的算 法,它通过不断生成问题的分支并确 定每个分支的界限,来寻找最优解。 在动态规划中,分支定界法可以用来 优化状态转移方程,减少计算量。
详细描述
多目标规划问题在实际生活中应用广泛,如资源分配、项目计划、城市规划等领 域都有涉及。常用的求解多目标规划的方法包括权重和法、帕累托最优解等。
多阶段决策问题
总结词
多阶段决策问题是动态规划中的一类,解决的问题需要在多个阶段做出决策,每个阶段的决策都会影响到后续阶 段的决策。
详细描述
多阶段决策问题在实际生活中应用广泛,如生产计划、库存管理、路径规划等领域都有涉及。常用的求解多阶段 决策问题的方法包括递归法、动态规划等。
特点
动态规划算法具有最优子结构、重叠 子问题和最优解性质等特征。
动态规划算法的应用领域
计算机科学
在计算机科学中,动态规划算法广泛应用于字符 串处理、排序、数据压缩和机器学习等领域。
电子工程
在电子工程中,动态规划算法用于信号处理、通 信和控制系统等领域。
动态规划(完整)

(3) 决策、决策变量
所谓决策就是确定系统过程发展的方案,
决策的实质是关于状态的选择,是决策者从
给定阶段状态出发对下一阶段状态作出的选
择。
用以描述决策变化的量称之决策变量, 和状态变量一样,决策变量可以用一个数, 一组数或一向量来描述.也可以是状态变量
的函数,记以 xk xk (sk ) ,表示于 k 阶段状
阶段变量描述当前所处的阶段位置,一 般用下标 k 表示;
(2) 确定状态
每阶段有若干状态(state), 表示某一阶段决策 面临的条件或所处位置及运动特征的量,称为 状态。反映状态变化的量叫作状态变量。 k 阶段的状态特征可用状态变量 sk 描述;
每一阶段的全部状态构成该阶段的状态集合Sk ,并有skSk。每个阶段的状态可分为初始状 态和终止状态,或称输入状态和输出状态, 阶段的初始状态记作sk ,终止状态记为sk+1 ,也是下个阶段的初始状态。
状态转移方程在大多数情况下可以由数学公 式表达, 如: sk+1 = sk + xk;
(6) 指标函数
用来衡量策略或子策略或决策的效果的 某种数量指标,就称为指标函数。它是定义 在全过程或各子过程或各阶段上的确定数量 函数。对不同问题,指标函数可以是诸如费 用、成本、产值、利润、产量、耗量、距离、 时间、效用,等等。
• 2、在全过程最短路径中,将会出现阶段的最优路
径;-----递推性
• 3、前面的终点确定,后面的路径也就确定了,且 与前面的路径(如何找到的这个终点)无关;----
-无后效性
• 3、逐段地求解最优路径,势必会找到一个全过程
最优路径。-----动态规划
§7.1多阶段决策问题
• 动态规划是解决多阶段最优决策的方法, 由美国数学家贝尔曼(R. Bellman) 于 1951年首先提出;
动态规划的基本思想

动态规划的基本思想动态规划是一种常用于解决具有重叠子问题和最优子结构特征的问题的算法思想。
它将问题分解成一系列子问题,并通过解决子问题构建出整个问题的最优解。
动态规划的基本思想是将原始问题转化成一个或多个相似的子问题,然后通过解决这些子问题获得原始问题的解。
这种思想在很多实际问题中都能够得到应用。
动态规划的基本流程一般包括以下几个步骤:1. 将原始问题分解为子问题:首先需要将原问题划分为多个子问题,并且确保这些子问题之间有重叠的部分。
2. 定义状态:确定每个子问题需要求解的状态,也即问题需要达成的目标。
3. 确定状态转移方程:根据子问题之间的关系,确定子问题之间的状态转移方程,即如何将子问题的解转移到原问题的解。
4. 解决首个子问题:解决最基本的子问题,获得初始状态下的解。
5. 填充状态表格:根据状态转移方程,依次求解其他子问题,并且填充状态表格。
6. 求解原问题:通过填充状态表格,在保证状态转移方程的基础上求解原问题的最优解。
动态规划的关键在于将原问题转化为子问题,通过递归或者迭代的方式求解子问题,最终获得原问题的最优解。
在这个过程中,重叠子问题的求解是动态规划的特点之一。
由于问题的子问题存在重叠,所以在求解的过程中我们可以保存已经求解过的子问题的解,避免重复计算,从而提高效率。
动态规划还要求问题具有最优子结构特征,即问题的最优解可以通过子问题的最优解构建出来。
通过利用已解决的子问题的最优解,可以有效地解决原问题。
动态规划算法在实际应用中有着广泛的应用。
它可以用于解决很多经典的问题,如最长公共子序列、0-1背包问题、最大子数组和等。
动态规划算法可以有效地解决这些问题,使得它们的时间复杂度得到了有效的降低。
总结来说,动态规划的基本思想是将原始问题转化为子问题,并通过解决子问题构建整个问题的最优解。
动态规划算法通过保存已经解决的子问题的解来避免重复计算,从而提高算法的效率。
