继保基础知识

合集下载

继电保护基础知识培训课程精选全文

继电保护基础知识培训课程精选全文
后备保护:一般躲保主变过流整定,即≤1.5*Ie;低压侧后备保护可以适当减少,方便作低压线路故障的后备;
低压限时速断保护:保小方式小低压母线两相短路有足够的灵敏度:
非电量保护:重瓦斯、有载重瓦斯投跳闸;轻瓦斯、压力释放投入信号;
注意事项
1为保证保护的速动性,保护动作时间尽可能短,时间配合尽量紧凑,△t一般取0.5s,特殊情况下微机保护可以取0.3s;
4.1.1常用备电源自投:a、母联备自投b、进线备自投
第五部分:定值计算
5.1 必备基础知识
5.1.1标么值:为简化计算,整定计算一般使用标么值
基准电压UKV
基准功率SMVA
基准电流IA
基准阻抗ZΩ
115
100
502
132
37
100
1560
13.7
10.5
100
5500
1.1
6.3
100
速断
限时速断
过流 பைடு நூலகம்
整定原则:躲本线路末端大方式下三相短路电流
计算公式: (其中KK=1.3)
整定原则:保本线路末端小方式下两相短路电流
计算公式: (其中KK=1.5)
整定原则:躲最大负荷电流
计算公式: (其中一般KK/Kf取1.5)
注意: 1、联络线的限时速断和过流保护定值必须与上下级线路配,配合系数为1.1; 2、10KV末端线路可以采用两段式保护,以缩短动作时间。
谢谢大家
瓦斯保护
差动保护
限时速断
低后备
高后备
末端变
第四部分:安全自动装置
4.1 备电源自投
4.1.2备电源自投的基本要求:a、断开工作电源后才能投入备用电源;b、工作电源一旦失压,装置应当动作;c、保证只能动作一次。

继电保护基础知识

继电保护基础知识

继电保护知识学习一、名词解释:1、短路:指线路相与相之间或相与地之间的短接,以及电机或变压器同一相绕组不同线匝之间的短接。

2、事故:指系统全部或部分的正常工作遭到破坏,以致对用户停电或少送电,电能质量下降到不允许的程度,甚至设备损坏的运行情况。

3、继电保护的任务:反应电力系统故障,自动、可靠、快速而有选择地通过断路器将故障元件从系统中切除,保证无故障部分继续运行,这是继电保护的首要任务;反应电力系统不正常工作状态,一般动作于信号,告诉值班人员及时处理,这是继电保护的另一任务。

4、短路故障的危害:(1)、短路点通过短路电流将形成电弧,可能烧毁故障设备。

(2)、短路电流可达几倍至几十倍,其热效应和电动机效应,可能使短路回路内的电气设备遭受破坏或损伤。

(3)、短路时部分电力系统的电压大幅度下降,使用户的正常工作遭受破坏,严重时可能造成电压崩溃,引起大面积停电。

(4)、短路故障可能使电力系统稳定运行遭到破坏,产生振荡,甚至造成系统瓦解。

(5)、不对称短路时,短路电流中的负序分量在电机气隙中形成逆向旋转磁场,在电机转子中感应大量的100H Z电流使转子因附加发热局部温度过高而烧损。

(6)、接地短路时出现的零序分量电流,对附近的通讯线路及铁路自动信号系统产生干扰。

5、继电保护的分类:(1)、按反应故障的不同,可份为相间短路、接地短路、匝间短路、失磁保护等。

(2)、按其功用不同可分为主保护、辅助保护和后备保护。

(3)、按被保护对象的不同可分为:输电线路保护、发电机保护、变压器保护、电动机保护、母线保护。

(4)、按继电保护所反应的物理量不同,可分为电流保护、电压保护、方向电流保护、距离保护、差动保护、高频保护、瓦斯保护等。

6、过流保护:电力系统发生故障时,故障元件通过短路电流,其数值大大超过正常运行时的负荷电流,利用短路时电流增大这个条件构成的保护,称为过流保护。

7、低电压保护:电力系统发生短路故障的另一特征是电压降低,越接近故障点电压降得越多,这种反应故障时电压降低而动作的保护,成为低电压保护。

继电保护基础知识

继电保护基础知识

4.什么是距离保护? 所谓距离保护是利用阻抗元件来反映短路 故障点距离的保护装置。阻抗元件反映接入 该元件的电压与电流乊比,即反映短路故障 点至保护安装处的阻抗值,因线路阻抗与距 离成正比,所以叫做距离保护或阻抗保护。 5.什么叫差动保护? 通过测量被保护设备或被保护线路两端的 电流大小和相位构成的保护。
3.距离保护一般由三段组成,第1段整定阻抗较小,动 作时限是阻抗元件的固定时限,即瞬时动作;第Ⅱ、 III段整定阻抗值逐渐增大,动作时限也逐渐增加, 分别由时间继电器来调整时限。 4.距离保护I、Ⅱ、Ⅲ段的保护范围的划分 在一般情况下,距离保护的第1段只能保护本线 路全长的80%一85%,其动作时段的保护范围为本 线路全长并延伸至下一段线路的一部分,它是第1段 保护的后备段,一般为被保护线路的全长及下一线 路全长的30%~40%,其动作时限要与下一线路距 离保护第I段的动作时限相配合,一般为0.5s左右。 第Ⅲ段 为I、Ⅱ段保护的后备段,它能保护本线路 和下一段线路的全长并延伸至再下一段线路的一部 分。

1 .变压器故障和异常运行的类型: 答:变压器故障可分为内部故障和外部故障。变压器的内 部故障又可分为油箱内和油箱外故障两种。油箱内的故障包 括绕组的相间短路、接地短路、匝间短路以及铁芯的烧损等。 对变压器来讲,这些故障都是十分危险的。因为油箱内部故 障时产生的电弧将引起绝缘物质的剧烈气化,从而可能引起 爆炸,因此这些故障应该尽快切除。油箱外的故障,主要是 套管和引出线上发生的短路。此外,还有由于变压器外部相 间短路引起的过流,以及由于变压器外部接地短路引起的过 电流及中性点过电压,变压器突然甩负荷或切空载长线路时 变压器的过励磁等。变压器的异常运行状态主要有过负荷和 油面降低以及油位过高等。

