圆锥曲线与方程练习题及答案解析
高中试卷-专题15 圆锥曲线的方程(单元测试卷)(含答案)

专题15 《圆锥曲线的方程》单元测试卷一、单选题1.(2020·辽宁省高三月考(文))若抛物线上的点M 到焦点的距离为10,则M 点到y 轴的距离是( )A .6B .8C .9D .10【答案】C 【解析】抛物线的焦点,准线为,由M 到焦点的距离为10,可知M 到准线的距离也为10,故到M 到的距离是9,故选C .2.(2019·涟水县第一中学高二月考)椭圆的焦距为,则的值等于( )A .B .C .或D .【答案】C 【解析】若椭圆的焦点在轴上时,则有,解得;若椭圆的焦点在轴上时,则有,解得.综上所述,或.故选:C.3.(2018·镇原县第二中学高二期末(文))设抛物线的顶点在原点,准线方程为x=﹣2,则抛物线的方程是( )A .y 2=﹣8x B .y 2=8xC .y 2=﹣4xD .y 2=4x【答案】B 【解析】∵准线方程为x=﹣2∴=2∴p=424y x =24y x =()10F ,1x =-2214x y m +=2m 53538x 2=5m =y 2=3m =5m =3∴抛物线的方程为y 2=8x 故选B4.(2020·天津高三一模)设为抛物线的焦点,过且倾斜角为的直线交于,两点,则( )AB .C .D .【答案】C【解析】由题意,得.又因为AB 的方程为,与抛物线联立,得,设,由抛物线定义得,,选C .5.(2018·镇原县第二中学高二期末(文))已知,,则椭圆的标准方程是( )A .B .C .或D .【答案】C 【解析】由,,,可解得,,则当椭圆的焦点在轴上时,此时椭圆的标准方程为:;当椭圆的焦点在轴上时,椭圆的标准方程为:.故选:C6.(2018·镇原县第二中学高二期末(文))双曲线,则()F 2:3C y x =F 30o C A B AB =6123(,0)4F 0k tan 30==34y x =-2=3y x 21616890x x -+=1122(,),(,)A x y B x y 12AB x x p =++=168312162+=9a b +=3c =221259x y +=2212516x y +=2212516x y +=2251162x y+=221169x y +=9a b +=3c =222a b c =+225a =216b =x 2212516x y +=y 2251162x y +=()2221012x y b b-=>0+=b =A .3B .2CD .【答案】D 【解析】双曲线的焦点在轴,,渐近线方程是,,解得:.故选:7.(2018·民勤县第一中学高二期末(文))已知椭圆的一个焦点为F (0,1),离心率,则椭圆的标准方程为()A .B .C .D .【答案】D 【解析】由题意知,又离心率,所以,,即所求椭圆的标准方程,故选D .8.(2019·涟水县第一中学高二月考)设双曲线(a >0,b >0)的虚轴长为2,焦距为( )A.y =x B .y =±2xC .y =x D .y =±x【答案】C 【解析】由题意知∴,a 2=c 2-b 2x a =by x a=±0+=k ===b =D12e =2212x y +=2212y x +=22143x y +=22134x y +=1c =12e =2a =2223b a c =-=22134x y +=22221x y a b-=12∴渐近线方程为y=±x.故选C.9.(2019·浙江省高二期中)如图,,,是椭圆上的三个点,经过原点,经过右焦点,若且,则该椭圆的离心率为( )A.BCD【答案】B【解析】取左焦点,连接,,根据椭圆的对称性可得:是矩形,设,中,即:解得:,则在中即:,.b a A B C 22221x y a b+=()0a b >>AB O AC F BF AC ^3BF CF =121F 111,,AF CF BF BF AC ^1AFBF 11,2,3,23,22CF m CF a m BF AF m AF a m AC a m ==-===-=-1Rt AF C D 22211AF AC CF +=222(3)(22)(2)m a m a m +-=-3am =1,AF a AF a ==1Rt AF F D 22211AF AF FF +=222(2)a a c +=222212,2c a c a ==故选:B10.(2018·安徽省合肥一中高三一模(文))已知椭圆的左、右焦点分别为,,是椭圆在第一象限上的一个动点,圆与的延长线,的延长线以及线段都相切,且为其中一个切点.则椭圆的离心率为( )ABCD【答案】B 【解析】设圆与的延长线相切于点,与相切于点,由切线长相等,得,,,,,由椭圆的定义可得,,,则,即,又,所以因此椭圆的离心率为.故选:B.二、多选题11.(2019·山东省青岛二中高二月考)(多选题)下列说法正确的是( )2221(1)x y a a+=>1F 2F A C 1F A 12F F 2AF ()3,0M C 1F A N 2AF T AN AT =11F N F M =22F T F M =1(,0)F c -2(,0)F c 122AF AF a +=()111223+22+F N F M c AF AN a AF AN a AN AT TF ==+==-+=+-222(3)a F M a c =-=--26a =3a =1b =c ==c e a ==A .方程表示两条直线B .椭圆的焦距为4,则C .曲线关于坐标原点对称D .双曲线的渐近线方程为【答案】ACD 【解析】方程即,表示,两条直线,所以A 正确;椭圆的焦距为4,则或,解得或,所以B 选项错误;曲线上任意点,满足,关于坐标原点对称点也满足,即在上,所以曲线关于坐标原点对称,所以C 选项正确;双曲线即,其渐近线方程为正确,所以D 选项正确.故选:ACD12.(2019·山东省高二期中)已知椭圆的中心在原点,焦点,在轴上,且短轴长为2,离心率,过焦点作轴的垂线,交椭圆于,两点,则下列说法正确的是( )A .椭圆方程为B .椭圆方程为C .D .的周长为【答案】ACD 【解析】2x xy x +=221102x y m m +=--4m =22259x y xy +=2222x y a b l -=b y xa=±2x xy x +=()10x x y +-=0x =10x y +-=221102x y m m +=--()1024m m ---=()2104m m ---=4m =8m =22259x y xy +=(),P x y 22259x y xy +=(),P x y (),P x y ¢--()()()()22259x y x y --+=--(),P x y ¢--22259x y xy +=22259x y xy +=2222x y a b l -=0l ¹b y x a=±C 1F 2F y 1F y C P Q 2213y x +=2213x y +=PQ =2PF Q D由已知得,2b =2,b =1,又,解得,∴椭圆方程为,如图:∴,的周长为.故选:ACD.13.(2019·江苏省苏州实验中学高二月考)已知双曲线过点且渐近线为,则下列结论正确的是( )A .的方程为B .C .曲线经过的一个焦点D .直线与有两个公共点【答案】AC 【解析】对于选项A :由已知,可得,从而设所求双曲线方程为,又由双曲线过点,从而,即,从而选项A 正确;对于选项B :由双曲线方程可知,,从而离心率为,所以B 选项错误;c a =222a b c =+23a =2213y x +=22b PQ a ===2PF Q D 4a =C (y x =C 2213x y -=C 21x y e -=-C 10x -=C y =±2213y x =2213x y l -=C (22133l ´-=1l =a =1b =2c =c e a ===对于选项C :双曲线的右焦点坐标为,满足,从而选项C 正确;对于选项D :联立,整理,得,由,知直线与双曲线只有一个交点,选项D 错误.故选AC 三、填空题14.(2019·江苏省高三三模)双曲线的焦距为______.【答案】【解析】双曲线的焦距为.故答案为:.15.(2019·重庆巴蜀中学高二期中(理))若双曲线的左焦点在抛物线的准线上,则的值为________.【答案】6【解析】双曲线的左焦点为,即,故.故答案为:.16.(2020·浙江省高三二模)已知椭圆,F 为其左焦点,过原点O 的直线l 交椭圆于A ,B 两点,点A 在第二象限,且∠FAB =∠BFO ,则直线l 的斜率为_____.【答案】【解析】设,则,,且,()2,021x y e -=-221013x x y ì-=ïí-=ïî220y +=2420D =-´=C 2212x y -=2212x y -=2c ==22154x y -=22y px =p 22154x y -=()3,0-32p -=-6p =622197x y C +=:()00,A x y ()00,B x y --00x <00y >2200197x y +=∵F 为其左焦点,∴,AB 的斜率.经分析直线AF 的斜率必存在,设为则,又,,∴,又,,可解得:,,∴直线l的斜率为.故答案为:17.(2019·乐清市知临中学高二期末)已知抛物线的焦点为,定点.若抛物线上存在一点,使最小,则点的坐标为________,最小值是______.【答案】 【解析】根据题意,作垂直于准线,画出几何关系如下图所示:()F tan BFO Ð=10y k x =2k =1212tan 1k k FAB k k -Ð==+FAB BFO Ð=Ð=220002x y ++=2200197x y +=0(3,0)x Î-0x =0y =00y x =22y x =F ()32A ,M MA MF +M ()22,72MH根据抛物线定义可知,,因而当在同一直线上时,的值最小,此时,的纵坐标为2,代入抛物线解析式可知,所以的横坐标为2,即,故答案为:,;四、解答题18.(2018·镇原县第二中学高二期末(文))已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上.(1)求双曲线的焦点坐标;(2)求双曲线的标准方程.【答案】(1);(2)【解析】因为抛物线的准线方程为,则由题意得,点是双曲线的左焦点.(1)双曲线的焦点坐标.(2)由(1)得,又双曲线的一条渐近线方程是,所以,,所以双曲线的方程为:.19.(2019·湖南省衡阳市八中高二月考)已知抛物线的焦点为,点在抛物线上,且点的横坐标为,.MF MH =,,A M H MA MF +72MA MF AH +==M 42x =M ()2,2M ()2,2M 72()222210,0x y a b a b-=>>y =224y x =()6,0F ±221927x y-=224y x =6x =-()16,0F -()6,0F ±22236a b c +==y =ba=29a =227b =221927x y -=22(0)y px p =>F M M 45MF =(1)求抛物线的方程;(2)设过焦点且倾斜角为的交抛物线于两点,求线段的长.【答案】(1);(2).【解析】(1)由题意得,∴,故抛物线方程为.(2)直线的方程为,即.与抛物线方程联立,得,消,整理得,其两根为,且.由抛物线的定义可知,.所以,线段的长是.20.(2020·陕西省西安市远东一中高二期末(理))已知抛物线C 的顶点为坐标原点O ,对称轴为x 轴,其准线过点.(1)求抛物线C 的方程;(2)过抛物线焦点F 作直线l ,使得抛物线C 上恰有三个点到直线l 的距离都为l 的方程.【答案】(1);(2)【解析】(1)由题意得,抛物线的焦点在轴正半轴上,设抛物线C 的方程为,因为准线过点,所以,即. 所以抛物线C 的方程为.(2)由题意可知,抛物线C 的焦点为.当直线l 的斜率不存在时,C 上仅有两个点到l 的距离为当直线l 的斜率存在时,设直线l 的方程为,F 45°l A B 、AB 24y x =8452p MF +==2p =24y x =l 0tan 45(1)y x -=°⋅-1y x =-214y x y x =-ìí=îy 2610x x -+=12,x x 126x x +=12||628AB x x p =++=+=AB 8()2,1--28y x =20x y ±-=x 22y px =()2,1-22p =4p =28y x =()2,0F ()2y k x =-要满足题意,需使在含坐标原点的弧上有且只有一个点P 到直线l 的距离为,过点P 的直线平行直线且与抛物线C 相切.设该切线方程为,代入,可得.由,得.,整理得,又,解得,即.因此,直线l 方程为.21.(2019·会泽县第一中学校高二月考(理))设抛物线:的焦点为,是上的点.(1)求的方程:(2)若直线:与交于,两点,且,求的值.【答案】(1)(2).【解析】(1)因为是上的点,所以, 因为,解得,抛物线的方程为.(2)设,,由得,则,,():2l y k x =-y kx m =+24y x =()222280k x km x m +-+=()2222840km k m D =--=2km =224m k =2km =21k =1k =±20x y ±-=C 22(0)x py p =>F (,1)M p p -C C l 2y kx =+C A B 13AF BF ⋅=k 24x y =1k =±(),1M p p -C ()221p p p =-0p >2p =C 24x y =()11,A x y ()22,B x y 224y kx x y=+ìí=î2480x kx --=216320k D =+>124x x k +=128x x =-由抛物线的定义知,,,则,,,解得.22.(2018·民勤县第一中学高二期末(文))在直线:上任取一点,过作以,为焦点的椭圆,当在什么位置时,所作椭圆长轴最短?并求此椭圆方程.【答案】,【解析】设关于:的对称点,则,,连交于,点即为所求点.:,即,解方程组,,当点取异于的点时,.满足题意的椭圆的长轴最短时,,所以,,.椭圆的方程为:.11AF y =+21BF y =+()()()()12121133AF BF y y kx kx ⋅=++=++()2121239k x x k x x =+++24913k =+=1k =±l 90x y -+=M M ()13,0F -()23,0F M ()5,4M -2214536x y +=()13,0F -l 90x y -+=(),F x y 3909220613x y x y y x -ì-+=ï=-ìïÞíí-=îï=-ï+î()9,6F -2F F l M M 2F F 1(3)2y x =--230x y +-=2305904x y x x y y ì+-==-ìÞíí-+==îî()5,4M -'M M 22''FM M F FF +>22a FF ===a =3c =22245936b a c =-=-=2214536x y +=23.(2019·安徽省高二期末(理))已知点为坐标原点椭圆的右焦点为,离心率为,点分别是椭圆的左顶点、上顶点,的边.(1)求椭圆的标准方程;(2)过点的直线交椭圆于两点直线分别交直线于两点,求.【答案】(1);(2)0.【解析】(1)如图所示由题意得为直角三角形,且,所以则所以椭圆的标准方程为:.O 2222:1(0)x y C a b a b+=>>F 12,P Q C POQ △PQ C F l A B 、PA PB 、2x a =M N 、FM FN ⋅uuuu r uuu r 22143x y +=POQ △PQ PQ =222a b c =+=ïïî1a b c ìï=íï=î22143x y +=(2)由题意,如图设直线的方程为:,,,则,,联立方程化简得.则.由三点共线易得,化简得,同理可得..l 1x my =+()11,A x y ()22,B x y ()34,M y ()44,N y 221143x my x y =+ìïí+=ïî22(34)690m y my ++-=122122634934m y y m y y m ì+=-ïï+íï⋅=-ï+î,,P A M ()31100422y y x --=--+13163y y my =+24263y y my =+1234341266(3,)(3,)9933y y FM FN y y y y my my ⋅==+=+⋅++uuuu r uuu r g ()122121236939y y m y y m y y =++++2222222936()36934990969189(34)()3()93434m m m m m m m m m --´+=+=+=--++-+-+++。
高中数学人教A版选修1-1第2章圆锥曲线与方程课后练习及解析

A.椭圆
B.直线
C.圆
D.线段
2.椭圆1x62 +y72=1 的左右焦点为 F1,F2,一直线过 F1 交椭圆于 A、B 两点,则△ABF2 的
周长为( )
A.32
B.16
C.8
D.4
3.椭圆 2x2+3y2=1 的焦点坐标是( )
A.0,±
6 6
B.(0,±1)
C.(±1,0)
D.± 66,0
4.方程|a|x-2 1+a+y2 3=1 表示焦点在 x 轴上的椭圆,则实数 a 的取值范围是(
)
A.(-3,-1) C.(1,+∞)
B.(-3,-2) D.(-3,1)
5.若椭圆的两焦点为(-2,0),(2,0),且该椭圆过点25,-32,则该椭圆的方程是( )
A.y82+x42=1
B.1y02 +x62=1
C.y42+x82=1
D.y62+1x02 =1
6.设 F1、F2 是椭圆1x62 +1y22 =1 的两个焦点,P 是椭圆上一点,且 P 到两个焦点的距离之
11.已知椭圆 4x2+y2=1 及直线 y=x+m. (1)当直线和椭圆有公共点时,求实数 m 的取值范围; (2)求被椭圆截得的最长弦所在的直线方程.