动态规划算法在实际应用中具有广泛的应用,是解决具有重叠子问题和最优子结构特征的问题的常用算法思想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、基本方程 根据最优性定理,可以写出动态规划递推方程, 即基本方程:
Vkn(Sk,Pkn)= ∑ Vj(Sj, Uj),j=k,…n时, fk(Sk)=opt{ Vk (Sk,Uk)+ fk+1(Sk+1)} fn+1(Sn+1)=0
Vkn(Sk,Pkn)= ∏ Vj(Sj, Uj),j=k,…n时, fk(Sk)=opt{ Vk (Sk,Uk)·fk+1(Sk+1)} fn+1(Sn+1)=1 其中的fn+1(Sn+1)为边界条件。
3. 航天飞机飞行控制问题:由于航天飞机的 运动的环境是不断变化的,因此就要根据航天飞机 飞行在不同环境中的情况,不断地决定航天飞机的 飞行方向和速度(状态),使之能最省燃料和实现 目的(如软着陆问题)。
不包含时间因素的静态决策问题(本质上是一 次决策问题)也可以适当地引入阶段的概念,作为 多阶段的决策问题用动态规划方法来解决。 4 . 线性规划、非线性规划等静态的规划问题也 可以通过适当地引入阶段的概念,应用动态规划方 法加以解决。
二、动态规划的基本思想和基本方程
1、Bellman最优性定理
一个过程的最优策略具有这样的性质:即无论初始状 态及初始决策如何,对于先前决策所形成的状态而言, 其以后所有的决策应构成最优策略。 换句话说,最优策略只能由最优子策略构成。
2、思想方法:在求解过程中,各阶段的状态和决策, 对其后面的阶段来说,只影响其初始状态,而不影响 后面的最优策略。——无后效性 方法:“顺序编号,逆序求解”
1 D
3 1
解:整个计算过程分三个阶段,从最后一个阶段开始。
第三阶段(C →D): C 有三条路线到终点D 。
显然有 f3 (C1 ) = 1 ; f3(C2 ) = 3 ; f3 (C3 ) = 4
3
2 A 4 B2 B1 1 2 3
C1
C2 4 C3 3
1 D
3 1
第二阶段(B →C): B 到C 有六条路线。
1
2
3
5
6
二、解题思路 三、应用范围 1、动态 2、静态 四、缺点 1、建模后,没有统一的方法 2、维数障碍
第二节 动态规划的基本概念
一、基本概念
1、阶段: 把一个问题的过程,恰当地分为若干个相互联系的 阶段,以便于按一定的次序去求解。
描述阶段的变量称为阶段变量,用k表示。阶段的划分, 一般是根据时间和空间的自然特征来进行的,但要便于 一个数、 年、月、 问题转化为多阶段决策。 一组数、
可能是距离、利润、成本、产量或资源消耗等。
7、指标函数:Vkn(Sk, Pkn),k阶段,Sk状态下,作出Pkn 子策略带来的效果。动态规划模型的指标函数,应具有可分
离性,并满足递推关系。
阶段指标与指标函数的关系有两种: 1)指标函数是它所含有的各阶段的阶段指标之和。 即Vkn(Sk,Pkn)= ∑ Vj(Sj, Uj),j=k,…n 则有Vkn(Sk,Pkn)= Vk (Sk,Uk)+ Vk+1 n(Sk+1,Pk+1 n) 2)指标函数是它所含有的各阶段的阶段指标之积。 即Vkn(Sk,Pkn)= ∏Vj(Sj, Uj),j=k,…n 则有Vkn(Sk,Pkn)= Vk (Sk,Uk)·Vk+1 n(Sk+1,Pk+1 n) 8、最优指标函数:指标函数的最优值,称为最优值 函数。用fk(Sk)=optVkn(Sk,Pkn) opt表示最优化,常取max或min。
4、确定状态转移方程
根据k 阶段状态变量和决策变量,写出k+1阶段状态变 量,状态转移方程应当具有递推关系。
5、确定阶段指标函数和最优指标函数,建立动态规 划基本方程
阶段指标函数是指第k 阶段的收益,最优指标函数 是指从第k 阶段状态出发到第n 阶段末所获得收益的最 优值,最后写出动态规划基本方程。 以上五步是建立动态规划数学模型的一般步骤。由于 动态规划模型与线性规划模型不同,动态规划模型没有统 一的模式,建模时必须根据具体问题具体分析,只有通过 不断实践总结,才能较好掌握建模方法与技巧。
14 10
C1
9
3
D1
6
5 2
A
5
1
B2 B3
6
C2
8
4 13
5 12 11
E
D2
10
C3
路线为A→B2→C1 →D1 →E ,最短路径为19
二、资源分配问题 一维资源分配
现有数量为a的资源,用于生产n种产品,第i种产品 分配xi,带来gi(xi)收益,问如何分配使总收益最大? 据此,有下式:
max Z
第三节 动态规划应用举例
一、最短路径问题
例一、从A 地到D 地要铺设一条煤气管道,其中需经过 两级中间站,两点之间的连线上的数字表示距离,如 图所示。问应该选择什么路线,使总距离最短?