继电保护最全面的知识

继电保护最全面的知识

继电保护最全面的知识一、基本原理继电保护装置必须具有正确区分被保护元件是处于正常运行状态还是发生了故障,是保护区内故障还是区外故障的功能。

保护装置要实现这一功能,需要根据电力系统发生故障前后电气物理量变化的特征为基础来构成。

电力系统发生故障后,工频电气量变化的主要特征是:1)电流增大短路时故障点与电源之间的电气设备和输电线路上的电流将由负荷电流增大至大大超过负荷电流。

2)电压降低当发生相间短路和接地短路故障时,系统各点的相间电压或相电压值下降,且越靠近短路点,电压越低。

3)电流与电压之间的相位角改变正常运行时电流与电压间的相位角是负荷的功率因数角,一般约为20°,三相短路时,电流与电压之间的相位角是由线路的阻抗角决定的,一般为60°~85°,而在保护反方向三相短路时,电流与电压之间的相位角则是180°+(60°~85。

)。

4)测量阻抗发生变化测量阻抗即测量点(保护安装处)电压与电流之比值。

正常运行时,测量阻抗为负荷阻抗;金属性短路时,测量阻抗转变为线路阻抗,故障后测量阻抗显著减小,而阻抗角增大。

不对称短路时,出现相序分量,如两相及单相接地短路时,出现负序电流和负序电压分量;单相接地时,出现负序和零序电流和电压分量。

这些分量在正常运行时是不出现的。

利用短路故障时电气量的变化,便可构成各种原理的继电保护。

此外,除了上述反应工频电气量的保护外,还有反应非工频电气量的保护,如瓦斯保护。

二、基本要求继电保护装置为了完成它的任务,必须在技术上满足选择性、速动性、灵敏性和可靠性四个基本要求。

对于作用于继电器跳闸的继电保护,应同时满足四个基本要求,而对于作用于信号以及只反映不正常的运行情况的继电保护装置,这四个基本要求中有些要求可以降低。

1、选择性选择性就是指当电力系统中的设备或线路发生短路时,其继电保护仅将故障的设备或线路从电力系统中切除,当故障设备或线路的保护或断路器拒动时,应由相邻设备或线路的保护将故障切除。

继电保护基础精选全文

继电保护基础精选全文

单位长度的线 路正序阻抗
系统的次 暂态电势
最大、小运方下 的系统电抗
21
说明:无时限电流速断保护最大保护范围 l p.max 小于线路L1的全长。
无时限电流速断保护只能保护线路的一部分, 不能保护线路的全长。
满足灵敏度要求的保护范围为:最大运行方式下, 三相短路时,m≥50%;最小运行方式下,两相短 路时,m≥15~20%。
故障不可避免,但事故是可以避免的,电力工作 者的任务就是避免电力故障酿成事故。
基本任务: 反应电力设备的不正常运行状态,并根
据运行维护条件动作于信号或跳闸。 2
第一节 继电保护的基本知识
1、继电保护装置
电力系统运行过程中一旦发生故障,必须迅速而 有选择性地切除故障元件,以免造成人身伤亡和电气 设备损坏。完成这一功能的保护装置称为继电保护装 置
第七章 继电保护基础
• 继电保护的基本知识 • 单侧电源电网相间短路的电流保护 • 电网的接地保护 • 电力系统的主设备保护 • 10kV配电系统的保护 • 工厂供电系统的保护 • 民用建筑配电系统的保护
1
第一节 继电保护的基本知识
继电保护的作用 故障不可避免: 自然因素:雷击,冰灾,台风,地震 设备制造因素:设计,工艺,材料 人为因素:误操作,管理不当
2)但由于它在相邻线路上的动作范围只是线路的 一部分,不能作为相邻线路的后备保护(远后备)。
3)因此还需要装设一套过电流保护(电流III段) 作为本线路的近后备保护以及相邻线路的远后备保护。
29
三、定时限过流保护(过电流或电流III段)
1、基本原理
动作电流按躲过最大负荷电流(正常运行) 来整定,并以时限来保证动作选择性。
I III op1

继保基础知识

继保基础知识

电力系统的运行状态正常运行系统的电流、电压均处于电气设备正常承受范围内,不会对电气设备造成危害故障:各种短路(三相短路、两相短路、单相接地短路、两相接地短路、发电机和电动机以及变压器绕组间的匝间短路等)和断线(单相、两相),其中最常见且最危险的是各种类型的短路。

其后果:I增加危害故障设备和非故障设备;U降低影响用户正常工作;破坏系统稳定性,使事故进一步扩大(系统振荡,瓦解)不正常运行状态:电力系统中电气元件的正常工作遭到破坏,但没有发生故障的运行状态。

如:过负荷、过电压、频率降低、系统振荡等。

继电保护的任务1.当电力系统中某电气元件发生故障时,能自动地、迅速地、有选择地将故障元件从电力系统中切除,避免故障元件继续遭到破坏,使非故障元件迅速恢复正常运行。

2. 当电力系统中电气元件出现不正常运行状态时,能及时反应并根据运行维护的条件发出信号或跳闸。

继电保护的分类▪按被保护的对象分类:•输电线路保护、发电机保护、变压器保护、电动机保护、母线保护等;▪按保护原理分类:•电流保护、电压保护、距离保护、差动保护、方向保护、零序保护等;▪按保护所反应故障类型分类:•相间短路保护、接地故障保护、匝间短路保护、断线保护、失步保护、失磁保护及过励磁保护等;▪按继电保护装置的实现技术分类:机电型保护(如电磁型保护和感应型保护)、整流型保护、晶体管型保护、集成电路型保护及微机型保护等;按保护所起的作用分类1. 主保护:反应被保护元件自身的故障并以尽可能短的延时,有选择性地切除故障的保护称为主保护。