圆锥曲线大题20道(含答案解析)

1.已知中心在原点的双曲线C 的右焦点为〔2,0,右顶点为)0,3( 〔1求双曲线C 的方程; 〔2若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B,且2>⋅OB OA 〔其中O 为原点. 求k 的取值范围.解:〔Ⅰ设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b ac a 得再由故双曲线C 的方程为.1322=-y x 〔Ⅱ将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且①设),(),,(B B A A y x B y x A ,则 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得.1312<<k故k 的取值范围为).1,33()33,1(⋃-- 2..已知椭圆C :22a x +22by =1〔a >b >0的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设AM =λAB .〔Ⅰ证明:λ=1-e 2;〔Ⅱ确定λ的值,使得△PF 1F 2是等腰三角形.〔Ⅰ证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是2222222.,,1,).,0(),0,(b a c c b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是〔a b c 2,-. 由).,(),(2a eaa b e a c AB AM λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a ea-设M 的坐标是00(,),x y所以⎪⎩⎪⎨⎧=-=.)1(00a y e a x λλ因为点M 在椭圆上,所以,122220=+by a x即.11)1(,1)()]1([22222222=-+-=+-ee b a a e aλλλλ所以 解得.1122e e -=-=λλ即〔Ⅱ解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d,由,1||1|0)(|||21221c eec a e a c e d PF =+-=+++-==得.1122e ee =+-所以.321,3122=-==e e λ于是 即当,32时=λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 设点P 的坐标是),(00y x ,则0000010.22y x ce y x c e a -⎧=-⎪+⎪⎨+-⎪=+⎪⎩,2022023,12(1).1e x c e e a y e ⎧-=⎪⎪+⎨-⎪=⎪+⎩解得由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++- 两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e 于是32112=-=e λ 即当32=λ时,△PF 1F 2为等腰三角形. 3.设R y x ∈,,j i、为直角坐标平面内x 轴、y 轴正方向上的单位向量,若j y i x b j y i x a )3( ,)3(-+=++=,且4=+b a.〔Ⅰ求点),(y x P 的轨迹C 的方程;〔Ⅱ若A 、B 为轨迹C 上的两点,满足MB AM =,其中M 〔0,3,求线段AB 的长. [启思]4.已知椭圆的中心为坐标原点O,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. 〔Ⅰ求椭圆的离心率;〔Ⅱ设M 为椭圆上任意一点,且),( R OB OA OM ∈+=μλμλ,证明22μλ+为定值. 解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.〔1解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+则直线AB 的方程为c x y -=,代入12222=+b y a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A 〔11,y x ,B 22,(y x ,则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与a 共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,即232222c ba c a =+,所以36.32222ab ac b a =-=∴=, 故离心率.36==a c e 〔II 证明:〔1知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x OM =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由〔1知.21,23,23222221c b c a c x x ===+ [变式新题型3]抛物线的顶点在原点,焦点在x 轴上,准线l 与x 轴相交于点A<–1,0>,过点A 的直线与抛物线相交于P 、Q 两点. 〔1求抛物线的方程;〔2若FP •FQ =0,求直线PQ 的方程;〔3设AP =λAQ 〔λ>1,点P 关于x 轴的对称点为M,证明:FM =-λFQ ..6.已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP j ∆=,且3,OF FP t OM OP j ⋅==+ .〔I 设4t OF FP θ<<求向量与 的夹角的取值范围;〔II 设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M,且||,)13(,||2OP c t c OF 当-==取最小值时,求椭圆的方程.7.已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足,AP PB =-,0MA AP ⋅=. 〔Ⅰ当点A 在x 轴上移动时,求动点P 的轨迹C 方程;〔Ⅱ过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程. 8.已知点C 为圆8)1(22=++y x 的圆心,点A 〔1,0,P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅〔Ⅰ当点P 在圆上运动时,求点Q 的轨迹方程; 〔Ⅱ若直线12++=k kx y 与〔Ⅰ中所求点Q的轨迹交于不同两点F ,H ,O 是坐标原点,且4332≤⋅≤OH OF ,求△FOH 的面积 已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过()2,0A -、()2,0B 、31,2C ⎛⎫⎪⎝⎭三点.〔Ⅰ求椭圆E 的方程;〔Ⅱ若直线l :()1y k x =-〔0k ≠与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.10.如图,过抛物线x 2=4y 的对称轴上任一点P<0,m><m>0>作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点。
圆锥曲线的参数方程练习题(带答案)

圆锥曲线的参数方程练习题1、若点()3,P m 在以点F 为焦点的抛物线24{4x t y t == (t 为参数)上,则PF 等于( )A.2B.3C.4D.5答案:C解析:抛物线为24y x =,准线为1x =-, PF 为()3,P m 到准线1x =-的距离,即为4.故选C.2、参数方程sin cos ,{1sin 2x y θθθ=+=+ (θ为参数)所表示的曲线为( )A.圆的一部分B.抛物线的一部分C.双曲线的一部分D.椭圆的一部分答案:B解析:参数方程sin cos ,{1sin 2x y θθθ=+=+ (θ为参数),化为普通方程为2(02)x y y =≤≤,表示抛物线的一部分.3、椭圆5cos ,{3sin x y ϕϕ== (ϕ为参数)的焦点坐标为( ) A.(5,0)± B.(4,0)± C.(3,0)± D.(0,4)±答案:B解析:椭圆5cos ,{3sin x y ϕϕ== (ϕ为参数)的普通方程为221259x y +=,故4c ==. 又椭圆焦点在x 轴上,故焦点坐标为(4,0)±.4、已知过曲线3cos ,{4sin x y θθ== (θ为参数,0θπ≤≤)上一点P 和原点O 的连线PO 的倾斜角为4π,则P 点的坐标是( ) A.(3,4) B.1212,55⎛⎫- ⎪⎝⎭C.2⎛ ⎝D.1212,55⎛⎫ ⎪⎝⎭ 答案:D解析:直线PO 的方程是y x =,又点P 为曲线3cos ,{4sin x y θθ==上一点,故3cos 4sin θθ=,即3tan 4θ=,因为倾斜角为4π,0θπ≤≤,所以曲线与直线的交点在第一象限,故3sin 5θ=,4cos 5θ=,所以125x y ==. 5、已知O 为原点,P为椭圆4cos ,{x y αα== (α为参数)上第一象限内一点,OP 的倾斜角为3π,则点P 坐标为( ) A.()2,3 B.()4,3C.(D.(,55答案:D解析:椭圆4cos ,{x y αα== (α为参数)化为普通方程,得2211612x y +=.由题意可得直线OP的方程为y = (0x >).由22(0),{11612y x x y =>+=解得x y ==. ∴点P的坐标为.故选D. 6、参数方程cos 2sin x y θθ=⎧⎨=⎩(θ为参数)化为普通方程为( ) A.2214y x += B.2212y x += C.2214x y += D.2212x y +=答案:A 解析:易知,2y cos x sin θθ==,∴2214y x +=,故选A. 7、方程cos cos x a y b θθ=⎧⎨=⎩(θ为参数,0ab ≠)表示的曲线是( ) A.圆 B.椭圆 C.双曲线 D.双曲线的一部分 答案:D解析:由xcos a θ=,∴a cos xθ=,代入y bcos θ=,得xy ab =,又由y bcos θ=知,||,y b b ∈-⎡⎤⎣⎦,∴曲线应为双曲线的一部分.8、若曲线2sin cos 1x y θθ⎧=⎨=-⎩ (θ为参数)与直线x m =相交于不同两点,则m 的取值范围是( )A.RB.()0,+∞C.()0,1D.[)0,1答案:D解析:将曲线2sin cos 1x y θθ⎧=⎨=-⎩化为普通方程得()()()21101y x x +=--≤≤.它是抛物线的一部分,如图所示,由数形结合知01m ≤<.8、过椭圆5cos ,{3sin x y ϕϕ== (为参数)的右焦点,斜率为12的直线方程为__________ 答案:x-2y-4=0解析:椭圆的普通方程为221259x y+=,故5,3,a b==所以4c==,故右焦点的坐标为(4,0),又直线的斜率为12,故直线的方程为1(4)2y x=-,即240x y--=.9、已知实数0p>,曲线212:{2x ptCy pt==(t为参数)上的点(2,)A m,曲线26cos :{26sinpxCyθθ=+ = (θ为参数)的圆心为点B,A,B两点间的距离等于圆2C的半径,则p=__________.答案:8解析:曲线212:{2x ptCy pt==(t为参数)化为普通方程为22y px=,代入2x=得m=±则点(2,A±.曲线26cos:{26sinpxCyθθ=+=的圆心为(,0)2p,半径为6.10、设点O为坐标原点,直线l:4,{2xy t=+=(参数t R∈)与曲线24,:{4x uCy u==(参数u R∈)交于A、B两点.(1)求直线l与曲线C的普通方程;(2)求证:OA OB⊥.答案:1.直线l:4y x=-.曲线C:24y x=.2.证明:设1122(,),(,),A x yB x y由24{4y xy x==-消去y,得212160x x-+=.∴121212,16,x x x x+==∴12121212121212(4)(4)4()161OA OBy y x x x x x xk kx x x x x x---+⋅====-.∴OA OB⊥.11、在直角坐标系 xOy 中,直线l 的方程为40x y -+=,曲线 C的参数方程为,{sin ,x y θθ== (θ为参数).1.已知在极坐标系(与直角坐标系 xOy 取相同的长度单位,且以原点 O 为极点,以 x 轴正半轴为极轴)中,点P 的极坐标为4,2π⎛⎫ ⎪⎝⎭,判断点P 与直线l 的位置关系; 2.设点 Q 是曲线 C 上的一个动点,求它到直线l 的距离的最小值.答案:1. 点P 的极坐标为4,2π⎛⎫ ⎪⎝⎭,则直角坐标为(0,4), 把()0,4P 代入直线l 的方程40x y -+=, 因为0?4? 4? 0-+=,所以点P 在直线l 上.2.因为点 Q 是曲线 C 上的一个动点,则点 Q的坐标可设为),sin Q αα. 点 Q 到直线l 的距离为2cos 4d πα⎛⎫++ ⎪==6πα⎛⎫=++ ⎪⎝⎭所以当cos 16πα⎛⎫+=- ⎪⎝⎭时,d.。
选修2-1数学第2章_圆锥曲线与方程单元练习题含答案

选修2-1数学第2章圆锥曲线与方程单元练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 某几何体是由直三棱柱与圆锥的组合体,起直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为()A.√2B.12C.√24D.√222. 如图,已知双曲线E:x2a2−y2b2=1(a>0,b>0),长方形ABCD的顶点A,B分别为双曲线E的左、右焦点,且点C,D在双曲线E上,若|AB|=6,|BC|=52,则此双曲线的离心率为()A.√2B.32C.52D.√53. 设椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为B.若|BF2|=|F1F2|=2,则该椭圆的标准方程为()A.x24+y23=1 B.x23+y2=1 C.x22+y2=1 D.x24+y2=14. 已知双曲线C:x2a2−y2b2=1(a>0,b>0)的顶点和焦点到C的同一条渐近线的距离之比为12,则双曲线C的离心率是()A.√2B.2C.√3D.35. 已知点A(0,1),抛物线C:y2=ax(a>0)的焦点为F,射线FA与抛物线相交于M,与其准线相交于点N,若|FM|:|MN|=2:√5,则a=()A.2B.4C.6D.86. 焦点为(0,2)的抛物线的标准方程是()A.x2=8yB.x2=4yC.y2=4xD.y2=8x7. 椭圆x2+4y2=1的离心率为()A.√32B.34C.√22D.238. 若双曲线x24−m +y2m−2=1的渐近线方程为y=±13x,则m的值为()A.1B.74C.114D.59. 抛物线y=2x2的通径长为( )A.2B.1C.12D.1410. 已知双曲线C:x24−y2=1,则C的渐近线方程为 ( )A.y=±14x B.y=±13x C.y=±12x D.y=±x11. 椭圆x24+y25=1的离心率是()A.3 5B.√55C.25D.1512. 已知双曲线C:x2a2−y2b2=1(a>0,b>0)的右焦点为F,过F作直线l与两条渐近线交于A,B两点.若△OAB为等腰直角三角形(O为坐标原点)则△OAB的面积为( )A.a2B.2a3C.2a2或a2D.2a2或12a213. 已知椭圆x29+y25=1的左焦点为F,点P在椭圆上且在x轴的上方,若线段PF的中点在以原点O为圆心,|OF|为半径的圆上,则直线PF的斜率是________.14. 若直线y=x+b与曲线x=√1−y2恰有一个公共点,则b的取值范围是________.15. 与椭圆x25+y23=1共焦点的等轴双曲线的方程为________.16. 已知双曲线x2−y28=1上有三个点A,B,C,且AB,BC,AC的中点分别为D,E,F,用字母k表示斜率,若k OD+k OE+k OF=−8(点O为坐标原点,且k OD,k OE,k OF均不为零),则1k AB +1k BC+1k AC=________.17. 设命题p:方程x2a+6+y2a−7=1表示中心在原点,焦点在坐标轴上的双曲线;命题q:存在x∈R,使得x2−4x+a<0.若“p∧(¬q)”为真,求实数a的取值范围.18. 回答下列问题:(1)求过点(2,−2)且与双曲线x 22−y2=1有公共渐近线的双曲线的方程;(2)求双曲线x 24−y25=1的焦点到其渐近线的距离.19. 如图,已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点A为椭圆C上任意一点,A关于原点O的对称点为B,有|AF1|+|BF1|=4,且∠F1AF2的最大值为π3.