3
2 A 4 B2 B1 1 2 3
C1
C2 4 C3 3
1 D
3 1
3
2 A 4 B2 B1 1 2 3
C1
C2 4 C3 3
s 2 T1 ( s 1 , u 1 ) s 3 T 2 ( s1 , u1 , s 2 , u 2 ) s k 1 Tk ( s1 , u1 , s 2 , u 2 , , s k , u k )
图示如下: s1 u1 1 s2 u2 2 s3 sk uk k sk+1
C1
C2 4 C3 3
1 D
3 1
d( B2,C1 ) + f3 (C1 ) 2+1 f2 ( B2 ) = min d( B2,C2 ) + f3 (C2 ) = min 3+3 d( B2,C3 ) + f3 (C3 ) 1+4 3 = min 6 = 3 (最短路线为B2→C1 →D) 5
3
这时,机器的年完好率为a,即如果年初完好机 器的数量为u,到年终完好的机器就为au, 0<a<1。
在低负荷下生产时,产品的年产量h和投入生产 的机器数量u2的关系为 h=h(u2)
相应的机器年完好率b, 0< b<1。
假定开始生产时完好的机器数量为s1。要求制 定一个五年计划,在每年开始时,决定如何重新 分配完好的机器在两种不同的负荷下生产的数量, 使在五年内产品的总产量达到最高。
n
gi ( xi )
i1
n xi a i 1 x 0 i 1 .2 . .n i
第七章 动 态 规 划
(Dynamic programming)
动态规划的基本概念、基本思想
动态规划模型的建立和求解
动态规划的应用:背包问题;生产
经营问题;设备更新问题;复合系统 工作可靠性问题
第一节 动态规划
动态规划(Dynamic Programming)是用来解决 多阶段决策过程最优化的一种数量方法。其特 点在于,它可以把一个n 维决策问题变换为几个 一维最优化问题,从而一个一个地去解决。 需指出:动态规划是求解某类问题的一种 方法,是考察问题的一种途径,而不是一种算 法。必须对具体问题进行具体分析,运用动态 规划的原理和方法,建立相应的模型,然后再 用动态规划方法去求解。
路段 一个向 2、状态:表示每个阶段开始所处的自然状况或客观 量 条件。通常一个阶段有若干个状态,描述过程状态的
变量称为状态变量,用Sk表示。 状态变量的取值有一定的允许集合或范围,此集合 称为状态允许集合。
3、决策:表示当过程处于某一阶段的某个状态时, 可以作出不同的决定,从而确定下一阶段的状态,这 种决定称为决策。
2 A 4 B2 B1 1 2 3
C1
C2 4 C3 3
1 D
3 1
第一阶段( A → B ): A 到B 有二条路线。
f3(A)1 = d(A, B1 )+ f2 ( B1 ) =2+4=6 f3 (A)2 = d(A, B2 )+ f2 ( B2 ) =4+3=7 ∴ f1 (A) = min d(A, B1 )+ f2 ( B1 ) = min{6,7}=6 d(A, B2 )+ f2 ( B2 ) (最短路线为A→B1→C1 →D)
三、建立动态规划模型的步骤 1、划分阶段 划分阶段是运用动态规划求解多阶段决策问题的第一 步,在确定多阶段特性后,按时间或空间先后顺序, 将过程划分为若干相互联系的阶段。对于静态问题要 人为地赋予“时间”概念,以便划分阶段。
2、正确选择状态变量
选择变量既要能确切描述过程演变又要满足无后效性, 而且各阶段状态变量的取值能够确定。一般地,状态 变量的选择是从过程演变的特点中寻找。 3、确定决策变量及允许决策集合 通常选择所求解问题的关键变量作为决策变量,同时 要给出决策变量的取值范围,即确定允许决策集合。
描述决策的变量,称为决策变量,用Uk(Sk )表示。决 策变量是状态变量的函数。 在实际问题中决策变量的取值往往在某一范围之内, 此范围称为允许决策集合,用Dk(Sk )表示。
4、状态转移方程
状态转移方程是确定过程由 一个状态到另一个状态的演 变过程。如果第k阶段状态变 量sk的值、该阶段的决策变量 一经确定,第k+1阶段状态变 量sk+1的值也就确定。
s 2 T1 ( s 1 , u 1 ) s3 T2 ( s2 , u 2 ) sk 1 Tk ( sk , uk )
动态规划中能 处理的状态转移 方程的形式。
5、策略:是一个按顺序排列的决策组成的集合。在 实际问题中,可供选择的策略有一定的范围,称为允 许策略集合。从允许策略集合中找出达到最优效果的 策略称为最优策略。 全过程策略:U1(S1), U2(S2),…, Un(Sn) P1n={Ui(Si)}, i=1,…,n 子过程策略:Uk(Sk), Uk+1(Sk+1),…, Un(Sn) Pkn={Ui(Si)}, i=k,…,n 6、阶段指标:Vk(Sk, Uk),k阶段,Sk状态下,作出Uk决 策带来的效果。在不同的问题中,指标的含义是不同的,它