2. 后备保护:当主保护拒动时起作用,从而动作于相应断路器以切除故障元件。

(1)近后备保护:当主保护拒动时,由本电力设备或线路的另一套保护来实现后备的保护。

(2)远后备保护:当主保护或断路器拒动时,由相邻电力设备或线路的保护来实现的后备保护。

对动作于跳闸的继电保护,在技术上一般应满足四个选择性、速动性、灵敏性、可靠性四个基本要求。

第一章继电保护基础知识

第一章继电保护基础知识

第一章继电保护基础知识第一章继电保护基础知识一、电力系统在运行中,不可避免地会发生故障和不正常工作情况。

1、最常见的故障是各种形式的短路,如三相短路、两相接地短路、两相短路、单相接地短路、发电机和变压器的绕组匝间短路等。

此外,输电线路还可能发生一相或两相断线以及断线和短路同时发生的复杂故障。

2、最常见的不正常工作情况是过负荷,长时间过负荷会使载流设备和绝缘温度升高,加速绝缘老化或设备遭到损坏,严重时甚至引起故障。

此外,水轮发电机突然甩负荷引起过电压,电力系统有功缺额会引起频率降低,这也是不正常工作情况。

二、继电保护的概念。

继电保护装置是反应电力系统中电气设备故障或不正常工作情况而作用于断路器跳闸或发出信号的一种自动装置。

电力系统继电保护——是继电保护技术和继电保护装置的统称。

三、主保护和后备保护的概念。

1、主保护:满足系统稳定和设备安全要求,能以最快速度有选择地切除被保护设备或线路故障的保护。

2、后备保护:主保护或断路器拒动时用来切除故障的保护,又分为远后备和近后备。

3、远后备保护:当主保护或断路器拒动时,由相邻电力设备或线路的保护来实现的后备保护。

4、近后备保护:当主保护拒动时,由本电力设备或线路的另一套保护来实现后备的保护;当断路器拒动时,由断路器失灵保护来实现后备保护。

5、辅助保护:为补充主保护和后备保护的性能或当主保护和后备保护退出运行而增设的简单保护。

四、故障的性质分类:暂时性故障、永久性故障五、对继电保护的基本要求,可分为安全性、可靠性、速动性、选择性与灵敏性。

1、安全性、可靠性和保护的双重化。

安全性与可靠性是对继电保护最根本的要求。

安全性指的是断电保护在不需要它动作时可靠不动作,即不发生误动作。

可靠性指的是继电保护在需要它动作时能可靠动作,即不发生拒绝动作。

为保证短路故障时跳闸的可靠性,许多220KV以上的超高压线路继电保护采用了二中取一的双重化配置原则,即在每一回线路上装设两套完全独立的性能均满足电力系统稳定要求的继电保护。