(1)求椭圆C的标准方程;(2)若A′是A关于x轴的对称点,设点N(4,0),连接NA与椭圆C相交于点E,问直线A′E与x轴是否交于一定点,如果是,求出该定点坐标;如果不是,说明理由.20. 已知椭圆的焦点在α轴上,一个顶点为(0,1),离心率为e=√5,过椭圆的右焦点F的直线1与坐标轴不垂直,且交椭圆于A,B两点.(1)求椭圆的方程.(2)设点C是点A关于x轴的对称点,在α轴上是否存在一个定点N,使得C,B,N三点共线?若存在,求出定点N的坐标;若不存在,说明理由.21. 已知直线l:x−y+1=0与焦点为F的抛物线C:y2=2px(p>0)相切.(1)求抛物线C的方程;(2)过点F的直线m与抛物线C交于A,B两点,求A,B两点到直线l的距离之和的最小值.22. 已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右顶点分别为A,B,离心率为12,点P(1, 32)为椭圆上一点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)如图,过点C(0, 1)且斜率大于1的直线l与椭圆交于M,N两点,记直线AM,BN的斜率分别为k1,k2,若k1=2k2,求直线l斜率的值.参考答案与试题解析选修2-1数学第2章 圆锥曲线与方程单元练习题含答案一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 ) 1.【答案】 D【考点】 椭圆的定义 【解析】根据三视图的性质得到俯视图中椭圆的短轴长和长周长,再根据椭圆的性质a 2−b 2=c 2,和离心率公式e =ca ,计算即可.【解答】解:设正视图正方形的边长为2,根据正视图与俯视图的长相等,得到俯视图中椭圆的短轴长2b =2,俯视图的宽就是圆锥底面圆的直径2√2,得到俯视图中椭圆的长轴长2a =2√2, 则椭圆的半焦距c =√a 2−b 2=1, 根据离心率公式得,e =c a =√2=√22; 故选D . 2. 【答案】 B【考点】双曲线的标准方程 【解析】本题主要考查双曲线的几何性质. 【解答】解:因为2c =|AB|=6,所以c =3. 因为b 2a =|BC|=52,所以5a =2b 2. 又c 2=a 2+b 2,所以9=a 2+5a 2,解得a =2或a =−92(舍去),故该双曲线的离心率e =c a=32.故选B . 3. 【答案】 A【考点】椭圆的标准方程 【解析】由|BF 2|=|F 1F 2|=2,可得a =2c =2,即可求出a ,b ,从而可得椭圆的方程. 【解答】解:∵ |BF 2|=|F 1F 2|=2,∴a=2c=2,∴a=2,c=1,∴b=√3,∴椭圆的方程为x24+y23=1.故选A.4.【答案】B【考点】双曲线的离心率【解析】【解答】解:∵双曲线C的顶点和焦点到同一条渐近线的距离之比为12,由三角形相似得ac =12,∴e=ca=2.故选B.5.【答案】D【考点】斜率的计算公式抛物线的性质【解析】无【解答】解:依题意F点的坐标为(a4,0),作MK垂直于准线,垂足为K,由抛物线的定义知|MF|=|MK|,因为|FM|:|MN|=2:√5,则|KN|:|KM|=1:2.k FN =0−1a4−0=−4a ,k FN =−|KN||KM|=−12,所以−4a =−12,求得a =8. 故选D . 6. 【答案】 A【考点】抛物线的标准方程 【解析】 此题暂无解析 【解答】解:由题意得,抛物线的焦点为(0,2), 可得p =4.又抛物线的焦点在y 轴的正半轴, 所以抛物线的标准方程为x 2=8y . 故选A. 7. 【答案】 A【考点】 椭圆的离心率 【解析】 此题暂无解析 【解答】 此题暂无解答 8.【答案】 B【考点】 双曲线的定义 【解析】 此题暂无解析 【解答】 此题暂无解答 9.【答案】 C【考点】 抛物线的定义 抛物线的性质 【解析】抛物线y =−2x 2,即x 2=−12y ,可得2p .解:抛物线y=2x2,化为标准方程为x2=12y,可得2p=12,因此通径长为12.故选C.10.【答案】C【考点】双曲线的渐近线【解析】根据双曲线的方程求出双曲线的渐近线即可. 【解答】解:由题意可得,a=2,b=1,则双曲线的渐近线方程为y=±ba x=±12x.故选C.11.【答案】B【考点】椭圆的离心率椭圆的标准方程【解析】根据椭圆的标准方程求出a,b的值,根据椭圆中c2=a2−b2就可求出c,再利用离心率e=ca得到离心率.【解答】解:由椭圆方程为x 24+y25=1可知,a2=5,b2=4,∴c2=a2−b2=1,a=√5,∴c=1,∴椭圆的离心率e=ca =√55.故选B.12.【答案】D【考点】双曲线的简单几何性质双曲线中的平面几何问题本题主要考查双曲线的性质以及直线和双曲线的关系,联立方程组,求出点的坐标,再求出面积即可.【解答】解:①若∠AOB=90∘,则∠AOF=45∘,∴ba=1故c=√a2+b2=√2a,∴S△OAB=12⋅2c⋅c=c2=2a2;②若∠BAO=90∘,则l与y=bax垂直且过F点,垂足为A,∴ l的斜率为−ab,则直线l的方程为y=−ab(x−c),联立{y=−ab⋅(x−c),y=bax,解得x=a 2c ,y=abc,则点A为(a 2c ,ab c)∴ △OAB为等腰直角三角形,OB为斜边,∴ OA=AB,OA2=(a2c )2+(abc)2=a2,∴S△OAB=12OA⋅AB=12OA2=12a2.综上所述S△OAB=2a2或12a2.故选D.二、填空题(本题共计 4 小题,每题 5 分,共计20分)13.【答案】√15【考点】与椭圆有关的中点弦及弦长问题【解析】此题暂无解析【解答】解:由椭圆方程可知a=3,c=2,∴F(−2, 0),根据题意,画出图形:设线段PF中点为M,椭圆右焦点为F1,∵M在以O为圆心,|OF|为半径的圆上,∴F1也在圆上,连接OM, PF1, MF1,则∠FMF1=90∘,OM是△FPF1的中位线,∴|PF1|=2|OM|=2|OF|=2×2=4,由椭圆定义|PF|+|PF1|=2a=6,得|PF|=2,|MF|=|PF|2=1,又∵∠FMF1为直角,|MF1|2=|FF1|2−|MF|2=15,∴tan∠MFF1=|MF1||MF|=√151=√15,∴直线PF的斜率是√15.故答案为:√15.14.【答案】(−1,1]∪{−√2}【考点】曲线与方程直线与圆的位置关系【解析】此题暂无解析【解答】x=√1−y2⇔x2+y2=1(x≥0)方程x2+y2=1(x≥0)所表示的曲线为半圆(如图)当直线与圆相切时或在l2与l3之间时,适合题意.此时−1<b≤1或b=−√2,所以b的取值范围是(−1,1]∪{−√2}.15.【答案】x2−y2=1【考点】双曲线的标准方程圆锥曲线的共同特征【解析】利用椭圆的三参数的关系求出双曲线的焦点坐标;利用等轴双曲线的定义设出双曲线的方程,据双曲线中三参数的关系求出双曲线的方程.【解答】解:对于x 25+y23=1知半焦距为c=√5−3=√2所以双曲线的焦点为(±√2,0)设等轴双曲线的方程为x 2a2−y2a2=1据双曲线的三参数的关系得到2a2=2所以a2=1所以双曲线的方程为x2−y2=1.故答案为:x2−y2=116.【答案】−1【考点】斜率的计算公式中点坐标公式与双曲线有关的中点弦及弦长问题【解析】【解答】解:设A(x1,y1),B(x2,y2),D(x0,y0),则x1+x2=2x0,y1+y2=2y0,x12−y128=1,x22−y228=1,两式相减得(x1−x2)(x1+x2)=(y1+y2)(y1−y2)8,整理可得x1−x2y1−y2=y08x0,即1k AB=k OD8,同理得1k BC =k OE8,1k AC=k OF8.因为k OD+k OE+k OF=−8,所以1k AB +1k BC+1k AC=−1.故答案为:−1.三、解答题(本题共计 6 小题,每题 11 分,共计66分)17.【答案】解:命题p :(a +6)(a −7)<0,解得−6<a <7; 命题q :Δ=(−4)2−4a >0,解得a <4. ∴ ¬q :a ≥4.∵ “p ∧(¬q)”为真, ∴ p 为真且¬q 为真, ∴ 4≤a <7. 【考点】逻辑联结词“或”“且”“非” 双曲线的标准方程 一元二次不等式的解法【解析】 此题暂无解析 【解答】解:命题p :(a +6)(a −7)<0,解得−6<a <7; 命题q :Δ=(−4)2−4a >0,解得a <4. ∴ ¬q :a ≥4.∵ “p ∧(¬q)”为真, ∴ p 为真且¬q 为真, ∴ 4≤a <7. 18. 【答案】解:(1)因为所求双曲线与双曲线x 22−y 2=1有公共渐近线, 所以可设所求双曲线的方程为x 22−y 2=λ(λ≠0).因为所求双曲线过点(2,−2), 所以222−(−2)2=λ,得λ=−2,所以所求双曲线的方程为y 22−x 24=1. (2)因为双曲线的方程为x 24−y 25=1,所以双曲线的一条渐近线方程为y =√52x , 即√5x −2y =0.因为双曲线的左、右焦点到渐近线的距离相等, 且(3,0)为双曲线的一个焦点, 所以双曲线x 24−y 25=1的焦点到其渐近线的距离为|3√5−0|3=√5.【考点】双曲线的离心率 【解析】 此题暂无解析 【解答】解:(1)因为所求双曲线与双曲线x 22−y 2=1有公共渐近线,所以可设所求双曲线的方程为x 22−y 2=λ(λ≠0).因为所求双曲线过点(2,−2), 所以222−(−2)2=λ,得λ=−2, 所以所求双曲线的方程为y 22−x 24=1. (2)因为双曲线的方程为x 24−y 25=1,所以双曲线的一条渐近线方程为y =√52x , 即√5x −2y =0.因为双曲线的左、右焦点到渐近线的距离相等, 且(3,0)为双曲线的一个焦点, 所以双曲线x 24−y 25=1的焦点到其渐近线的距离为|3√5−0|3=√5.19.【答案】解:(1)点A 为椭圆C 上任意一点, A 关于原点O 的对称点为B , 由|AF 1|+|BF 1|=4知 2a =4, 得a =2.又∠F 1AF 2的最大值为π3,知当A 为上顶点时,∠F 1AF 2最大, 所以a =2c , 得c =1,所以b 2=a 2−c 2=3. 所以椭圆C 的标准方程为x 24+y 23=1.(2)由题知NA 的斜率存在,设NA 方程为 y =k(x −4),与椭圆联立,得(4k 2+3)x 2−32k 2x +64k 2−12=0.① 设点A (x 1,y 1),E (x 2,y 2), 则A ′(x 1,−y 1).直线A ′E 方程为y −y 2=y 2+y1x 2−x 1(x −x 2).令y =0得x =x 2+y 2(x 1−x 2)y 1+y 2,将y1=k(x1−4),y2=k(x2−4)代入,整理得,x=2x1x2−4(x1+x2)x1+x2−8.②x1+x2=32k24k2+3,x1x2=64k2−124k2+3.代入②整理,得x=1.所以直线A′E与x轴交于定点Q(1,0). 【考点】圆锥曲线中的定点与定值问题与直线关于点、直线对称的直线方程直线与椭圆结合的最值问题椭圆的标准方程椭圆的定义【解析】此题暂无解析【解答】解:(1)点A为椭圆C上任意一点,A关于原点O的对称点为B,由|AF1|+|BF1|=4知2a=4,得a=2.又∠F1AF2的最大值为π3,知当A为上顶点时,∠F1AF2最大,所以a=2c,得c=1,所以b2=a2−c2=3.所以椭圆C的标准方程为x 24+y23=1.(2)由题知NA的斜率存在,设NA方程为y=k(x−4),与椭圆联立,得(4k2+3)x2−32k2x+64k2−12=0.①设点A(x1,y1),E(x2,y2),则A′(x1,−y1).直线A′E方程为y−y2=y2+y1x2−x1(x−x2).令y =0得x =x 2+y 2(x 1−x 2)y 1+y 2,将y 1=k (x 1−4),y 2=k (x 2−4)代入, 整理得,x =2x 1x 2−4(x 1+x 2)x 1+x 2−8.②x 1+x 2=32k 24k 2+3, x 1x 2=64k 2−124k 2+3.代入②整理,得x =1.所以直线A ′E 与x 轴交于定点Q(1,0). 20. 【答案】(1)椭圆C 的标准方程为x 25+y 2=1.(2)存在定点N (52,0),使得C .B .N 三点共线. 【考点】直线与椭圆结合的最值问题 椭圆的标准方程【解析】 此题暂无解析 【解答】 解:(1)由椭圆的焦点在x 轴上, 设椭圆C 的方程为x 2a2+y 2b 2=1(ab >0),椭圆C 的一个顶点为(0,1),即b =1, 由e =ac √1−b 2a 2=√5解得a 2=5,∴ 椭圆C 的标准方程为x 25+y 2=1.(2)由得F (2,0),设A (x 1,y 1),B (x 2,y 2)设直线l 的方程为y =k (x −2)(k ≠0),代入椭圆方程,消去y 可得 (5k 2+1)x 2−20k 2x +20k 2−5=0, 则x 1+x 2=20k 25k 2+1,x 1x 2=20k 2−55k 2+1.∵ 点C 与点A 关于x 轴对称, ∴ C (x 1,−y 1) .假设存在N (t,0),使得C ,B ,N 三点共线, 则BN →=(t −x 2,−y 2),CN →=(t −x 1,y 1). ∵ C ,B ,N 三点共线,∴ BN →//CN →,∴ (t −x 2)y 1+(t −x 1)y 2=0, 即(y 1+y 2)t =x 2y 1+x 1y 2 ∴ t =k (x 1−2)x 2+k (x 2−2)x 1k (x 1−2)+k (x 2−2) =2⋅20k 2−55k 2+1−2⋅20k 25k 2+120k 25k 2+1−4=52∴ 存在定点N (52,0),使得C .B .N 三点共线.21.【答案】解:(1)∵ 直线l :x −y +1=0与抛物线C 相切. 由{x −y +1=0,y 2=2px ,得y 2−2py +2p =0,从而Δ=4p 2−8p =0, 解得p =2.∴ 抛物线C 的方程为y 2=4x . (2)由于直线m 的斜率不为0,所以可设直线m 的方程为ty =x −1,A(x 1,y 1),B(x 2,y 2), 由{ty =x −1,y 2=4x ,消去x 得y 2−4ty −4=0,∴ y 1+y 2=4t ,从而x 1+x 2=4t 2+2, ∴ 线段AB 的中点M 的坐标为(2t 2+1,2t). 设点A 到直线l 的距离为d A , 点B 到直线l 的距离为d B , 点M 到直线l 的距离为d , 则d A +d B =2d =2⋅2√2=2√2|t 2−t +1| =2√2|(t −12)2+34|,∴ 当t =12时,A ,B 两点到直线l 的距离之和最小,最小值为3√22. 【考点】直线与抛物线结合的最值问题 二次函数在闭区间上的最值 抛物线的标准方程 直线与圆的位置关系【解析】 此题暂无解析 【解答】解:(1)∵ 直线l :x −y +1=0与抛物线C 相切. 由{x −y +1=0,y 2=2px ,得y 2−2py +2p =0,从而Δ=4p 2−8p =0, 解得p =2.∴ 抛物线C 的方程为y 2=4x . (2)由于直线m 的斜率不为0,所以可设直线m 的方程为ty =x −1,A(x 1,y 1),B(x 2,y 2), 由{ty =x −1,y 2=4x ,消去x 得y 2−4ty −4=0,∴ y 1+y 2=4t ,从而x 1+x 2=4t 2+2, ∴ 线段AB 的中点M 的坐标为(2t 2+1,2t). 设点A 到直线l 的距离为d A , 点B 到直线l 的距离为d B , 点M 到直线l 的距离为d , 则d A +d B =2d =2⋅2√2=2√2|t 2−t +1| =2√2|(t −12)2+34|,∴ 当t =12时,A ,B 两点到直线l 的距离之和最小,最小值为3√22. 22. 【答案】(1)根据题意,椭圆的离心率为12,即e =ca =2,则a =2c . 又∵ a 2=b 2+c 2,∴ b =√3c . ∴ 椭圆的标准方程为:x 24c 2+y 23c 2=1. 又∵ 点P(1, 32)为椭圆上一点,∴ 14c 2+943c 2=1,解得:c =1.∴ 椭圆的标准方程为:x 24+y 23=1.(2)由椭圆的对称性可知直线l 的斜率一定存在,设其方程为y =kx +1. 设M(x 1, y 1),N(x 2, y 2).联列方程组:{x 24+y 23=1y =kx +1 ,消去y 可得:(3+4k 2)x 2+8kx −8=0. ∴ 由韦达定理可知:x 1+x 2=−8k 3+4k2,x 1x 2=−83+4k 2.∵ k 1=y 1x 1+2,k 2=y 2x 1−2,且k 1=2k 2,∴y 1x 1+2=2y 2x 2−2,即y 12(x 1+2)2=4y 22(x 2−2)2.①又∵ M(x 1, y 1),N(x 2, y 2)在椭圆上, ∴ y 12=34(4−x 12),y 22=34(4−x 22).② 将②代入①可得:2−x 12+x 1=4(2+x 2)2−x 2,即3x 1x 2+10(x 1+x 2)+12=0.∴ 3(−83+4k 2)+10(−8k3+4k 2)+12=0,即12k 2−20k +3=0. 解得:k =16或k =32. 又由k >1,则k =32. 【考点】 椭圆的离心率 【解析】(1)根据题意,由椭圆离心率可得a =2c ,进而可得b =√3c ,则椭圆的标准方程为x 24c 2+y 23c 2=1,将P 的坐标代入计算可得c 的值,即可得答案; (2)根据题意,设直线l 的方程为y =kx +1,设M(x 1, y 1),N(x 2, y 2),将直线的方程与椭圆联立,可得(3+4k 2)x 2+8kx −8=0,由根与系数的关系分析,:x 1+x 2=−8k 3+4k 2,x 1x 2=−83+4k 2,结合椭圆的方程与直线的斜率公式可得3(−83+4k 2)+10(−8k3+4k 2)+12=0,即12k 2−20k +3=0,解可得k 的值,即可得答案. 【解答】(1)根据题意,椭圆的离心率为12,即e =c a=2,则a =2c .又∵ a 2=b 2+c 2,∴ b =√3c . ∴ 椭圆的标准方程为:x 24c 2+y 23c 2=1. 又∵ 点P(1, 32)为椭圆上一点,∴ 14c 2+943c 2=1,解得:c =1.∴ 椭圆的标准方程为:x 24+y 23=1.(2)由椭圆的对称性可知直线l 的斜率一定存在,设其方程为y =kx +1. 设M(x 1, y 1),N(x 2, y 2).联列方程组:{x 24+y 23=1y =kx +1 ,消去y 可得:(3+4k 2)x 2+8kx −8=0.∴ 由韦达定理可知:x 1+x 2=−8k 3+4k 2,x 1x 2=−83+4k 2.∵ k 1=y 1x1+2,k 2=y 2x 1−2,且k 1=2k 2,∴ y 1x 1+2=2y 2x 2−2,即y 12(x 1+2)2=4y 22(x 2−2)2.①又∵ M(x 1, y 1),N(x 2, y 2)在椭圆上, ∴ y 12=34(4−x 12),y 22=34(4−x 22).② 将②代入①可得:2−x12+x 1=4(2+x 2)2−x 2,即3x 1x 2+10(x 1+x 2)+12=0.∴ 3(−83+4k 2)+10(−8k 3+4k 2)+12=0,即12k 2−20k +3=0.解得:k =16或k =32. 又由k >1,则k =32.。