学习继电保护必须掌握的基础知识

学习继电保护必须掌握的基础知识

学习继电保护必须掌握的基础知识1.什么是继电保护装置答:当电力系统中的电力元件如发电机、线路等或电力系统本身发生了故障危及电力系统安全运行时,能够向运行值班人员及时发出警告信号,或者直接向所控制的断路器发出跳闸命令以终止这些事件发展的一种自动化措施和设备,一般通称为继电保护装置;2.继电保护在电力系统中的任务是什么答:继电保护的基本任务:1当被保护的电力系统元件发生故障时,应该由该元件的继电保护装置迅速准确地给脱离故障元件最近的断路器发出跳闸命令,使故障元件及时从电力系统中断开,以最大限度地减少对电力系统元件本身的损坏,降低对电力系统安全供电的影响,并满足电力系统的某些特定要求如保持电力系统的暂态稳定性等;2反应电气设备的不正常工作情况,并根据不正常工作情况和设备运行维护条件的不同例如有无经常值班人员发出信号,以便值班人员进行处理,或由装置自动地进行调整,或将那些继续运行会引起事故的电气设备予以切除;反应不正常工作情况的继电保护装置允许带一定的延时动作;3.简述继电保护的基本原理和构成方式;答:继电保护主要利用电力系统中元件发生短路或异常情况时的电气量电流、电压、功率、频率等的变化,构成继电保护动作的原理,也有其他的物理量,如变压器油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高;大多数情况下,不管反应哪种物理量,继电保护装置都包括测量部分和定值调整部分、逻辑部分、执行部分;4.电力系统对继电保护的基本要求是什么答:继电保护装置应满足可靠性、选择性、灵敏性和速动性的要求:这四“性”之间紧密联系,既矛盾又统一;1可靠性是指保护该动体时应可靠动作;不该动作时应可靠不动作;可靠性是对继电保护装置性能的最根本的要求;2选择性是指首先由故障设备或线路本身的保护切除故障,当故障设备或线路本身的保护或断路器拒动时,才允许由相邻设备保护、线路保护或断路器失灵保护切除故障;为保证对相邻设备和线路有配合要求的保护和同一保护内有配合要求的两元件如启动与跳闸元件或闭锁与动作元件的选择性,其灵敏系数及动作时间,在一般情况下应相互配合;3灵敏性是指在设备或线路的被保护范围内发生金属性短路时,保护装置应具有必要的灵敏系数,各类保护的最小灵敏系数在规程中有具体规定;选择性和灵敏性的要求,通过继电保护的整定实现;4速动性是指保护装置应尽快地切除短路故障,其目的是提高系统稳定性,减轻故障设备和线路的损坏程度,缩小故障波及范围,提高自动重合闸和备用电源或备用设备自动投入的效果等;一般从装设速动保护如高频保护、差动保护、充分发挥零序接地瞬时段保护及相间速断保护的作用、减少继电器固有动作时间和断路器跳闸时间等方面入手来提高速动性;5.如何保证继电保护的可靠性答:继电保护的可靠性主要由配置合理、质量和技术性能优良的继电保护装置以及正常的运行维护和管理来保证;任何电力设备线路、母线、变压器等都不允许在无继电保护的状态下运行;220kV及以上电网的所有运行设备都必须由两套交、直流输入、输出回路相互独立,并分别控制不同断路器的继电保护装置进行保护;当任一套继电保护装置或任一组断路器拒绝动作时,能由另一套继电保护装置操作另一组断路器切除故障;在所有情况下,要求这购套继电保护装置和断路器所取的直流电源都经由不同的熔断器供电;6.为保证电网继电保护的选择性,上、下级电网继电保护之间逐级配合应满足什么要求:答:上、下级电网包括同级和上一级及下一级电网继电保护之间的整定,应遭循逐级配合的原则,满足选样性的要求,即当下一级线路或元件故障时,故障线路或元件的继电保护镇定值必须在灵敏度和动作时间上均与上一级线路或元件的继电保护整定值相互配合,以保证电网发生故障时有选择性地切除故障;7.在哪些情况下允许适当牺牲继电保护部分选择性答:遇到如下情况时允许适当牺牲继电保护部分选择性:1接入供电变压器的终端线路,无论是一台或多台变压器并列运行包括多处T接供电变压器或供电线路,都允许线路侧的速动段保护按躲开变压器其他侧母线故障整定;需要时,线路速动段保护可经一短时限动作;2对串联供电线路,如果按逐级配合的原则将过分延长电源侧保护的动作时间,则可将容量较小的某些中间变电所按T接变电所或不配合点处理,以减少配合的级数.缩短动作时间;3双回线内部保护的配合,可按双回线主保护例如横联差动保护动作,或双回线中一回线故障时两侧零序电流或相电流速断保护纵续动作的条件考虑;确有困难时,允许双回线中一回线故障时,两回线的延时保护段间有不配合的情况;4在构成环网运行的线路中,允许设置预定的一个解列点或一回解列线路;8.为保证灵敏度,接地故障保护最末一段定值应如何整定答:接地故障保护最末一段例如零序电流保护IV段,应以适应下述短路点接地电阻值的接地故障为整定条件:220kV线路,100Ω;330kV线路,150Ω,500kV线路,300Ω;对应于上述条件,零序电流保护最末一段的动作电流整定值应不大于300A;由线路末端发生高电阻接地故障时,允许由两侧线路继电保护装置纵续动作切除故障;对于110kV线路,考虑到在可能的高电阻接地故障情况下的动作灵敏度要求,其最末一段零序电流保护的电流暂定值一般也不应大于300A一次值,此时,允许线路两侧零序电流保护纵续动作切除故障;9.系统最长振荡周期一般按多少考虑答:除了预定解列点外,不允许保护装置在系统振荡时误动作跳闸;如果没有本电网的具体数据,除大区系统间的弱联系联络线外,系统最长振荡周期一般按1.5s考虑;10.简述220kV及以上电网继电保护整定计算的基本原则和规定;答:1对于220kV及以上电压电网的线路继电保护一般都采用近后备原则;当故障元件的一套继电保护装置拒动时,由相互独立的另一套继电保护装置动作切除故障,而当断路器拒绝动作时,启动断路器失灵保护,断开与故障元件相连的所有其他连接电源的断路器;2对瞬时动作的保护或保护的瞬时段,其整定值应保证在被保护元件外部故障时,可靠不动作,但单元或线路变压器组包括一条线路带两台终端变压器的情况除外;3上、下级继电保护的整定,一般应遵循逐级配合的原则,满足选择性的要求;即在下一级元件故障时,故障元件的继电保护必须在灵敏度和动作时间上均能同时与上一级元件的继电保护取得配合,以保证电网发生故障时有选择性地切除故障;4继电保护整定汁算应按正常运行方式为依据;所谓正常运行方式是指常见的运行方式和被保护设备相邻的一回线或一个元件检修的正常检修运行方式;对特殊运行方式,可以按专用的运行规程或者依据当时实际情况临时处理;5变压器中性点接地运行方式的安排,应尽量保持变电所零序阻抗基本不变;遇到因变压器检修等原因,使变电所的零序阻抗有较大变化的特殊运行方式时,根据当时实际情况临时处理;6故障类型的选择以单一设备的常见故障为依据,一般以简单故障讲行保护装置的整定计算;7灵敏度校正常运行方式下的不利故障类型进行校验,保护在对侧断路器跳闸前和跳闸后均能满足规定的灵敏度要求;对于纵联保护,在被保护线路末端发生金属性故障时,应有足够的灵敏度灵敏度应大于2;11.