上海杨园中学高中数学选修2-1第三章《圆锥曲线与方程》检测(有答案解析)

一、选择题1.已知离心率为3的椭圆()2211x y m m +=>的左、右顶点分别为A ,B ,点P 为该椭圆上一点,且P 在第一象限,直线AP 与直线4x =交于点C ,直线BP 与直线4x =交于点D ,若83CD =,则直线AP 的斜率为( ) A .16或120 B .121C .16或121D .13或1202.已知P 为抛物线24y x =上任意一点,抛物线的焦点为F ,点(2,1)A 是平面内一点,则||||PA PF +的最小值为( )A .1B C .2D .33.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,点M 在双曲线C 的右支上,点N 在线段12F F 上(不与12,F F 重合),且1230F MN F MN ︒∠=∠=,若2132MN MF MF -=,则双曲线C 的渐近线方程为( )A .y x =±B .y =C .y =D .2y x =±4.已知椭圆中心在原点,且一个焦点为(0F ,直线43130x y +-=与其相交于M 、N 两点,MN 中点的横坐标为1,则此椭圆的方程是( )A .221325y x +=B .221325x y +=C .221369y x +=D .221369x y +=5.已知F 是双曲线22:13y C x -=的右焦点,Q 是双曲线C 左支上的一点,(0,M 是y 轴上的一点.当MQF 的周长最小时,过点Q 的椭圆与双曲线C 共焦点,则椭圆的离心率为( ) A .25B .45C .15D .236.过抛物线24y x =焦点F ,斜率为k (0k >)的直线交抛物线于A ,B 两点,若3AF BF =,则k =( )A B .2C D .17.已知椭圆C 的方程为22221(0,0)x y a b a b+=>>,过右焦点F 且倾斜角为4π的直线与椭圆C 交于A ,B 两点,线段AB 的垂直平分线分别交直线2a x c=和AB 于点P 和M ,若3||4||AB PM =,则椭圆C 的离心率为( )A .5B .3C D .28.设抛物线2:4C y x =的焦点为F ,倾斜角为30的直线l 过点F 且与曲线C 交于,A B 两点,则AOB (O 为坐标原点)的面积S=( )A .4B C .D .29.已知1F ,2F 是双曲线22221(0,0)x y a b a b-=>>的左右焦点,若在右支上存在点A 使得点2F 到直线1AF ,则离心率e 的取值范围是( )A .⎛ ⎝⎭B .⎫+∞⎪⎪⎝⎭C .⎛ ⎝⎭D .⎫+∞⎪⎪⎝⎭10.已知点P 是椭圆22:110064x y C +=上一点,M ,N 分别是圆22(6)1x y -+=和圆22(6)4x y ++=上的点,那么||||PM PN +的最小值为( )A .15B .16C .17D .1811.抛物线224y x x =-的焦点坐标是( ) A .F (0,18) B .F (1,-158) C .F (0,-158) D .(1,18) 12.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两个定点A 、B 的距离之比为λ(0λ>,1λ≠),那么点M 的轨迹就是阿波罗尼斯圆.若已知圆O :221x y +=和点1,02A ⎛⎫-⎪⎝⎭,点()4,2B ,M 为圆O 上的动点,则2MA MB +的最小值为( )A .B .C D 二、填空题13.椭圆2214924x y +=上一点P 与椭圆的两个焦点12,F F 的连线相互垂直,则12PF F △的面积为______.14.双曲线221916x y -=的左焦点到渐近线的距离为________.15.设1F ,2F 分别是椭圆()222210x y a b a b+=>>的左右焦点,过2F 的直线交椭圆于两点P ,Q ,若160F PQ ∠=︒,1PF PQ =,则椭圆的离心率为______.16.在平面直角坐标系xOy 中,抛物线()220y px p =>的焦点为F ,准线为l ,()2,0C p ,过抛物线上一点A 作l 的垂线,垂足为B ,AF 与BC 相交于点E .若2AF CF =,且ACE △的面积为p 的值为______.17.椭圆22143x y +=上一点A 到左焦点的距离为52,则A 点到右准线的距离为________.18.已知双曲线2222:1(0,0)x y C a b a b -=>>与椭圆221259x y +=的焦点重合,左准线方程为1x =-,设1F 、2F 分别为双曲线C 的左、右两个焦点,P 为右支上任意一点,则212PF PF 的最小值为_____________.19.已知1F 、2F 是椭圆22143x y +=的两个焦点,M 为椭圆上一点,若12MF F ∆为直角三角形,则12MF F S ∆=________.20.已知双曲线的方程为221916x y -=,点12,F F 是其左右焦点,A 是圆22(6)4x y +-=上的一点,点M 在双曲线的右支上,则1||||MF MA +的最小值是__________.三、解答题21.已知圆2219:24E x y ⎛⎫+-= ⎪⎝⎭,经过椭圆2222:1(0)x y C a b a b +=>>的左、右焦点12,F F ,且与椭圆C 在第一象限的交点为A ,且1F ,E ,A 三点共线,直线l 交椭圆C 于两点M ,N ,且(0)MN OA λλ=≠. (1)求椭圆C 的方程;(2)当AMN 的面积取到最大值时,求直线l 的方程.22.在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b+=>>的长轴长为准线的距离为8.(1)求椭圆的方程;(2)设N (0,2),过点P (-1,-2)作直线l ,交椭圆C 于不同于N 的A ,B 两点,直线NA ,NB 的斜率分别为k 1,k 2,证明:k 1+k 2为定值.23.在平面直角坐标系xOy 中,椭圆()2222:10x yC a b a b+=>>的离心率为12,过点(0,且BMN ∆是椭圆C 的内接三角形.(1)若点B 为椭圆C 的上顶点,且原点O 为BMN ∆的垂心,求线段MN 的长; (2)若点B 为椭圆C 上的一动点,且原点O 为BMN ∆的重心,求原点O 到直线MN 距离的最小值.24.已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点与抛物线24y x =的焦点相同,1F 、2F 分别为椭圆C 的左、右焦点,M 为C 上任意一点,12MF F S的最大值为1.(1)求椭圆C 的方程;(2)不过点F 2的直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点. ①若k 2=12,且S △AOB =22,求m 的值; ②若x 轴上任意一点到直线AF 2与BF 2距离相等,求证:直线l 过定点,并求出该定点的坐标.25.已知椭圆C :()222210x y a b a b+=>>的左、右焦点和短轴的两个端点构成边长为2的正方形.(1)求椭圆C 的方程;(2)过点()1,0Q 的直线l 与椭圆C 相交于,A B 两点.点()4,3P ,记直线PA ,PB 的斜率分别为12,k k ,当12k k ⋅最大时,求直线l 的方程.26.在平面直角坐标系xOy 中,动点M 到点(1,0)A -和(1,0)B 的距离分别为1d 和2d ,2AMB θ∠=,且212cos 1d d θ=.(1)求动点M 的轨迹E 的方程;(2)是否存在直线l 过点B 与轨迹E 交于P ,Q 两点,且以PQ 为直径的圆过原点O ?若存在,求出直线l 的方程,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由离心率求出9m =,设()00,p x y ,则20202200119999PA PBx y k k x x -⋅===---,设PA k k =(103k <<),则19PB k k=-,直线AP 的方程为()3y k x =+,则C 的坐标()4,7k ,直线BP 的方程为()139y x k -=-,则D 坐标14,9k ⎛⎫- ⎪⎝⎭,从而可表示出CD ,然后列方程可求出k 的值 【详解】由3e ==,得9m =. 设()00,p x y ,则20202200119999PA PBx y k k x x -⋅===---. 设PA k k =(103k <<),则19PB k k=-,直线AP 的方程为()3y k x =+,则C 的坐标()4,7k .直线BP 的方程为()139y x k -=-,则D 坐标14,9k ⎛⎫- ⎪⎝⎭.所以18793CD k k =+=,解得13k =(舍去)或121.故选:B. 【点睛】此题考查直线与椭圆的位置关系,考查直线方程的求法,考查计算能力,属于中档题2.D解析:D 【解析】设点P 在准线上的射影为D ,则根据抛物线的定义可知PF PD =,∴要求PA PF+取得最小值,即求PA PD +取得最小,当,,D P A 三点共线时PA PD +最小,为213--=(),故选D. 3.B解析:B 【分析】根据2132MN MF MF -=可得122F N F N =,所以112MF NMF NS S=,然后用面积公式将两个三角形面积表示出来,可得122MF MF =,再结合122MF MF a -=,余弦定理,可得a 、c 的关系,再利用222c a b =+ ,即可求出ba的值,进而可得渐近线方程. 【详解】∵2132MN MF MF -=,∴2122MN MF MF MN -=-,∴212F N NF =, ∴122F N F N =,∴122MF NMF NS S=.∵111||sin 302MF NSMF MN ︒=⋅⋅⋅,221||sin 302MF NS MF MN ︒=⋅⋅⋅, ∴122MF MF =,又122MF MF a -=,∴ 则124,2MF a MF a ==.在12MF F △中,由余弦定理得,222224164812c a a a a =+-=,故223c a =,∴222b a =, ∴2ba=, 故所求渐近线方程为2y x =±, 故选:B 【点睛】本题主要考查了双曲线离心率的求解,涉及了三角形面积公式、向量的线性运算、余弦定理,属于中档题.4.C解析:C 【解析】设椭圆方程为()222210y x a b a b+=>>联立方程:2222143130y x a b x y ⎧+=⎪⎨⎪+-=⎩,整理得:()222222216910416990b a x b x b a b +---=,设()11M x y ,,()22N x y ,,则1212x x +=,即2221042169b b a=+,化简得:224a b =, 又2227a b -=,易得:22369a b ⎧=⎨=⎩,∴此椭圆的方程是221369y x +=故选C点睛:弦中点问题解法一般为设而不求,关键是求出弦AB 所在直线方程的斜率k,方法一利用点差法,列出有关弦AB 的中点及弦斜率之间关系求解;方法二是直接设出斜率k ,利用根与系数的关系及中点坐标公式求得直线方程.5.B解析:B 【分析】当,,M Q E 三点共线时,MQ QE +最小,进而可求出Q 的坐标,结合椭圆的性质,可知椭圆的离心率EF e QE QF=+.【详解】由题意,双曲线22:13y C x -=中,2221,3,4a b c ===,设双曲线的左焦点为E ,则()2,0E -,右焦点()2,0F ,则4MF ==,根据双曲线的性质可知,2QF QE a -=,则MQF 的周长为26MF MQ QF MF MQ QE a MQ QE ++=+++=++,当,,M Q E 三点共线时,MQ QE +最小,此时MQF 的周长最小,此时直线ME 的方程为)32y x =+,联立)221332y x x y ⎧==+-⎪⎨⎪⎩,消去y 得450x +=,解得54x =-,则33y = 所以MQF 的周长最小时,点Q 的坐标为5334⎛- ⎝⎭, 过点Q 的椭圆的左焦点()2,0E -,右焦点()2,0F ,则2222533533224444QE QF ⎛⎫⎛⎫⎛⎫⎛⎫+=-++--+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭614544=+=, 所以椭圆的离心率45EFe QE QF ==+.故选:B. 【点睛】本题考查双曲线、椭圆的性质,考查椭圆离心率的求法,考查学生的计算求解能力,属于中档题.6.A解析:A 【分析】将直线方程代入抛物线可得212224k x x k++=,121=x x ,由3AF BF =可得1232x x =+,联立方程即可解出k .【详解】由题可得()1,0F ,则直线方程为()1y k x =-,将直线代入抛物线可得()2222240k x k x k -++=,设()()1122,,,A x y B x y ,则212224k x x k++=,121=x x ,由抛物线定义可得121,1AF x BF x =+=+,3AF BF =,则1232x x =+,结合212224k x x k++=可得1222312,x x k k =+=,代入121=x x , 则223121k k⎛⎫+⋅= ⎪⎝⎭,由0k >,可解得k = 故选:A. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.7.B解析:B 【分析】联立直线AB 与椭圆方程,表示出弦长AB ,求出中点M 的横坐标,即可表示出PM 的长,利用已知等量关系即可求出离心率. 【详解】设()()1122,,,A x y B x y ,易得直线AB 的方程为y x c =-,联立直线与椭圆方程22221y x cx y ab =-⎧⎪⎨+=⎪⎩,可得()()222222220a b x a cx a c b +-+-=,则212222a cx x a b +=+,()2221222a cb x x a b -=+,2224ab AB a b ∴==+, 212222M x x a cx a b +==+,直线PM 的斜率为1-, ()2222P Mb PM x xc a b ∴=-=+, 3||4||AB PM =,即()2222222434abb a bc a b ⨯=⨯++,解得c e a ==. 故选:B.【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.8.A解析:A 【分析】由已知求得直线l 的方程,与抛物线的方程联立,设1122(,),(,),A x y B x y 得出根与系数的关系1212 4.y y y y +==-再表示三角形的面积1211||2OABOAFOFBSSSy y =+=⨯⨯-,代入计算可得选项. 【详解】由2:4C y x =得(1,0)F ,所以直线l的方程为1)y x=-,即1x =+,联立得241y xx ⎧=⎪⎨=+⎪⎩,化简得240.y --=,设1122(,),(,),A x y B x y 则12124.y y y y +==-, 所以12111||422OABOAFOFBSSSy y =+=⨯⨯-===, 故选:A . 【点睛】方法点睛:本题考查直线与抛物线的位置关系,考查数学转化思想方法,涉及直线和圆锥曲线关系问题,常采用联立直线和圆锥曲线,然后利用一元二次方程的根与系数关系解题,将所求的目标转化到交点的坐标上去.9.D解析:D 【分析】设直线1AF 的方程,利用点2F 到直线的距离建立等式,解出斜率k ,因为0bk a<<,从而求出,a c 的不等关系,进而解出离心率的范围. 【详解】设1AF :()y k x c =+,因为点A 在右支上,则0b k a<<, 因为2231kca k=+,所以222222343a b k c a a =<-,即2247c a >,解得:72e > 故选:D . 【点睛】本题考查双曲线求离心率,属于中档题.方法点睛:(1)利用点到直线的距离建立等量关系; (2)解出斜率k 与,a b 的关系;(3)由点在右支和左焦点的位置关系,求出斜率k 的范围; (4)利用斜率k 的范围,建立,a c 的不等式,求出离心率的范围.10.C解析:C 【分析】由题意画出图形,数形结合以及椭圆的定义转化求解即可. 【详解】解:如图,椭圆22:110064x y C +=的10a =,8b =,所以6c =,圆22(6)1x y -+=和圆22(6)4x y ++=的圆心为椭圆的两个焦点,则当M ,N 为如图所示位置时,||||PM PN +的最小值为2(21)17a -+=. 故选:C . 【点睛】本题考查椭圆的简单性质,考查了椭圆定义的应用,考查数形结合的解题思想方法,属于中档题.11.B解析:B 【分析】右边配方后,利用抛物线的标准方程结合图象平移变换求解. 【详解】已知抛物线方程为22(1)2y x =--,即21(1)(2)2x y -=+,它的图象是由抛物线212x y =向右平移1单位,再向下平移2个单位得到的,抛物线212x y =中122p =,14p =,焦点坐标为1(0,)8,011+=,115288-=-,因此所求焦点坐标为15(1,)8-, 故选:B . 【点睛】本题考查求抛物线的焦点坐标,掌握抛物线的标准方程与图象变换是解题关键.12.B解析:B 【分析】令2MA MC =,则12MA MC=,所以12MAMC==,整理22222421333m n m n x y x y ++-+++=,得2m =-,0n =,点M 位于图中1M 、2M 的位置时,2MA MB MC MB +=+的值最小可得答案.【详解】设(),M x y ,令2MA MC =,则12MA MC=, 由题知圆221x y +=是关于点A 、C 的阿波罗尼斯圆,且12λ=, 设点(),C m n,则12MAMC==,整理得:22222421333m n m n x y x y ++-+++=, 比较两方程可得:2403m +=,203n =,22113m n +-=, 即2m =-,0n =,点()2,0C -, 当点M 位于图中1M 、2M 的位置时,2MA MBMC MB +=+的值最小,最小为.故选:B.【点睛】本题主要考查直线和圆的位置关系,圆上动点问题,考查两点间线段最短.二、填空题13.24【分析】设由结合椭圆定义可求得从而易得三角形面积【详解】椭圆中设由则又∴∴故答案为:24【点睛】本题考查椭圆的焦点三角形面积问题考查椭圆的定义属于基础题解析:24 【分析】设12,PF m PF n ==,由12PFPF ⊥结合椭圆定义可求得mn ,从而易得三角形面积. 【详解】椭圆2214924x y +=中7a =,26b =49245c =-,设12,PF m PF n ==,由12PFPF ⊥,则()2222100m n c +==,又214m n a +==, 2224100214m n c m n a ⎧+==⎨+==⎩,∴2222()()141004822m n m n mn +-+-===, ∴121242PF F S mn ==△. 故答案为:24. 【点睛】本题考查椭圆的焦点三角形面积问题,考查椭圆的定义,属于基础题.14.4【分析】首先根据题中所给的双曲线方程求出其左焦点坐标和渐近线方程之后利用点到直线的距离公式求得结果【详解】根据题意双曲线的方程为其中所以所以其左焦点的坐标为渐近线方程为即则左焦点到其渐近线的距离为解析:4 【分析】首先根据题中所给的双曲线方程,求出其左焦点坐标和渐近线方程,之后利用点到直线的距离公式求得结果. 【详解】根据题意,双曲线的方程为221916x y -=,其中3,4a b ==,所以5c =,所以其左焦点的坐标为(5,0)-,渐近线方程为43y x =±,即430x y ±=,则左焦点到其渐近线的距离为2045d ===, 故答案为:4. 【点睛】该题考查的是有关双曲线的问题,涉及到的知识点有根据双曲线的方程求其焦点坐标以及渐近线方程,点到直线的距离公式,属于简单题目.15.【分析】由几何关系得出为正三角形结合椭圆的定义得出轴利用椭圆方程得出结合直角三角形的边角关系得出再解方程即可得出答案【详解】为正三角形则由椭圆的定义可知则即轴设点由解得即在中即解得故答案为:【点睛】【分析】由几何关系得出1PFQ 为正三角形,结合椭圆的定义,得出PQ x ⊥轴,利用椭圆方程得出22b PF a=222ac =,再解方程220e +=,即可得出答案.【详解】1160,||F PQ PF PQ ︒∠==1PFQ 为正三角形,则11||PFPQ FQ == 由椭圆的定义可知,2112||2,2PF PF a QF QF a +=+= 则1212PF PF PF QF +=+,即22PF QF =PQ x ∴⊥轴设点()00,,0P c y y >,由220222221y c a ba b c ⎧+=⎪⎨⎪=+⎩,解得20b y a =,即22b PF a = 在12F PF ∆中,222211tan 2F F F PF c PF ab ∠==⋅=22ac =222ac =220e +=,解得3e =故答案为:33【点睛】本题主要考查了求椭圆的离心率,考查数形结合思想及运算能力,属于中档题.16.【分析】由题意知可求的坐标由于轴可得利用抛物线的定义可得代入可取再利用即可得出的值【详解】解:如图所示与轴平行解得代入可取解得故答案为:【点睛】本题考查了抛物线的定义及其性质平行线的性质三角形面积计 解析:6【分析】由题意知可求F 的坐标.由于//AB x 轴,||2||AF CF =,||||AB AF =,可得13||||22CF AB p ==,1||||2CE BE =.利用抛物线的定义可得A x ,代入可取A y ,再利用13ACE ABC S S ∆∆=,即可得出p 的值.【详解】 解:如图所示,,02p F ⎛⎫ ⎪⎝⎭,3||2CF p =,||||AB AF =.AB 与x 轴平行,||2||AF CF =,13||||22CF AB p ∴==,1||||2CE BE =.32A p x p ∴+=,解得52A x p =,代入可取5A y p =,1113535332ACE ABC S S p p ∆∆∴===,解得6p =.故答案为:6.【点睛】本题考查了抛物线的定义及其性质、平行线的性质、三角形面积计算公式.本题的关键在于求出A 的坐标后,如何根据已知面积列出方程.17.3【分析】先由椭圆的第一定义求出点到右焦点的距离再由第二定义求出点到右准线的距离【详解】由椭圆的第一定义得点到右焦点的距离等于离心率所以由椭圆的第二定义得即故点到右准线的距离故答案为:【点睛】本题考解析:3 【分析】先由椭圆的第一定义求出点P 到右焦点的距离,再由第二定义求出点P 到右准线的距离d . 【详解】由椭圆的第一定义得点P 到右焦点的距离等于53422-=,离心率12e =, 所以,由椭圆的第二定义得3122d =,即3d =,故点P 到右准线的距离3d =.故答案为:3 【点睛】本题考查椭圆的第一定义和第二定义,以及椭圆的简单性质,属于基础题.18.【分析】由焦点重合可知由左准线方程可知从而可求设根据双曲线的定义可知则结合基本不等式可求其最值【详解】解:由焦点重合可知;由左准线方程可知又由双曲线的定义可知从而可求出因为为右支上任意一点所以设则则解析:【分析】由焦点重合可知2216a b +=,由左准线方程可知21a c-=-,从而可求2,4a b c ===,设2PF t =,根据双曲线的定义可知,14PF t =+,则212168PF t PF t=++,结合基本不等式可求其最值. 【详解】解:由焦点重合可知,2225916a b +=-=;由左准线方程可知,21a c-=-,又由双曲线的定义可知,222c a b =+,从而可求出2,4a b c ===. 因为P 为右支上任意一点,所以1224PF PF a -==.设2,2PF t t c a =≥-=, 则14PF t =+,则()22124168816t PFt PF tt +==++≥+= 当且仅当16t t =,即4t =时等号成立.即21216PF PF ≥.故答案为:16. 【点睛】本题考查了双曲线的定义,考查了双曲线的准线方程,考查了椭圆的焦点求解,考查了基本不等式.本题的关键是由双曲线的定义,将所求的式子用一个变量来表示.利用基本不等式求最值时,一定要注意,一正二定三相等缺一不可.19.【分析】对各内角为直角进行分类讨论利用勾股定理和椭圆的定义建立方程组求得和利用三角形的面积公式可得出结果【详解】在椭圆中则(1)若为直角则该方程组无解不合乎题意;(2)若为直角则解得;(3)若为直角解析:32【分析】对12MF F ∆各内角为直角进行分类讨论,利用勾股定理和椭圆的定义建立方程组,求得1MF 和2MF ,利用三角形的面积公式可得出结果.【详解】在椭圆22143x y +=中,2a =,b =1c =,则122FF =.(1)若12F MF ∠为直角,则()12222122424MF MF a MF MF c ⎧+==⎪⎨+==⎪⎩,该方程组无解,不合乎题意; (2)若12MF F ∠为直角,则()12222212424MF MF a MF MF c ⎧+==⎪⎨-==⎪⎩,解得123252MF MF ⎧=⎪⎪⎨⎪=⎪⎩, 12121113322222MF F S F F MF ∆∴=⋅=⨯⨯=; (3)若12MF F ∠为直角,同理可求得1232MF F S ∆=. 综上所述,1232MF F S ∆=. 故答案为:32. 【点睛】本题考查椭圆中焦点三角形面积的计算,涉及椭圆定义的应用,考查计算能力,属于中等题.20.【分析】设点的坐标为利用双曲线的定义可得于是转化求解即可【详解】解:由题意可得即则的坐标分别为由双曲线的定义得又是圆上的点圆的圆心为半径为2由图可知则的最小值为故答案为:【点睛】本题主要考查双曲线的解析:【分析】设点C 的坐标为(0,6),利用双曲线的定义,可得12||||26MF MF a -==,于是1||||MF MA +=2||||2||MF CM a CA ++-2||62CF ≥+-,转化求解即可.【详解】解:由题意可得,291625c =+=,即5c =,则1F ,2F 的坐标分别为(5,0)-,(5,0),由双曲线的定义,得12||||26MF MF a -==,又A 是圆22(6)4x y +-=上的点,圆的圆心为(0,6)C ,半径为2, 由图可知,22||||||CM MF CF +≥,12||||||||2||MF MA MF CM a CA +=++-2||62461CF ≥+-=则1||||MF MA +的最小值为4+61 故答案为:4+61 【点睛】本题主要考查双曲线的几何性质,熟练掌握双曲线的性质及其圆外一点到圆上一点距离的最小值是解题的关键,属于中档题.三、解答题21.(1)22142x y +=;(2)220x +=或220x -=.【分析】(1)由题可先求出焦点坐标得出c ,由点1F ,E ,A 共线,可得21AF =,1||3AF =,则可求出a ,即可得出椭圆方程;(2)设出直线方程,联立直线与椭圆,利用韦达定理求出弦长,得出面积,即可求出最值,得出此时的直线方程. 【详解】(1)由2219()24x y +-=,令0y =得2x =±1(F ∴,2F ∴由点1F ,E ,A 共线,知E 为1AF 中点,则221AF OE ==,1||3AF =,242a a ∴=⇒=,∴2222b a c =-=,所求椭圆方程为:22142x y +=;(2)可知)A,由(MN OA λλ==,可得直线l设直线l 的方程为y x m =+,11(,)M x y ,22(,)N xy , 由22142y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩,得2220x m +-=, 由()22Δ)420m =-->,得22m-<<,12x x +=,2122x x m=-,12||MN x ∴=-==,又点A 到直线l 的距离为||d m =,∴1||||2AMNSMN d m ==)2242m m -+=≤=,当且仅当224mm -=,即m =时,等号成立, 综上,直线l的方程为2y x =+2y x =. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.22.(1)22184x y +=;(2)证明见解析.【分析】(1)根据长轴长、两准线的距离以及222a b c =+可得到椭圆的方程;(2)首先要对直线进行分类讨论,当斜率存在时,将直线与椭圆联立,设出,A B 两点的坐标,12k k +用12,x x 表示,再结合韦达定理就能得到证明. 【详解】(1)设椭圆的半焦距为c .因为椭圆的长轴长为8,所以2228a a c==,所以2a c ==,2b .所以椭圆的方程为22184x y +=.(2)证明①当直线l 的斜率不存在时,可得A ⎛- ⎝⎭,B 1,⎛- ⎝⎭, 得k 1+k 2=4.②当直线l 的斜率存在时,设斜率为k ,显然k ≠0,则其方程为y +2=k (x +1),由221,842(1),x y y k x ⎧+=⎪⎨⎪+=+⎩得(1+2k 2)x 2+4k (k -2)x +2k 2-8k =0. ∆=56k 2+32k >0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-24(2)12k k k -+,x 1x 2=222812k kk -+. 从而k 1+k 2=112y x -+222y x -=1212122(4)()kx x k x x x x +-+=2k -(k -4)·24(2)28k k k k--=4.综上,k 1+k 2为定值. 【点睛】方法点睛:求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 23.(12【分析】(1)根据题意,先求出椭圆的方程,由原点O 为BMN △的垂心可得BO MN ⊥,//MN x 轴,设(),M x y ,则(),N x y -,22443x y =-,根据·=0BM ON 求出线段MN 的长;(2)设MN 中点为D ,直线OD 与椭圆交于A ,B 两点,O 为BMN △的重心,则2BO OD OA ==,设MN :y kx m =+,()11,M x y ,()22,N x y ,则()1212,A x x y y ++,当MN 斜率不存在时,则O 到直线MN 的距离为1,由斜率存在时根据()()222222121211221434343x x y y x y x y +++=+=+=,即1212346x x y y +=-,由方程联立得出22443m k =+,再由点到直线的距离求出最值. 【详解】解:(1)设焦距为2c,由题意知:22212b b ac c a ⎧⎪=⎪=-⎨⎪⎪=⎩,22431a b c ⎧=⎪=⎨⎪=⎩因此,椭圆C 的方程为:22143x y +=;由题意知:BO MN ⊥,故//MN x 轴,设(),M x y ,则(),N x y -,22443x y =-,2227·403BM ON x y y =-+=-=,解得:y =, B ,M不重合,故y =213249x =,故2MN x ==(2)设MN 中点为D ,直线OD 与椭圆交于A ,B 两点,O 为BMN △的重心,则2BO OD OA ==,当MN 斜率不存在时,点D 在x 轴上,所以此时点B 在长轴的端点处 由2OB =,则1OD =,则O 到直线MN 的距离为1;当MN 斜率存在时,设MN :y kx m =+,()11,M x y ,()22,N x y , 则1212,22x x y y D ++⎛⎫⎪⎝⎭,所以()1212,A x x y y ++, 所以()()222222121211221434343x x y y x y x y +++=+=+=,即1212346x x y y +=-也即()()1212346x x kx m kx m +++=-()()221212434460kx x mk x x m +++++=223412y kx m x y =+⎧⎨+=⎩,则()2224384120k x mkx m +++-= ()2248430k m∆=+->,x =则:122843mk x x k -+=+,212241243m x x k -=+,代入式子得: 22223286043m k m k --=+,22443m k =+设O 到直线MN 的距离为d ,则2222431144441m k d k k k +===-+++0k =时,min 32d =; 综上,原点O 到直线MN 距离的最小值为32.