变压器中性点接地方式的安排一般如何考虑答:变压器中性点接地方式的安排应尽量保持变电所的零序阻抗基本不变;遇到因变压器检修等原因使变电所的零序阻抗有较大变化的特殊运行方式时,应根据规程规定或实际情况临时处理;1变电所只有一台变压器,则中性点应直接接地,计算正常保护定值时,可只考虑变压器中性点接地的正常运行方式;当变压器检修时,可作特殊运行方式处理,例如改定值或按规定停用、起用有关保护段;2变电所有两台及以上变压器时,应只将一台变压器中性点直接接地运行,当该变压器停运时,将另一台中性点不接地变压器改为直接接地;如果由于某些原因,变电所正常必须有两台变压器中性点直接接地运行,当其中一台中性点直接接地的变压器停运时,若有第三台变压器则将第三台变压器改为中性点直接接地运行;否则,按特殊运行方式处理;3双母线运行的变电所有三台及以上变压器时,应按两台变压器中性点直接接地方式运行,并把它们分别接于不同的母线上,当其中一台中性点直接接地变压器停运时、将另一台中性点不接地变压器直接接地;若不能保持不同母线上各有一个接地点时,作为特殊运行方式处理;4为了改善保护配合关系,当某一短线路检修停运时,可以用增加中性点接地变压器台数的办法来抵消线路停运对零序电流分配关系产生的影响;5自耦变压器和绝缘有要求的变压器中性点必须直接接地运行;12.简述220kV线路保护的配置原则;答:对220kV线路,根据稳定要求或后备保护整定配合有困难时,应装设两套全线速动保护;接地短路后备保护可装阶段式或反时限零序电流保护,亦可采用接地距离保护并辅之以阶段式或反时限零序电流保护;相间短路后备保护一般应装设阶段式距离保护;13.简述330—500kV线路保护的配置原则;答:对寸330-500kV线路,应装设两套完整、独立的全线速动它保护;接地短路后备保护可装设阶段式或反时限零序电流保护,亦可采用接地距离保护并辅之以阶段式或反时限零序电流保护;相间短路后备保护可装设阶段式距离保护;14.什么是“远后备”什么是“近后备”答:“远后备”是指当元件故障而其保护装置或开关拒绝动作时.由各电源侧的相邻元件保护装谈动作将故障切开;“近后备”则用双重化配置方式加强元件本身的保护,位之在区内故障时,保护无拒绝动作的可能,同时装设开关失灵保护,以便当开关拒绝跳闸时启动它来切开同一变电所母线的高压开关,或遥切对侧开关;15.线路纵联保护及特点是什么答:线路纵联保护是当线路发生故障时,使两侧开关同时快速跳闸的一种保护装置,是线路的主保护;它以线路两侧判别量的特定关系作为判据;即两侧均将判别量借助通道传送到对侧,然后,两侧分别按照对侧与本侧判别量之间的关系来判别区内故障或区外故障;因此,判别量和通道是纵联保护装置的主要组成部分;1方向高频保护是比较线路两端各自看到的故障方向,以判断是线路内部故障还是外部故障;如果以被保护线路内部故障时看到的故障方向为正方向,则当被保护线路外部故障时,总有一侧看到的是反方向;其特点是:1要求正向判别启动元件对于线路末端故障有足够的灵敏度;2必须采用双频制收发信机;2相差高频保护是比较被保护线路两侧工频电流相位的高频保护;当两侧故障电流相位相同时保护被闭锁,1能反应全相状态下的各种对称和不对称故障,装设比较简单;2不反应系统振荡;在非全相运行状态下和单相重合闸过程中保护能继续运行;3不受电压回路断线的影响,4对收发信机及通道要求较高,在运行中两侧保护需要联调;5当通道或收发信机停用时,整个保护要退出运行,因此需要配备单独的后备保护;3高频闭锁距离保护是以线路上装有方向性的距离保护装设作为基本保护,增加相应的发信与收信设备,通过通道构成纵联距离保护;其特点是:1能足够段敏和快速地反应各种对称与不对称故障;2仍保持后备保护的功能;3电压二次回路断线时保护将会误动,需采取断线闭锁措施,使保护退出运行;16.纵联保护的通道可分为几种类型答:可分为以下几种类型:1电力线载波纵联保护简称高频保护;2微波纵联保护简称微波保护;3光纤纵联保护简称光纤保护;4导引线纵联保护简称导引线保护;17.纵联保护的信号有哪几种答:纵联保护的信号有以下三种:1闭锁信号;它是阻止保护动作于跳闸的信号;换言之;无闭锁信号是保护作用于跳闸的必要条件;只有同时满足本端保护元件动作和无闭锁信号两个条件时,保护才作用于跳闸;2允许信号;它是允许保护动作于跳闸的信号;换言之,有允许信号是保护动作于跳闸的必要条件;只有同时满足本端保护元件动作和有允许信号两个条件时,保护才动作于跳闸;3跳闸信号;它是直接引起跳闸的信号;此时与保护元件是否动作无关,只要收到跳闸信号,保护就作用于跳闸,远方跳闸式保护就是利用跳闸信号;18.相差高频保护为什么设置定值不同的两个启动元件答:启动元件是在电力系统发生故障时启动发信机而实现比相的;为了防止外部故障时由于两侧保护装置的启动元件可能不同时动作,先启动一侧的比相元件,然后动作一侧的发信机还未发信就开放比相将造成保护误动作,因而必须设置定值不同的两个启动元件;高定值启动元件启动比相元件,低定值的启动发信机;由于低定值启动元件先于高定值启动元件动作,这样就可以保证在外部短路时,高定值启动元件启动比相元件时,保护一定能收到闭锁信号,不会发生误动作;19.相差高频保护有何优缺点答:相差高频保护有如下优点:1能反应全相状态下的各种对称和不对称故障,装置比较简单;2不反应系统振荡;在非全相运行状态下和单相重合闸过程中,保护能继续运行;3保护的工作情况与是否有串补电容及其保护间隙是否不对称击穿基本无关;4不受电压二次回路断线的影响;缺点如下:1重负荷线路,负荷电流改变了线路两端电流的相位,对内部故障保护动作不利;2当一相断线接地或非全相运行过程中发生区内故障时,灵敏度变坏,甚至可能拒动;3对通道要求较高,占用频带较宽;在运行中,线路两端保护需联调;4线路分布电容严重影响线路两端电流的相位,限制了其使用线路长度;20.简述方向比较式高频保护的基本工作原理;答:方向比较式高频保护的基本工作原理是比较线路两侧各自看到的故障方向,以综合判断其为被保护线路内部还是外部故障;如果以被保护线路内部故障时看到的故障方向为正方向,则当被保护线路外部故障时,总有一侧看到的是反方向;因此,方向比较式高频保护中判别元件,是本身具有方向性的元件或是动作值能区别正、反方向故障的电流元件;所谓比较线路的故障方向,就是比较两侧特定判别元件的动作行为;20.纵联保护在电网中的重要作用是什么答:由个纵联保护在电网中可实现全线速动,出此它可保证电力系统并列运行的稳定性和提高输送功率、缩小故障造成的损坏程度、改善后备保护之间的配合性能;21.何谓闭锁式方向高频保护答:在方向比较式的高额保护中,收到的信号作闭锁保护用,叫闭锁式方向高频保护;它们的正方向判别元件不动作,不停信,非故障线路两端的收信机收到闭锁信号,相应保护被闭锁;22,何谓高频闭锁距离保护,其构成原理如何答:控制收发信机发出高频闭锁信号,闭锁两侧距离保护的原理构成的高频保护为高频闭锁距离保护,它能使保护无延时地切除被保护线路任一点的故障;23.高频闭锁距离保护有何优缺点答:该保护有如下优点:1能足够灵敏和快速地反应各种对称和不对称故障;2仍能保持远后备保护的作用当有灵敏度时;3不受线路分布电容的影响;缺点如下:1串补电容可使高频闭锁距离保护误动或拒动;2电压二次回路断线时将误动;应采取断线闭锁措施,使保护退出运行;24.高频闭锁负序方向保护有何优缺点答:该保护具有下列优点:1原理比较简单;在全相运行条件下能正确反应各种不对称短路;在三相短路时,只要不对称时间大于5—7ms,保护可以动作;2不反应系统振荡,仍也不反应稳定的三相短路;3当负序电压和电流为启动值的三倍时,保护动作时间为10—15ms;4负序方向元件一般有较满意的灵敏度;5对高频收发信机要求较低;缺点如下:1在两相运行条件下包括单相重合闸过程中发生故障,保护可能拒动;2线路分布电容的存在.使线路在空载合闸时,由于三相不同时合闸,保护可能误动;当分布电容足够大时,外部短路时该保护也将误动,应采取补偿措施;3在串补线路上,只要串补电容无不对称击穿,则全相运行条件下的短路保护能正确动作;当串补电容友保护区内时,发生系统振荡或外部二相短路、且电容器保护间隙不对称击穿,保护将误动;当串补电容位于保护区外,区内短路且有电容器的不对称击穿,也可能发生保护拒动;4电压二次回路断线时,保护应退出运行;25.非全相运行对高频闭锁负序功率方向保护有什么影响答:当被保护线路上出现非全相运行,将在断相处产生一个纵向的负序电压,并由此产生负序电流,在输电线路的A、B两端,负序功率的方向同时为负,这和内部故障时的情况完全一样;因此,在一侧断开的非全相运行状态下,高频闭锁负序功率方向保护将误动作;为了克服上述缺点,如果将保护安装地点移到断相点的里侧,则两端负序功率的方向为一正一负,和外部故障时的情况一样,这时保护将处于启动状态,但由于受到高频信号的闭锁而不会误动作;针对上述两种情况可知,当电压互感器接于线路侧时,保护装置不会误动作,而当电压互感器接于变电所母线侧时,则保护装置将误动作;此时需采取措施将保护闭锁;26.线路高频保护停用对重合闸的使用有什么影响答:当线路高额保护停用时,可能因以下两点原因影响线路重合闸的使用:1线路无高频保护运行,需由后备保护延时段切除线路故障,即不能快速切除故障,造成系统稳定极限下降,如果使用重合闸重合于永久性故障,对系统稳定运行则更为不利;2线路重合闸重合时间的整定是与线路高频保护配合的,如果线路高频保护停用,则造成线路后备延时段保护与重合闸重合时间不配,对瞬时故障亦可能重合不成功,对系统增加一次冲击;27.高频保护运行时,为什么运行人员每天要交换信号以检查高频通道答:我国常采用电力系统正常时高频通道无高频电流的工作方式;由于高频通道涉及两个厂站的设备,其中输电线路跨越几千米至几百千米的地区,经受着自然界气候的变化和风、霜、雨、雪、雷电的考验;高频通道上各加工设备和收发信机元件的老化和故障都会引起衰耗;高频通道上任何一个环节出问题,都会影响高额保护的正常运行;系统正常运行时,高频通道无高频电流,高频通道上的设备有问题也不易发现,因此每日由运行人员用启动按钮启动高频发信机向对侧发送高频信号,通过检测相应的电流、电压和收发信机上相应的指示灯来检查高频通道,以确保故障时保护装置的高频部分能可靠工作;28.什么是零序保护大电流接地系统中为什么要单独装设零序保护答:在大短路电流接地系统中发生接地故障后,就有零序电流、零序电压和零序功率出现,利用这些电气量构成保护接地短路的继电保护装置统称为零序保护;三相星形接线的过电流保护虽然也能保护接地短路,但其灵敏度较低,保护时限较长;采用零序保护就可克服此不足,这是因为:①系统正常运行和发生相间短路时,不会出现零序电流和零序电压.因此零序保护的动作电流可以整定得较小,这有利于提高其灵敏度;②Y/△接线降压变压器,△侧以行的故障不会在Y侧反映出零序电流,所以零序保护的动作时限可以不必与该种变压器以后的线路保护相配合而取较短的动作时限;29,简述零序电流方向保护在接地保护中的作用;答:零序电流方向保护是反应线路发生接地故障时零序电流分量大小和方向的多段式电流方向保护装置,在我国大短路电流接地系统不同电压等级电力网的线路上,根据部颁规程规定,都装设了这种接地保护装置作为基本保护;电力系统事故统计材料表明,大电流接地系统电力网中线路接地故障占线路全部故障的80%一90%,零序电流方向接地保护的正确动作率约97%,是高压线路保护中正确动作率最高的一种;零序电流方向保护具有原理简单、动作可靠、设备投资小、运行维护方便、正确动作率高等一系列优点;30.零序电流保护有什么优点答:带方向性和不带方向性的零序电流保护是简单而有效的接地保护方式,其优点是:1结构与工作原理简单,正确动作率高于其他复杂保护;2整套保护中间环节少,特别是对于近处故障,可以实现快速动作,有利于减少发展性故障;3在电网零序网络基本保持稳定的条件下,保护范围比较稳定;4保护反应于零序电流的绝对值,受故障过渡电阻的影响较小;5保护定值不受负荷电流的影响,也基本不受其他中性点不接地电网短路故障的影响,所以保护延时段灵敏度允许整定较高;31.零序电流保护在运行中需注意哪些问题答:零序电流保护在运行中需注意以下问题:1当电流回路断线时,可能造成保护误动作;这是一般较灵敏的保护的共同弱点,需要在运行中注意防止;就断线机率而言,它比距离保护电压回路断线的机率要小得多;如果确有必要,还可以利用相邻电流互感器零序电流闭锁的方法防止这种误动作;2当电力系统出现个对称运行时,也会出现零序电流,例如变压器三相参数个同所引起的不对称运行,单相重合闸过程中的两相运行,三相重合闸和手动合闸时的三相断路器不同期,母线倒闸操作时断路器与隔离开关并联过程或断路器正常环并运行情况下,由于隔离开关或断路器接触电阻三相不一致而出现零序环流,以及空投变压器时产生的不平衡励磁涌流,特别是在空投变压器所在母线有中性点接地变压器在运行中的情况下,可能出现较长时间的不平衡励磁涌流和直流分量等等,都可能使零序电流保护启动;3地理位置靠近的平行线路,当其中一条线路故障时,可能引起另一条线路出现感应零序电流,造成反分向侧零序方向继电器误动作;如确有此可能时,可以改用负序方向继电器,来防止上述方向继电器误判断;4由于零序方向继电器交流回路平时没有零序电流和零序电压,回路断线不易被发现;当继电器零序电压取自电压互感器开口三角侧时,也不易用较直观的模拟方法检查其方向的正确性,因此较容易因交流回路有问题而使得在电网故障时造成保护拒绝动作和误动作;32.零序电流保护为什么设置灵敏段和不灵敏段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