【点睛】关键点睛:本题考查椭圆的内接三角形的相关性质的应用,解答本题的关键是设MN 中点为D ,直线OD 与椭圆交于A ,B 两点,O 为BMN △的重心,则2BO OD OA ==,根据点,,M N A 均在椭圆上,得出1212346x x y y +=-,由方程联立韦达定理得到22443m k =+,属于中档题.24.(1)2212x y +=;(2)①1m =±;②直线l 恒过定点(2,0).【分析】(1)根据题意,可求得1c =,1b =,进而求得a ,由此得到椭圆方程;(2)①联立方程,得到k 与m 的不等关系,及两根的关系,表示出弦长AB 及点O 到直线AB 的距离,由此建立等式解出即可;②依题意,120k k +=,由此可得到k 与m 的等量关系,进而求得定点. 【详解】(1)由抛物线的方程24y x =得其焦点为(1,0),则1c =, 当点M 为椭圆的短轴端点时,12MF F 面积最大,此时1212S c b =⨯⨯=,则1b =, ∴2a =2212x y +=;(2)联立2212x y y kx m ⎧+=⎪⎨⎪=+⎩得,222(12)4220k x kmx m +++-=,∆222222164(21)(22)8(21)0k m k m k m =-+-=-+>,得2212(*)k m +>,设1(A x ,1)y ,2(B x ,2)y ,则2121222422,1212km m x x x x k k-+=-=++, ①0m ≠且212k =,代入(*)得,202m <<,12|||AB x x -,设点O 到直线AB 的距离为d,则d ==∴12||||)23AOBm SAB d ==, 21(0,2)m ∴=∈,则1m =±; ②1122121122,1111y kx m y kx mk k x x x x ++====----,由题意,120k k +=, ∴1212011kx m kx m x x +++=--,即12122()()20kx x m k x x m +-+-=, ∴2222242()()201212m km k m k m k k-+---=++,解得2m k =-, ∴直线l 的方程为(2)y k x =-,故直线l 恒过定点,该定点坐标为(2,0).【点睛】方法点睛:证明曲线过定点,一般有两种方法.(1)特殊探求,一般证明:即可以先考虑动直线或曲线的特殊情况,找出定点的位置,然后证明该定点在该直线或该曲线上(定点的坐标直线或曲线的方程后等式恒成立).(2)分离参数法:一般可以根据需要选定参数R λ∈,结合已知条件求出直线或曲线的方程,分离参数得到等式2123(,)(,)(,)0f x y f x y f x y λλ++=,(一般地,(,)(1,2,3)i f x y i =为关于,x y 的二元一次关系式)由上述原理可得方程组123(,)0{(,)0(,)0f x y f x y f x y ===,从而求得该定点.25.(1)22142x y +=;(2)10x y --=.【分析】(1)已知条件得b c ==a ,可得椭圆标准方程;(2)当直线l 的斜率为0时,12k k 的值,当直线l 的斜率不为0时,设11(,)A x y ,22(,)B x y ,直线l 的方程为1x my =+,代入椭圆方程整理后应用韦达定理得1212,y y y y +,计算12k k ,化为m 的函数,然后换元,设41t m =+,求出12k k 的最大值,及m 的值得直线方程. 【详解】(1)由已知得2b c ==.又2224a b c =+=,所以椭圆的方程为22142x y +=.(2)①当直线l 的斜率为0时,则12k k ⋅=33342424⨯=-+; ②当直线l 的斜率不为0时,设11(,)A x y ,22(,)B x y ,直线l 的方程为1x my =+,将1x my =+代入22142x y +=,整理得22(2)230m y my ++-=.则12222m y y m -+=+,12232y y m -=+. 又111x my =+,221x my =+, 所以,112134y k k x -⋅=-2234y x -⋅-1212(3)(3)(3)(3)y y my my --=-- 12122121293()93()y y y y m y y m y y -++=-++=2232546m m m ++=+23414812m m +=++. 令41t m =+,则122324225t k k t t ⋅=+-+32254()2t t=++-1≤所以当且仅当5t =,即1m =时,取等号. 由①②得,直线l 的方程为10x y --=.【点睛】关键点点睛:本题考查求椭圆标准方程,考查椭圆中的最值问题.解题方法是设而不求的思想方法,即设交点坐标11(,)A x y ,22(,)B x y ,设直线l 的方程为1x my =+,直线方程代入椭圆方程整理后应用韦达定理得1212,y y y y +,然后代入12k k ,化为m 的函数,用换元法求得最值.26.(1)2212x y +=;(2)存在;2(1)y x =±-.【分析】(1)由余弦定理可得1222d d +=.(2)设P ,Q 两点的坐标依次为()11,x y ,()22,x y ,以线段PQ 为直径的圆过原点得,0OP OQ ⋅=,即12120x x y y +=,先假设存在直线l 满足题设,设直线l 的方程为(1)y k x =-,与椭圆方程联立,韦达定理代入求出k 的值,再检验斜率不存在的情况.【详解】(1)当0θ≠时,在ABM 中,由余弦定理得:22121242cos2d d d d θ=+-. 又212cos1d d θ=,整理得,12d d +=所以点M 的轨迹E 是以(1,0)A -和(1,0)B为焦点,长轴长为个端点)又当点M 为该椭圆的长轴的两个端点时,0θ=,也满足212cos1d d θ=.所以点M 的轨迹E 的方程是2212x y +=.(2)假设存在直线l 满足题设,设直线l 的方程为(1)y k x =-,由22(1)12y k x x y =-⎧⎪⎨+=⎪⎩ 得()2222124220k x k x k +-+-= 设P ,Q 两点的坐标依次为()11,x y ,()22,x y ,由韦达定理得,2122412k x x k +=+,21222212k x x k-=+. 由题意以线段PQ 为直径的圆过原点得,0OP OQ ⋅=,即12120x x y y +=.又()()()212121212111y y k x k x k x x x x =--=-++⎡⎤⎣⎦, 整理得:()212121210x k x x x x x =⎡-+⎤⎣⎦++.代入整理得:22222222222410121212k k k k k k k ⎛⎫--+-+= ⎪+++⎝⎭,即k = 当直线l 的斜率不存在时,直线l 的方程为1x =,此时1,2P ⎛ ⎝⎭、1,2Q ⎛- ⎝⎭,经验证0OP OQ ⋅≠不满足题意.综上所述,所求直线l存在,其方程为1)y x =-. 【点睛】关键点睛:本题考查求轨迹方程和根据条件求直线方程,解答本题的关键是由以线段PQ 为直径的圆过原点,得0OP OQ ⋅=,即12120x x y y +=,转化为方程联立韦达定理代入求解,将条件转化为向量的数量积为0,进而转化为利用韦达定理求解的方法,属于中档题.。
(必考题)高中数学高中数学选修2-1第三章《圆锥曲线与方程》检测(答案解析)(5)

一、选择题1.已知抛物线24x y =上的一点M 到此抛物线的焦点的距离为2,则点M 的纵坐标是( ) A .0B .12C .1D .22.若点)0到双曲线C :22221x y a b-=(0a >,0b >)的离心率为( )A B C D 3.已知双曲线()222210,0x y a b a b-=>>,过其右焦点F 作x 轴的垂线,交双曲线于A 、B 两点,若双曲线的左焦点在以AB 为直径的圆内,则双曲线离心率的取值范围是( )A .(B .(1,1C .)+∞D .()1++∞4.已知点F 是椭圆()2222:10x y C a b a b+=>>的一个焦点,点P 是椭圆C 上的任意一点且点P 不在x 轴上,点M 是线段PF 的中点,点O 为坐标原点.连接OM 并延长交圆222x y a +=于点N ,则PFN 的形状是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .由点P 位置决定5.已知椭圆2222:1(0)x y E a b a b +=>>的左、右焦点分别为1F ,2F ,M 为E 上一点.若126MF F π∠=,21212F F F M F F +=,则E 的离心率为( )A .12 B .12C 1D 16.已知双曲线221(0,0)x y m n m n-=>>和椭圆22174x y +=有相同的焦点,则11m n +的最小值为( )A .12B .32C .43D .97.已知抛物线22y px =(0p >)的焦点F 到准线的距离为2,过焦点F 的直线与抛物线交于A ,B 两点,且3AF FB =,则点A 到y 轴的距离为( ) A .5B .4C .3D .28.若圆222210x y ax y +-++=与圆221x y +=关于直线1y x =-对称,过点()2,C a a -的圆P 与y 轴相切,则圆心P 的轨迹方程为( )A .24480y x y -++=B .22220y x y +-+=C .2210y x y ---=D .24250y x y +-+=9.已知椭圆22:12x C y +=,直线l 过椭圆C 的左焦点F 且交椭圆于A ,B 两点,AB 的中垂线交x 轴于M 点,则2||||FM AB 的取值范围为( ) A .11,164⎛⎫⎪⎝⎭B .11,84⎡⎫⎪⎢⎣⎭C .11,162⎛⎫⎪⎝⎭D .11,82⎡⎫⎪⎢⎣⎭10.阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两个定点A 、B 的距离之比为λ(0λ>,1λ≠),那么点M 的轨迹就是阿波罗尼斯圆.若已知圆O :221x y +=和点1,02A ⎛⎫-⎪⎝⎭,点()4,2B ,M 为圆O 上的动点,则2MA MB +的最小值为( )A .B .C D 11.在平面直角坐标系xOy 中,设12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,P 是双曲线左支上一点,M 是1PF 的中点,且1OM PF ⊥,122PF PF =,则双曲线的离心率为A B .2C D 12.双曲线2214x y -=的离心率为( )A B C D .2二、填空题13.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别为直线1l ,2l ,经过右焦点F 且垂直于1l 的直线l 分别交1l ,2l 于A ,B 两点,且3FB AF =,则该双曲线的离心率为_______.14.如图,将桌面上装有液体的圆柱形杯子倾斜α角(母线与竖直方向所成角)后,液面呈椭圆形,当30α=︒时,该椭圆的离心率为____________.15.已知抛物线24x y =的焦点为F ,双曲线()2222:10,0x y C a b a b-=>>的右焦点为1F ,过点F 和1F 的直线l 与抛物线在第一象限的交点为M ,且抛物线在点M 处的切线与直线3y x =-垂直,当3a b 取最大值时,双曲线C 的方程为________.16.动点P 在曲线221y x =+上运动,则点P 与定点(0,1)M -连线的中点N 的轨迹方程为_______.17.一个动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切,则这个动圆圆心的轨迹方程为:______.18.已知抛物线()220x py p =>的焦点为F ,其准线与双曲线2212x y -=相交于A ,B 两点.若ABF ∆为直角三角形,则抛物线的准线方程为________.19.已知1F 、2F 是椭圆22143x y +=的两个焦点,M 为椭圆上一点,若12MF F ∆为直角三角形,则12MF F S ∆=________.20.已知1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,第一象限的点P 在渐近线上,满足12F PF 2π∠=,直线1PF 交双曲线左支于点Q ,若点Q 是线段1PF 的中点,则该双曲线的离心率为_____.三、解答题21.在平面直角坐标系xOy 中,已知抛物线2:2(0)C y px p =>的焦点与椭圆:2212x y +=的右焦点重合. (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)记(4,0)P ,若抛物线C 上存在两点B ,D ,使PBD △为以P 为顶点的等腰三角形,求直线BD 的斜率的取值范围.22.椭圆2212x y +=的左、右焦点为1F 、2F ,经过1F 作倾斜角为60的直线l 与椭圆相交于A B ,两点. 求(1)线段AB 的长; (2)2ABF 的面积.23.如图所示,已知椭圆()2222:10x y C a b a b+=>>,222:O x y b +=,点A 是椭圆C的左顶点,直线AB 与O 相切于点()1,1B -.(1)求椭圆C 的方程;(2)若O 的切线l 与椭圆C 交于M ,N 两点,求OMN 面积的取值范围.24.已知椭圆222:1(1)x C y m m+=>,点P 是C 上的动点,M 是右顶点,定点A 的坐标为(2,0).(1)若3m =,求PA 的最大值与最小值;(2)已知直线:5l y x =-,如果P 到直线l 的最小值为2,求m 的值. 25.已知抛物线2:2(0)C y px p =>的准线方程为1x =-. (1)求抛物线C 的方程;(2)设点(1,2)P 关于原点O 的对称点为点Q ,过点Q 作不经过点O 的直线与C 交于两点A ,B ,直线PA ,PB 分别交x 轴于M ,N 两点,求MF NF ⋅的值.26.如图,在平面直角坐标系xOy 中,A ,B 是椭圆22221(0)x ya b a b+=>>的左、右顶点,22AB =,离心率22e =.F 是右焦点,过F 点任作直线l 交椭圆于M ,N 两点.(1)求椭圆的方程;(2)试探究直线AM 与直线BN 的交点P 是否落在某条定直线上?若是,请求出该定直线的方程;若不是,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:先根据抛物线方程求得焦点坐标及准线方程,进而根据抛物线的定义可知点p 到焦点的距离与到准线的距离相等,进而推断出y p +1=2,求得y p . 解:根据抛物线方程可求得焦点坐标为(0,1),准线方程为y=﹣1, 根据抛物线定义, ∴y p +1=2, 解得y p =1. 故选C .考点:抛物线的简单性质.2.A解析:A 【分析】先求得双曲线C 的其中一条渐近线方程0bx ay -=,根据点)0到双曲线C 的渐近线223c a =,即可求得双曲线的离心率. 【详解】由题意,双曲线C :22221x y a b-=的其中一条渐近线方程为b y x a =,即0bx ay -=,因为点)0到双曲线C==2232b c =,即222332c a c -=,即223c a =,所以==ce a故选:A. 【点睛】本题考查了双曲线的标准方程及几何性质,其中求双曲线的离心率(或范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程,即可得e 的值(范围).3.D解析:D 【分析】由题将x c =代入双曲线,可求出圆半径,再根据题意可得22bc a<,即可由此求出离心率.【详解】由题可得AB x ⊥轴,将x c =代入双曲线可得2by a=±,∴以AB 为直径的圆的半径为2b AF a=,双曲线的左焦点在以AB 为直径的圆内,22b c a∴<,即22b ac >,即222c a ac ->,两边除以2a 可得2210e e -->,解得1e <1e >故双曲线离心率的取值范围是()1+∞. 故选:D. 【点睛】本题考查双曲线离心率的取值范围的求解,解题的关键是求出圆半径,根据题意得出22b c a <.4.B解析:B 【分析】根据定义可得12PF PF a +=,进而得出OM PM a +=,根据MN ON OM =-求出MN PM MF ==,得出90PNF ∠=,即可判断. 