继电保护基本知识(一)什么是继电保护装置?当电力系统中的电力元件(如发电机、线路等)或电力系统本身发生了故障危及电力系统安全运行时,能够向运行值班人员及时发出警告信号,或者直接向所控制的断路器发出跳闸命令以终止这些事件发展的一种自动化措施和设备,一般通称为继电保护装置。

继电保护的作用是:(1)在过载时,继电保护装置应发出警报信号。

(2)在短路故障时,继电保护装置应立即动作,要求准确、迅速地自动将有关的断路器跳闸,将故障部分从系统中断开,确保其他回路的正常运行。

(3)为了保证电源不中断,继电保护装置应将备用电源投入或经自动装置进行重合闸。

(二)继电保护的基本要求①.选择性基本含义是保护装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量减小,以保证系统中非故障部分继续安全运行。

②.速动性速动性是指继电保护装置应以尽可能快的速度断开故障元件。

这样就能减轻故障设备的损坏程度,减小用户在低电压情况下工作的时间,提高电力系统运行的稳定性。

③.灵敏性保护装置对其保护范围内的故障或不正常运行状态的反应能力称为灵敏性(灵敏度)。

灵敏性常用灵敏系数来衡量。

它是在保护装置的测量元件确定了动作值后,按最不利的运行方式、故障类型、保护范围内的指定点校验,并满足有关规定的标准。

④.可靠性可靠性是指在保护装置规定的保护范围内发生它应该反应的故障时,保护装置应可靠地动作(即不拒动)。

而在不属于该保护动作的其他任何情况下,则不应该动作(即不误动)。

(三)异步电动机保护一、过电流保护当流过被保护元件中的电流超过预先整定的某个数值时就使断路器跳闸或给出报警信号的装置称为过电流保护装置,它有定时限和反时限两种。

⒈定时限过电流保护装置继电保护的动作时间与短路电流的大小无关,时间是恒定的,时间是靠时间继电器的整定来获得的。

时间继电器在一定范围内是连续可调的,这种保护方式就称为定时限过电流保护。

定时限过电流是电流继电器本身的动作时限是固定的,与通过它的电流大小无关。

这种保护装置的接线图⒉反时限过电流保护装置继电保护的动作时间与短路电流的大小有关,短路电流越大,动作时间越短;短路电流越小,动作时间越长,这种保护就叫做反时限过电流保护。

有动作指示掉牌信号,不需接时间继电器和信号继电器。

二、电流速断保护电流速断保护是一种无时限或略带时限动作的一种电流保护。

它能在最短的时间内迅速切除短路故障,减小故障持续时间,防止事故扩大。

电流速断保护又分为瞬时电流速断保护和略带时限的电流速断保护两种。

三、低电压保护低电压保护主要用于以下几个方面。

1.低电压闭锁的过电流保护定时限过电流保护的动作电流是按躲过最大的负荷电流来整定的,在某些情况下可能满足不了灵敏度的要求。

为此可采用低电压继电器的过电流保护装置来提高其灵敏度。

过电流保护的动作电流是按避开最大负荷电流整定的。

为了防止误动作,整定值还应大于允许的过负荷电流。

但有时按此原则整定,其灵敏度往往难以满足要求。

为了提高该情况下灵敏度,可利用线路短路的母线电压显著下降这一特点(过负荷时母线电压降低不多),采用低电压闭锁的过电流保护装置。

例如,有时最大负荷电流会大于末端的短路电流。

在这种情况下,若单纯提高动作电流整定值,就不能满足灵敏度的要求;如果加装低电压闭锁装置,就可避免因过负荷而误动作。

因为过负荷时只是电流增大,而电压是基本不变的,此时虽因电流大而能启动过电流保护,但是低电压保护不动(对其进行闭锁),因此就不会使整套保护装置动作于跳闸,这种闭锁作用既能防止误动作,又能满足灵敏度的要求。

增加低电压闭涣装置的保护方式,是在过电流保护回路中接入低电压继电器的触点,当触点接通地电流保护的出口回路时,保护装置动作才能使断路器跳闸。

2.用于电动机的低电压保护电动机采用低电压保护的目的是当电网电压降低到某一数值时,低电压保护装置动作,将不重要的或不允许自起动的电动机从电网切除,以保证重要电动机在电网电压恢复时,顺利自起动。

四.差动保护比较被保护设备各端口电流的大小和(或)相位的继电保护。

当被保护设备在正常运行或外部短路以及系统振荡时,由于被保护设备各端口电流之和等于零,所以差动保护不会误动作;而在被保护设备本身发生内部短路时,各端口电流之和将等于总短路电流,差动保护将灵敏动作。

为实现差动保护,就必须在被保护设备各端口装设电流互感器(见互感器),并敷设长度与被保护设备相应的二次电缆,这就极大地限制了差动保护在超高压远距离输电线上的应用。

2MW以上电机使用,五、零序电流保护系统运行正常时,三相是对称的,三相对地间均匀分布有电容。

在相电压作用下,每相都有一个超前90°电容电流流入地中。

这三个电容电流数值相等、相位相差120°,其和为零.中性点电位为零。

接地保护假设A相发生了一相金属性接地时,则A相对地电压为零,其他两相对地电压升高为线电压,三个线电压不变。

这时对负荷的供电没有影响。

按规程规定还可继续运行2小时,而不必切断电路。

这也是采用中性点不接地的主要优点。

但其他两相电压升高,线路的绝缘受到考验、有发展为两点或多点接地的可能。

应及时发出信号,通知值班人员进行处理。

在安装零序电流保护装置时,特别注意的一点是:电缆头的接地线必须穿过零序电流互感器的铁心。

这是由于被保护电缆发生一相接地时,全靠穿过零序电流互感器铁心的电缆头接地线通过零序电流起作用的。

否则互感器二次侧也就不能感应出电流,因而继电器也就不可能动作。

六、温度保护过热保护:综合计及电动机的正序电流和负序电流的热效应,对电动机过载、启动时间过长和堵转提供保护。

并有热记忆功能,即过热保护跳闸后,不会立即启动,需等到电动机散热到允许启动时,才能再次启动;七、超压保护八、超速速保护九、发电机保护包括:相间短路的纵联差动保护、发电机定子绕组匝间短路保护、发电机定子绕组的单相接地保护、发电机低励失磁保护、励磁回路一点接地保护、励磁回路两点接地保护、转子表层过热(负序电流)保护、发电机的逆功率保护、发电机失步异常运行保护、定子绕组对称过负荷保护、发电机变压器组公用继电保护;母线的继电保护(三)、变压器的保护电力变压器是供电系统中的重要设备,它的故障对供电的可靠性和用户的生产、生活将产生严重的影响。

因此,必须根据变压器的容量和重要程度装设适当的保护装置。

变压器的故障一般分为内部故障和外部故障两种。

变压器的内部故障主要有绕组的相间短路、绕组匝间短路和单相接地短路,内部故障是很危险的,因为短路电流产生的电弧不仅会破坏绕组绝缘,烧坏铁心,还可能使绝缘材料和变压器油受热而产生大量气体,引起变压器油箱爆炸。

变压器常见的外部故障是引出线上绝缘套管的故障从而可能导致引出线的相间短路或接地短路。

变压器的不正常工作状态有:由于外部短路和过负荷而引起的过电流,油面的过度降低和温度升高等。

对于变压器的故障种类及不正常运行状态,变压器一般应装备下列保护。

(1)瓦斯保护它能反应(油浸式)变压器油箱内部故障油面降低,瞬时动作于信号或跳闸。

(2)差动保护或电流速断保护它能反应变压器内部故障和引出线的相间短路、接地短路,瞬时动作于跳闸。

(3)过电流保护它能反应变压器外部短路而引起的过电流,带时限动作于跳闸,可作为上述保护的后备保护。

(4)过负荷保护它能反应过载而引起的过电流,一般作用于信号。

(5)温度信号它能反应变压器温度升高和油冷却系统的故障。

故障中最常见、危害最大的是各种形式的短路。

发生短路时可能造成的危害是:故障点的很大的短路电流燃起的电弧,使故障设备损坏。

从电流到短路点间流过的短路电流,它们引起的发热和电动力将造成在该路径中有关的非故障元件的损坏。

靠近故障点的部分地区电压大幅度下降,使用户的正常工作遭到破坏或影响产品质量。

破坏电力系统并列运行的稳定性,引起系统振荡,甚至使该系统瓦解和崩溃。

1)电网的电流电压保护:包括:单侧电源网络的相间短路的电流电压保护、电网相间短路的方向性电流保护、大接地电流系统的零序电流保护、中性点不接地单相接地的保护;电网的距离保护输电线路的纵联保护包括:纵联差动保护、高频保护、高频闭锁方向保护、高频闭锁负序方向保护、高频闭锁距离保护和零序保护、高频相差动保护、光纤差动保护;输电线路的自动重合闸包括:三相自动重合闸、综合自动重合闸电力变压器的保护包括:主变压器内部故障的差动保护、主变压器零序保护、主变压器瓦斯保护、高压厂用变压器保护;发电机保护包括:相间短路的纵联差动保护、发电机定子绕组匝间短路保护、发电机定子绕组的单相接地保护、发电机低励失磁保护、励磁回路一点接地保护、励磁回路两点接地保护、转子表层过热(负序电流)保护、发电机的逆功率保护、发电机失步异常运行保护、定子绕组对称过负荷保护、发电机变压器组公用继电保护;母线的继电保护包括:母线差动保护、电流相位比较式母线保护;2)线路的保护:供电线路常见的故障对架空线来说,有断线、碰线、绝缘子被击穿、相间飞弧、短路以及杆塔倒塌等;对电缆来说,应其直接埋地或敷设在混凝土管、隧道等,受外界因素影响较少,除本身绝缘老化的原因外,只有某些特殊情况下,如的基下沉、土壤含有杂质、建筑施工破坏、热力网影响等,才会使相间或相地之间绝缘击穿或断裂,但是电缆接头连接不良或由于污垢而产生的故障,占其全部故障的70%以上。

工业企业供电线路基本上是开式单端供电网络,厂区内距离较短,所以线路保护并不复杂,常用的保护装置有:定时限或反时限的过电流保护;低电压保护;电流速断保护;中性点不接地系统的单相接地保护等。

四、中性点不接地系统的单相接地保护中性点不接地系统发生单相接地故障时,线电压值不变,故障相对地电压为零,非故障相对地电压升高了√3倍,流经故障点的电容电流Ic是正常时每相对地电容电流Ic0的3倍。

因此在供电系统中采用中性点不接地系统的目的是,当系统发生几率最多的单相接地故障时,一般并不要求立即将电源切断,这是因为这种故障并不影响接于线电压上电气设备的正常工作,仍可继续运行。

但如果流过故障点的接地电流数值较大时,就会在接地点间产生间歇性电弧以致引起过电压、损坏绝缘,发展成为相间或两相对地短路,扩大故障。

因此,对中性点不接地系统应当装设绝缘监测装置,必要时还可装设零序电流保护。

电力系统的运行要求安全可靠、电能质量高、经济性好。

但是,电力系统的组成元件数量多,结构各异,运行情况复杂,覆盖的地域辽阔。

因此,受自然条件、设备及人为因素的影响,可能出现各种故障和不正常运行状态。

相关文档
最新文档