【详解】设F 是右焦点,左焦点为1F ,12PF PF a ∴+=,在1PFF 中,,O M 分别是1,FF PF 中点,12,2PF OM PF PM ∴==,1222PF PF OM PM a ∴+=+=,即OM PM a +=,()MN ON OM a a PM PM ∴=-=--=,MN PM MF ∴==,∴N 在以线段PF 为直径的圆上,90PNF ∴∠=,故PFN 的形状是直角三角形. 故选:B.【点睛】本题考查椭圆定义的应用,解题的关键是应用椭圆的定义得出MN PM MF ==,从而判断90PNF ∠=.5.B解析:B 【分析】先取线段1F M 中点P ,连接2PF ,得到2c P F =,结合正弦定理证明12F PF ∠是直角,求出12,F M MF ,再根据定义122FM MF a +=得到,a c 之间关系,即求得离心率. 【详解】如图椭圆中,取线段1F M 中点P ,连接2PF ,则21222F F F M F P+=,因为21212F F F M F F +=,所以21222F F F P c ==,则2c P F =,12F F P 中,1212122sin sin F F M P F F F P F F =∠∠,即122sin sin6c P F F c π=∠,解得12in 1s P F F =∠,又()120,F PF π∠∈,12F PF ∠=2π,故13F P c =,2PF 是线段1F M 的中垂线,故121223,2FM c MF F F c ===,结合椭圆定义122FM MF a +=,故22c a +=,即)1c a =,故离心率12c e a ===. 故选:B. 【点睛】求椭圆离心率(或取值范围)的常见方法: (1)直接法:由a ,c 直接计算离心率ce a=; (2)构建齐次式:利用已知条件和椭圆的几何关系构建关于a ,b ,c 的方程和不等式,利用222b a c =-和ce a=转化成关于e 的方程和不等式,通过解方程和不等式即求得离心率的值或取值范围.6.C解析:C 【分析】本题首先可根据双曲线和椭圆有相同的焦点得出3m n +=,然后将11m n+转化为123m n n m ⎛⎫++ ⎪⎝⎭,最后利用基本不等式即可求出最小值. 【详解】因为双曲线221x y m n-=和椭圆22174x y +=有相同的焦点,所以743m n ,则()111111233m n m n m n n m n m ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭ 142233m n n m,当且仅当m n =时取等号, 故11m n+的最小值为43,故选:C. 【点睛】关键点点睛:本题考查双曲线与椭圆焦点的相关性质的应用,双曲线有222+=a b c ,椭圆有222a b c =+,考查利用基本不等式求最值,是中档题.7.C解析:C 【分析】可设出直线方程与抛物线方程联立,得出12x x ,再由焦半径公式表示出3AF FB =,得到1232x x =+,结合这两个关系式可求解13x =【详解】已知焦点F 到准线的距离为2,得2p =, 可得24y x =设()()1122,,,A x y B x y ,:1AB x my =+ 与抛物线方程24y x =联立可得:2440y my --=124y y ∴=-,()21212116y y x x ∴==①又3AF FB =,()12131x x ∴+=+,1232x x ∴=+② 根据①②解得13x = 点A 到y 轴的距离为3 故选:C 【点睛】抛物线中焦半径公式如下:抛物线()220y px p =>的焦点为F ,()11,A x y 为抛物线上的一点,则12pAF x =+,解题时可灵活运用,减少计算难度.8.D解析:D 【分析】首先根据两圆的对称性,列式求a ,再利用直接法求圆心P 的轨迹方程. 【详解】由条件可知222210x y ax y +-++=的半径为1,并且圆心连线所在直线的斜率是1-,()()2222222101x y ax y x a y a +-++=⇔-++=,,圆心(),1a -,22r a =,所以2111a a -⎧=-⎪⎨⎪=⎩,解得:1a =,即()2,1C -设(),P x y ,由条件可知PC x =x =,两边平方后,整理为24250y x y +-+=. 故选:D 【点睛】方法点睛:一般求曲线方程的方法包含以下几种:1.直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.2.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.3.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法.9.B解析:B 【分析】 当l :0y =时,2||1||8FM AB =,设():10l x my m =-≠与椭圆联立可得:()222210my my +--=, 然后求得AB 的中垂线方程,令0y = ,得21,02M m ⎛⎫- ⎪+⎝⎭,然后分别利用两点间的距离公式和弦长公式求得||MF ,2||AB ,建立2||||FM AB 求解. 【详解】椭圆22:12x C y +=的左焦点为()1,0F -,当l :0y =时,())(),,0,0A B M,1,FM AB ==所以2||1||8FM AB =, 设():10l x my m =-≠与椭圆联立22112x my x y =-⎧⎪⎨+=⎪⎩,可得: ()222210my my +--=,由韦达定理得:1221222212m y y m y y m ⎧+=⎪⎪+⎨-⎪=⎪+⎩,取AB 中点为222,22m D m m -⎛⎫⎪++⎝⎭, 所以AB 的中垂线方程为:2212:22DM m l x y m m m ⎛⎫=--- ⎪++⎝⎭, 令0y = ,得21,02M m ⎛⎫-⎪+⎝⎭, 所以221||2m MF m +=+,又()()2222281||2m AB m +==+,所以2222||121111=1(,)||818184FM m AB m m ⎛⎫+⎛⎫=+∈ ⎪ ⎪++⎝⎭⎝⎭, 综上所述2||11,||84FM AB ⎡⎫∈⎪⎢⎣⎭, 故选:B. 【点睛】思路点睛:1、解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单. 2、设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2), 则弦长为AB ===k 为直线斜率). 注意:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式大于零.10.B解析:B 【分析】令2MA MC =,则12MA MC=,所以12MAMC==,整理22222421333m n m n x y x y ++-+++=,得2m =-,0n =,点M 位于图中1M 、2M 的位置时,2MA MB MC MB +=+的值最小可得答案.【详解】设(),M x y ,令2MA MC =,则12MA MC=, 由题知圆221x y +=是关于点A 、C 的阿波罗尼斯圆,且12λ=, 设点(),C m n,则12MAMC==,整理得:22222421333m n m n x y x y ++-+++=,比较两方程可得:2403m +=,203n =,22113m n +-=, 即2m =-,0n =,点()2,0C -, 当点M 位于图中1M 、2M 的位置时,2MA MB MC MB +=+的值最小,最小为210.故选:B.【点睛】本题主要考查直线和圆的位置关系,圆上动点问题,考查两点间线段最短.11.C解析:C 【分析】运用双曲线的定义和△PF 1F 2为直角三角形,则|PF 2|2+|PF 1|2 =|F 1F 2|2,由离心率公式,计算即可得到离心率的范围. 【详解】因为M 是1PF 的中点,O 为12F F 的中点,所以OM 为三角形F 1PF 2的中位线. 因为1OM PF ⊥,所以21PF PF ⊥.又因为212PF PF a -=,122PF PF =,122F F c =, 所以122,4PF a PF a ==.在△F 1PF 2中,21PF PF ⊥,所以2221212PF PF F F +=,代入得()()()222242a a c +=,所以225c a =,即5e =故选C. 【点睛】本题考查了平面几何知识在圆锥曲线中的基本应用,根据边长关系求得离心率,属于基础题.根据各个边长关系,判断出21PF PF ⊥,再根据勾股定理求出离心率.12.C解析:C【解析】双曲线2214x y -=中,222224,1,5,a b c a b e ==∴=+=∴== 本题选择C 选项.二、填空题13.【分析】由题意得解方程即可求解【详解】由题意得由题得∴整理得即∴即故答案为:【点睛】本题主要考查了双曲线离心率的求法考查了直线与双曲线的简单几何性质属于中档题【分析】由题意得FA b =,3FB b =,OA a =,tan tan b BOF AOF a∠=∠=,4tan tan 2bBOA BOF a∠=∠=,解方程即可求解. 【详解】由题意得FA b =,3FB b =,OA a =, 由题得tan tan b BOF AOF a∠=∠=, ∴24tan tan 21()b b ba a BOA BOFb a a+∠==∠=-, 整理得222a b =,即2222()a c a =-, ∴2232a c =,232e =,即e =.【点睛】本题主要考查了双曲线离心率的求法,考查了直线与双曲线的简单几何性质,属于中档题.14.【分析】由图知椭圆的短轴长为圆柱的直径椭圆的长半轴与底面半径构成夹角为的直角三角形由此可求得椭圆离心率【详解】设圆柱形杯子的底面半径为画示意图如图所示:则是椭圆的长半轴长是椭圆的短半轴长则又则故答案 解析:12【分析】由图知椭圆的短轴长为圆柱的直径,椭圆的长半轴与底面半径构成夹角为30的直角三角形,由此可求得椭圆离心率. 【详解】设圆柱形杯子的底面半径为b ,画示意图如图所示:则OC 是椭圆的长半轴长,OB 是椭圆的短半轴长,则22BC a b c =-=,又30COB α∠==︒,则1sin 2c e a α===. 故答案为:12【点睛】本题考查了圆柱的截面为椭圆的问题,根据椭圆的性质求出椭圆的离心率,考查了学生的分析能力,空间想象能力,属于中档题.15.【分析】设点的坐标为则利用导数的几何意义结合已知条件求得点的坐标可求得直线的方程并求得点的坐标可得出利用三角换元思想求得的最大值及其对应的的值由此可求得双曲线的标准方程【详解】设点的坐标为则对于二次解析:2213944x y -= 【分析】设点M 的坐标为()00,x y ,则00x >,利用导数的几何意义结合已知条件求得点M 的坐标,可求得直线l 的方程,并求得点1F 的坐标,可得出223a b +=,利用三角换元思想求得3a b 的最大值及其对应的a 、b 的值,由此可求得双曲线的标准方程. 【详解】设点M 的坐标为()00,x y ,则00x >,对于二次函数24x y =,求导得2x y '=,由于抛物线24x y =在点M 处的切线与直线3y x =-垂直,则(0312x ⨯=-, 解得023x =,则200143x y ==,所以,点M 的坐标为2313⎫⎪⎪⎝⎭,抛物线24x y =的焦点为()0,1F ,直线MF的斜率为11MFk -==所以,直线l的方程为13y x =-+,该直线交x轴于点)1F ,223a b ∴+=,可设a θ=,b θ=,其中02θπ≤<,3sin 6a πθθθ⎛⎫=+=+ ⎪⎝⎭,02θπ≤<,13666πππθ∴≤+<, 当62ππθ+=时,即当3πθ=时,a取得最大值此时,32a π==,332b π==,因此,双曲线的标准方程为2213944x y -=. 故答案为:2213944x y -=. 【点睛】本题考查双曲线方程的求解,同时也考查了利用导数求解二次函数的切线方程,以及利用三角换元思想求代数式的最值,考查计算能力,属于中等题.16.【分析】设得到代入曲线整理得到答案【详解】设则即代入曲线得到即故答案为:【点睛】本题考查了轨迹方程意在考查学生的计算能力和转化能力确定坐标的关系是解题的关键 解析:24y x =【分析】设(),N x y ,()00,P x y ,得到00221x xy y =⎧⎨=+⎩,代入曲线整理得到答案.【详解】设(),N x y ,()00,P x y ,则00212x x y y ⎧=⎪⎪⎨-⎪=⎪⎩,即00221x x y y =⎧⎨=+⎩,代入曲线得到()221221y x +=⋅+,即24y x =.故答案为:24y x =. 【点睛】本题考查了轨迹方程,意在考查学生的计算能力和转化能力,确定,N P 坐标的关系是解题的关键.17.【分析】设动圆的圆心为半径为R 根据动圆与圆外切与圆内切得到两式相加得到再根据椭圆的定义求解【详解】设动圆的圆心为半径为R 因为动圆与圆外切与圆内切所以所以所以动圆圆心的轨迹为以为焦点的椭圆所以所以动圆解析:2212516x y +=【分析】设动圆的圆心为(),Q x y ,半径为R ,根据动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切,得到121,9QQ R QQ R =+=-,两式相加得到1212106QQ QQ QQ +=>=,再根据椭圆的定义求解.【详解】设动圆的圆心为(),Q x y ,半径为R ,因为动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切, 所以121,9QQ R QQ R =+=-, 所以1212106QQ QQ QQ +=>=, 所以动圆圆心的轨迹为以12,Q Q 为焦点的椭圆, 所以2210,5,3,16a a c b ====,所以动圆圆心的轨迹方程为2212516x y +=, 故答案为:2212516x y += 【点睛】本题主要考查圆与圆的位置关系以及椭圆的定义,还考查了运算求解的能力,属于中档题.18.【分析】先求出准线方程为代入双曲线方程可得AB 的坐标再由为直角三角形设中点为则即进而求解【详解】由题可知准线方程为因为与双曲线相交于AB 则为为因为为直角三角形由双曲线的对称性可得设中点为则即解得即所 解析:1y =-【分析】先求出准线方程为2py =-,代入双曲线方程可得A ,B 的坐标,再由ABF ∆为直角三角形,设AB 中点为C ,则CE AC =,即p =进而求解.【详解】由题可知准线方程为2p y =-, 因为与双曲线2212x y -=相交于A ,B ,则A为2p ⎛⎫- ⎪ ⎪⎝⎭,B为2p ⎫-⎪⎪⎭, 因为ABF ∆为直角三角形,由双曲线的对称性可得90AFB ∠=︒,设AB 中点为C ,则CE AC =,即p =解得24p =,即2p =, 所以准线方程为1y =-, 故答案为:1y =- 【点睛】本题考查抛物线的几何性质,考查双曲线的方程的应用,考查运算能力.19.【分析】对各内角为直角进行分类讨论利用勾股定理和椭圆的定义建立方程组求得和利用三角形的面积公式可得出结果【详解】在椭圆中则(1)若为直角则该方程组无解不合乎题意;(2)若为直角则解得;(3)若为直角解析:32【分析】对12MF F ∆各内角为直角进行分类讨论,利用勾股定理和椭圆的定义建立方程组,求得1MF 和2MF ,利用三角形的面积公式可得出结果.【详解】在椭圆22143x y +=中,2a =,b =1c =,则122FF =.(1)若12F MF ∠为直角,则()12222122424MF MF a MF MF c ⎧+==⎪⎨+==⎪⎩,该方程组无解,不合乎题意; (2)若12MF F ∠为直角,则()12222212424MF MF a MF MF c ⎧+==⎪⎨-==⎪⎩,解得123252MF MF ⎧=⎪⎪⎨⎪=⎪⎩, 12121113322222MF F S F F MF ∆∴=⋅=⨯⨯=; (3)若12MF F ∠为直角,同理可求得1232MF F S ∆=. 综上所述,1232MF F S ∆=.故答案为:32. 【点睛】本题考查椭圆中焦点三角形面积的计算,涉及椭圆定义的应用,考查计算能力,属于中等题.20.【分析】由题意结合渐近线的性质可得则把点坐标代入双曲线方程可得化简即可得解【详解】点在第一象限且在双曲线渐近线上又直线的斜率为又点是线段的中点又在双曲线上化简得因为故解得故答案为:【点睛】本题考查了1【分析】由题意结合渐近线的性质可得(,)P a b ,则,22a c b Q -⎛⎫⎪⎝⎭,把Q 点坐标代入双曲线方程可得222222()44a cb b a a b -⋅-⋅=,化简即可得解. 【详解】12F PF 2π∠=,点P 在第一象限且在双曲线渐近线上,∴121||2OP F F c ==, 又直线OP 的斜率为ba,∴(,)P a b , 又 1(,0)F c -,点Q 是线段1PF 的中点,∴,22a c b Q -⎛⎫⎪⎝⎭, 又 ,22a c b Q -⎛⎫⎪⎝⎭在双曲线22221(0,0)x y a b a b -=>>上, ∴222222()44a cb b a a b -⋅-⋅=,化简得222222()5420b ac a b a ac c ⋅-=⇒--+=, ∴2240e e --=,因为1e >,故解得1e =1. 【点睛】本题考查了双曲线的性质和离心率的求解,考查了计算能力,属于中档题.三、解答题21.(Ⅰ)方程为24y x =,准线为1x =-;(Ⅱ)2,,22⎛⎛⎫-∞-+∞ ⎪⎝⎭⎝⎭【分析】(Ⅰ)由椭圆方程可得其右焦点为()1,0,即可求出p ,得出抛物线方程和准线; (Ⅱ)设直线BD 的方程为y kx m =+,联立直线与抛物线方程,可得1km <,表示出BD 中点M ,由题可得PM BD ⊥,由1PM k k=-建立关系可求. 【详解】(Ⅰ)由椭圆方程可得其右焦点为()1,0, 抛物线与椭圆右焦点重合,12p∴=,即2p =, 故抛物线C 的方程为24y x =,准线为1x =-; (Ⅱ)设直线BD 的方程为y kx m =+, 联立直线与抛物线方程24y kx m y x=+⎧⎨=⎩,可得()222240k x km x m +-+=, 则()2222440km k m ∆=-->,可得1km <,设()()1122,,,B x y D x y ,212122242,km m x x x x k k-∴+==, 设BD 中点为()00,M x y ,则120222x x km x k +-==,002y kx m k=+=,PBD △为以P 为顶点的等腰三角形,则PM BD ⊥,则222212244PMk k k km km k k k -===-----,整理可得222km k =-, 1km <,则2221k -<,解得k <或k >,故直线BD的斜率的取值范围为2,,22⎛⎛⎫-∞-+∞ ⎪⎝⎭⎝⎭. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.22.(1)7;(2)7. 【分析】(1)求出椭圆的左焦点1(1,0)F -,根据点斜率式可得AB 的方程,直线方程与椭圆方程消去y ,利用根与系数的关系,根据弦长公式即可算出弦AB 的长;(2)利用点到直线的距离公式求出三角形的高,结合(1)的结论,再利用三角形面积公式可得答案. 【详解】椭圆方程为2212x y +=,∴焦点分别为1(1,0)F -,2(1,0)F ,直线AB 过左焦点1F 倾斜角为60︒,∴直线AB 的方程为1)y x =+,将AB 方程与椭圆方程消去y ,得271240x x ++= 设1(A x ,1)y ,2(B x ,2)y ,可得12127x x +=-,1247x x =12||x x ∴-=因此,12||||AB x x =-=. (2)2F (1,0)到直线AB 的距离为:d ==212ABF SAB d == 【点睛】求曲线弦长的方法:(1)利用弦长公式12l x =-;(2)利用12l y y =-;(3)如果交点坐标可以求出,利用两点间距离公式求解即可.23.(1)22142x y +=;(2)(OMN S ∈△. 【分析】(1)由点()1,1B -在O 上可得22b =,然后由OB AB ⊥可求出a ;(2)分切线斜率存在和不存在两种情况讨论,斜率不存在时利用弦长公式表示出MN 并求出其范围即可. 【详解】(1)由直线AB 与O 相切于点()1,1B -,可知点()1,1B -在O 上,则22b =, 又点(),0A a -,且OB AB ⊥,则10101101a--⨯=----+,解得2a =,故所求椭圆方程为22142x y +=.(2)若切线斜率存在,设切线为0kx y m -+=,其中0k ≠,切线l 与椭圆C 交点()11,M x y ,()22,N x y ,则圆心到直线l的距离d ==()2221m k ∴=+,联立方程220142kx y m x y -+=⎧⎪⎨+=⎪⎩,消去y 得()222214240k x kmx m +++-=,则122421km x x k -+=+,21222421-=+m x x k()0,2MN ====,当切线斜率不存在时,此时2MN =,故O 的切线l 与椭圆C 相交弦长取值范围为(]0,2,又12OMN S d MN =⋅⋅=△,可得(OMN S ∈△. 【点睛】关键点睛:在解决圆锥曲线中的面积问题时,要善于观察图形的特点,怎么表示出面积是解题的关键.24.(1)min ||2PA =;max ||5PA =;(2)m =. 【分析】(1)设(,)P x y ,利用两点间的距离公式,将问题转化为二次函数求最值.(2)根据图形可知,当直线l 平移与椭圆第一次相切时,切点P 到直线l 的距离最小,则问题转化为椭圆的切线问题,设与l 平行的直线方程为y x t =+,将直线与椭圆方程联立,则0∆=,可得t =,根据图形观察可知,当t =时,直线l 与其平行线距离最小,根据最小值即可求解. 【详解】解:(1)3m =,椭圆方程为2219x y +=,设(,)P x y ,则22222||(2)(2)19x PA x y x =-+=-+-2891(33)942x x ⎛⎫=-+-≤≤ ⎪⎝⎭, ∴94x =时min 22PA =; 3x =-时max 5PA =.(2)根据图形可知,当直线l 平移与椭圆第一次相切时, 切点P 到直线l 的距离最小,则问题转化为椭圆的切线问题. 设与l 平行的直线方程为y x t =+,显然5t ≥-. 联立方程y x t =+和22220x m y m +-= 得:()222222120mxm tx m t m +++-=,由()()4222224410m t mm tm ∆=-+-=,得:22222210m t t m t m -+-+=, 即221t m =+,所以21t m =±+. 根据图形观察可知,当21t m =-+时,直线l 与其平行线距离最小.25122m -++=5t ≥-. 215m +≤,所以2512m +=, 213m +=,因此28m =, 故22m =±22m =. 【点睛】关键点点睛:本题考查了直线与椭圆的位置关系,解题的关键是求出21t m =±+5t ≥-,考查了计算求解能力.25.(1)24y x =;(2)2. 【分析】(1)根据抛物线的准线求出p ,即可得出抛物线方程;(2)设点()11,A x y ,()22,B x y ,由已知得()1,2Q --,由题意直线AB 斜率存在且不为0,设直线AB 的方程为()()120y k x k =+-≠,与抛物线联立可得24480ky y k -+-=,利用韦达定理以及弦长公式,转化求解MF NF ⋅的值.【详解】(1)因为抛物线2:2(0)C y px p =>的准线方程为1x =-,所以12p=,则2p =, 因此抛物线C 的方程为24y x =;(2)设点()11,A x y ,()22,B x y ,由已知得()1,2Q --, 由题意直线AB 斜率存在且不为0,设直线AB 的方程为()()120y k x k =+-≠,由()2412y x y k x ⎧=⎪⎨=+-⎪⎩得24480ky y k -+-=, 则124y y k+=,1284y y k =-.因为点A ,B 在抛物线C 上,所以2114y x =,2224y x =,则1121112241214PA y y k y x y --===-+-,2222412PBy k x y -==-+. 因为PF x ⊥轴, 所以()()122244PAPBPA PB y y PF PF MF NF k k k k ++⋅=⋅==⋅()1212884424244y y y y k k-+++++===, 所以MF NF ⋅的值为2. 【点睛】 思路点睛:求解抛物线中的定值问题时,一般需要联立直线与抛物线方程,结合题中条件,以及韦达定理来求解;求解时,一般用韦达定理设而不求来处理.26.(1)2212x y +=;(2)直线AM 与直线BN 的交点P 落在定直线2x =上.【分析】(1)根据题中条件,求出,a b ,即可得出椭圆方程;(2)设直线MN 方程为1x my =+,设()11,M x y ,()22,N x y ,联立直线与椭圆方程,由韦达定理,得到12y y +,12y y ,表示出直线AM 和BN 的方程,联立两直线方程,计算为定值,即可得出结果. 【详解】 (1)2AB =2a ∴=a =设焦距为2c ,离心率e =2c a ∴=,1c ∴=, 2221b a c ∴=-=因此所求的椭圆方程为2212x y +=(2)设直线MN 方程为1x my =+,设()11,M x y ,()22,N x y ,由22121x y x my ⎧+=⎪⎨⎪=+⎩得()222210m y my ++-=, 12222m y y m ∴+=-+,12212y y m =-+, 直线AM方程是y x =+,直线BN方程是y x =,由y x y x ⎧=+⎪⎪⎨⎪=⎪⎩,212112211y x y my my y y ++++===212211212(1122221(12m m y m m m y m m m y m ⎛⎫⎛⎫-+--⎡⎤ ⎪ ⎪-++--+++⎝⎭⎝⎭==⎛⎫-+- ⎪+⎝⎭21312mm y -+-++=((()(()()()21213121121m m y m m y ⎡⎤-+-+++⎣⎦=⎡⎤-+++⎣⎦((()(213121m m y ⎡⎤-+-+++=()221121m m y⎡⎤--++=(213==+3=+2x = 此直线AM 与直线BN 的交点P 落在定直线2x =上.【点睛】 关键点点睛:求解本题第二问的关键在于根据点P 为两直线交点,联立两直线方程,结合直线MN 与椭P 横坐标为定值,即可求解.。
高二数学圆锥曲线与方程试题答案及解析

高二数学圆锥曲线与方程试题答案及解析1.若动点与定点和直线的距离相等,则动点的轨迹是()A.椭圆B.双曲线C.抛物线D.直线【答案】D【解析】因为定点F(1,1)在直线上,所以到定点F的距离和到定直线l的距离相等的点的轨迹是直线,就是经过定点A与直线,垂直的直线.故选D.【考点】1.抛物线的定义;2.轨迹方程.2. F1、F2是定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则点M的轨迹是()A.椭圆B.直线C.线段D.圆【答案】C【解析】主要考查椭圆的定义、椭圆的标准方程。
解:因为|MF1|+|MF2|=6=|F1F2|,所以点M的轨迹是线段,故选C。
3.椭圆内有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的方程为()A.B.C.D.【答案】B【解析】主要考查椭圆的定义、直线与椭圆的位置关系。
利用“点差法”求弦的斜率,由点斜式写出方程。
故选B。
4.如果抛物线y 2=ax的准线是直线x=-1,那么它的焦点坐标为()A.(1, 0)B.(2, 0)C.(3, 0)D.(-1, 0)【答案】A【解析】由已知,所以=4,抛物线的焦点坐标为(1, 0),故选A。
【考点】本题主要考查抛物线的定义、标准方程、几何性质。
点评:熟记抛物线的标准方程及几何性质。
5.圆心在抛物线y 2=2x上,且与x轴和该抛物线的准线都相切的一个圆的方程是()A.x2+ y 2-x-2 y -=0B.x2+ y 2+x-2 y +1="0"C.x2+ y 2-x-2 y +1=0D.x2+ y 2-x-2 y +=0【答案】D【解析】由抛物线定义知,此圆心到焦点距离等于到准线距离,因此圆心横坐标为焦点横坐标,代入抛物线方程的圆心纵坐标,1,且半径为1,故选D。
【考点】本题主要考查抛物线的定义、标准方程、几何性质,同时考查了圆的切线问题。
点评:抛物线问题与圆的切线问题有机结合,利用抛物线定义,简化了解答过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线与方程练习题及答案解析
一、选择题 1.(2013•呼和浩特高二检测)椭圆x225+y2169=1的焦点坐标为( ) A.(5,0),(-5,0) B.(0,5),(0,-5) C.(0,12),(0,-12) D.(12,0),(-12,0) 【解析】由c2=a2-b2求出c 的值.因为169>25,所以焦点在y轴上.因为c2=169-25=144,所以c=12,所以焦点坐标为(0,12),(0,-12).故选C. 【答案】C 2.已知椭圆的两个焦点的坐标分别是(0,-3)和(0,3),且椭圆经过点(0,4),则该椭圆的标准方程是( ) A.x216+y27=1 B.y216+x27=1 C.x225+y216=1 D.y225+x29=1 【解析】∵椭圆的焦点在y轴上,∴可设它的标准方程为y2a2+x2b2=1(a>b>0).∵2a=++-=8,∴a=4,又c=3,∴b2=a2-c2=16-9=7,故所求的椭圆的标准方程为y216+x27=1. 【答案】 B 3.(2013•福州高二检测)已知A(0,-1)、B(0,1)两点,△ABC 的周长为6,则△ABC的顶点C的轨迹方程是( ) A.x24+y23=
1(x≠±2) B.y24+x23=1(y≠±2) C.x24+y23=1(x≠0) D.y24
+x23=1(y≠0) 【解析】∵2c=|AB|=2,∴c=1,∴|CA|+|CB|=6-2=4=2a,∴顶点C的轨迹是以A、B为焦点的椭圆(A、B、C 不共线).因此,顶点C的轨迹方程y24+x23=1(y≠±2).【答案】 B 4.如果方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是( ) A.(0,+∞) B.(0,2) C.(1,+∞) D.(0,1) 【解析】椭圆方程可化为x22+y22k=1,依题意2k>2,∴0<k<1. 【答案】 D 5.已知F1、F2是椭圆x216+y29=1的两焦点,过点F2的直线交椭圆于A,B两点.在△AF1B中,若其中两边之和是10,则第三边的长度为( ) A.6 B.5 C.4
D.3 【解析】根据椭圆定义,知△AF1B的周长为4a=16,故所求的第三边的长度为16-10=6. 【答案】 A 二、填空题 6.以椭圆9x2+5y2=45的焦点为焦点,且经过点M(2,6)的椭圆的标准方程为______________.【解析】9x2+5y2=45可化为y29+x25
=1,故焦点为F1(0,2),F2(0,-2).设所求椭圆的方程为y2λ
+4+x2λ=1(λ>0),将x=2,y=6代入,得6λ+4+4λ=1,解得λ=8,λ=-2(舍去).故所求椭圆方程为y212+x28=1. 【答
案】y212+x28=1 7.椭圆x29+y22=1的焦点为F1,F2,点P
在椭圆上,若|PF1|=4,则∠F1PF2=________. 【解析】由题意:a2=9,∴a=3,c2=a2-b2=9-2=7,∴c=7. ∵|PF1|=4,∴|PF2|=2a-|PF1|=2. ∴cos∠F1PF2=|PF1|2+|PF2|2-
|F1F2|22×|PF1||PF2| =42+22-=-12.
∴∠F1PF2=120°. 【答案】120° 8.椭圆5x2-ky2=5的一个焦点是(0,2),那么k=________. 【解析】椭圆方程可化为x2+y2-5k=1,依题意-5k-1=4,解得k=-1. 【答案】-1 三、解答题 9.求经过两点P1(13,13),P2(0,12)的椭圆的标准方程.【解】法一①当焦点在x轴上时,设椭圆的标准方程为x2a2+y2b2=
1(a>b>0).依题意得+=1,-=1,解得a2=15,b2=14. 因为15<14,所以不符合题意,舍去.②当焦点在y轴上时,设椭圆的标准方程为y2a2+x2b2=1(a>b>0).依题意得+=1,-=1,解得a2=14,b2=15. 因为15<14,故所求椭圆的标准方程为y214+x215=1. 法二设所求椭圆的方程为Ax2+By2=1(其中A>0,B>0,A≠B).依题意得+=1,-=1,解得A=5,B=4,即5x2+4y2=1,所以,所求椭圆的标准方程为y214+x215=1. 10.如图3-1-1所示,已知椭圆的两焦点为F1(-1,0),F2(1,0),P为椭圆上一点,且2|F1F2|=|PF1|+|PF2|. 图3-1-1
(1)求此椭圆的方程; (2)若点P在第二象限,∠F2F1P=120°,求△PF1F2的面积.【解】(1)由已知得c=1,|F1F2|=2,所以4=|PF1|+|PF2|=2a,所以a=2. 所以b2=a2-c2=4-1=3. 所以椭圆的方程为x24+y23=1. (2)在△PF1F2中,|PF2|=2a-|PF1|
=4-|PF1|. 由余弦定理得 |PF2|2=|PF1|2+|F1F2|2-
2|PF1|•|F1F2|•cos 120°,即(4-|PF1|)2=|PF1|2+4+2|PF1|,所以|PF1|=65. 所以S△PF1F2=12|F1F2|•|PF1|•sin 120° =
12×2×65×32=353.
11.(2013•福州高二检测)如图3-1-2,已知定点A(-2,0),动点B是圆F:(x-2)2+y2=64(F为圆心)上的一点,线段AB的垂直平分线交BF于P,求动点P的轨迹方程.图3-1-2
【解】连接PA,圆F:(x-2)2+y2=64的圆心F(2,0),半径R=8. ∵线段AB的垂直平分线交BF于点P,∴PA=PB. ∴|PA|+|PF|=|PB|+|PF|=|BF|=R=8>|AF|=4. 由定义知点P的轨迹是一椭圆.则依题意有2a=8,c=2,∴a=4,b2=12. ∴动点P的轨迹方程为x216+y212=1.。