电缆故障的探测方法与仪器

合集下载

QTQ02型电缆故障综合测试仪及其应用

QTQ02型电缆故障综合测试仪及其应用
地下塑料电缆绝缘不良(地气)点的准确位置。
1 电缆探测器用途及基本原理
由振荡器产生一个音频信号电流,流经被测 电缆,此电流在被测系统周围产生磁场,磁力线 透过大地传到地面,在地面上用一探测线圈拾取 磁场,经接收器选频放大以后用耳机加以监听, 通过检验这一磁场的变化就可以判断地下金属管 线的位置。利用同样原理可以在电缆护层外检验 内部芯线的障碍部位。
QTQ02型电缆故障综合测试仪及其应用
1、电缆探测器用途及基本原理 2、QTQ02型电缆探测器介绍 3、QT测地下电缆的走向及埋深。 (2)探测地下金属管线(油管、汽管、水管)的走
向及埋深。 (3)探测架空电缆芯线障碍的部位。 (4)如配置一具测量探针(接地规),便可以测量
2 电缆探测器介绍
1. 振荡器 2. 接收器 3. 一号探头 4. 二号探头
3 电缆探测器使用方法 1.芯线放音法探测地下电缆的路由及埋深
1.芯线放音法探测地下电缆的路由及埋深 (1)将振荡器放在电缆的一端,一个输出端子接到另一根
地气棒上;选一根良好芯线为放音线,接到另一个输出 端子上,这根放音线的远端接到一根地气棒上,使放音 电流构成回路(如下图)。 (2)顺时针旋转“输出控制”接通电源,同时调节“电表 灵敏度控制”,使表针有明显数值,并防止电表撞针。
T-C300市话电缆故障综合测试仪概述
1.特点 2.技术指标
2 电桥测试法
1. 工作原理 2. 兆欧表和欧姆表功能 3. 电桥测距接线方法 4. 电桥测试 5. 计算故障距离 6. 测试技巧与注意事项
1.工作原理 2.兆欧表和欧姆表功能
1. 工作原理
仪表采用的是比例计算法,测出芯线从测量点到故障点 电阻和全长电阻的比值,再乘以电缆全长,即得到故障距离。

电缆故障定点仪(电缆路径探测接收机)说明书

电缆故障定点仪(电缆路径探测接收机)说明书

电缆故障定点仪电缆路径探测接收机使用说明书第一章技术说明电缆故障定点仪/电缆路径探测接收机,主要用于电缆故障精确定点,以及用于地埋电缆的路径走向查找。

一、电缆故障定点仪/电缆路径探测接收机技术指标1、灵敏度:在输入信号频率为300Hz、幅度为10μV,信噪比为20:1>2.5V。

条件下,不失真输出V2、输出阻抗:4-40(Ω)低阻输出。

3、功耗:V=9V,静态电流:声测档不大于12mA,声磁同步档不大于18mA。

4、工作电压:9V干电池供电。

5、工作环境温度:-10℃~+40℃。

6、外形尺寸:机箱体积:210×145×70mm。

第二章电缆故障定点仪/电缆路径探测接收机功能介绍一、电缆故障定点仪/电缆路径探测接收机面板及操作功能介绍定点仪正面及定点仪背面示意图如图2.1所示:图2.1 电缆故障定点仪/电缆路径探测接收机面板示意图电源开关、音量电位器旋钮:向上拉(或者顺时针旋转),电源接通,顺时针旋转、耳机音量增大。

表头增益:用于调节V表头摆动灵敏度,顺时针旋转,摆幅增大。

同时也用于调节φ表头摆动灵敏度,顺时针旋转,摆幅增大。

耳机输出插座:与定点仪配套耳机连接。

声测/声磁同步:按键抬起为声信号接收,耳机和V表头均反映声测探头接收声波信号。

按键按下,为声磁同步接收状态,此时V表头反映探头接收放电声波信号,φ表头和耳机则接收路径仪信号或者放电电磁波信号。

φ表头:声磁同步接收时反映接收磁信号大小幅度。

V表头:指示声波信号幅度。

电源指示灯:电池电压正常值为9V,电源开关打开,该指示灯发亮,若电池电压过低时,该指示灯已亮度变暗,定点仪灵敏度也大大降低,应及时更换同型号6F22型方块电池。

声输入插座:定点仪配套的,声测探头插入该插座。

电池盖板:更换电池时,拧下M3螺钉,打开电池盖板,更换同型号6F22型9V电池。

磁输入插座:当寻测电缆路径时,此插座插入同步接收天线。

二、电缆故障定点仪/电缆路径探测接收机配套附件介绍1、定点仪探头探头是定点仪配套附件。

电缆故障查找方法

电缆故障查找方法

电缆故障查找方法电缆故障是电力系统中常见的问题,一旦出现故障,不仅会影响正常的用电,还可能造成安全隐患。

因此,及时准确地查找电缆故障并进行修复至关重要。

下面将介绍几种常用的电缆故障查找方法。

首先,最常用的方法是使用绝缘电阻测试仪进行测试。

在使用测试仪之前,需要先将电缆的两端分别接地,然后将测试仪的两个探头分别接触电缆的两端,记录下测试仪显示的绝缘电阻数值。

如果绝缘电阻数值低于正常范围,就说明电缆存在绝缘故障。

通过这种方法可以快速定位故障位置,有针对性地进行修复。

其次,可以利用局放检测仪进行故障查找。

局放检测仪能够检测电缆局部放电现象,通过分析局放信号的特点,可以判断出电缆是否存在故障。

在使用局放检测仪时,需要注意选择合适的检测频率和增益,以确保能够准确地捕捉到局放信号。

通过这种方法,可以有效地排除电缆的局部故障,提高查找故障的效率。

另外,还可以借助红外热像仪进行故障查找。

红外热像仪能够将电缆表面的热量分布显示出来,通过观察热像图可以发现电缆存在的热点,从而判断出故障位置。

在使用红外热像仪时,需要注意选择合适的拍摄距离和角度,以确保能够准确地捕捉到热像图像。

通过这种方法,可以快速定位电缆的热故障,有针对性地进行修复。

最后,还可以利用无损检测技术进行故障查找。

无损检测技术能够在不破坏电缆表面的情况下,通过电磁、超声波等方法检测电缆内部的故障。

这种方法不仅能够准确地查找出电缆的故障位置,还能够保护电缆表面的完整性,减少对电缆的损坏。

通过这种方法,可以全面地了解电缆的故障情况,有针对性地进行修复。

综上所述,电缆故障的查找方法有多种,每种方法都有其适用的场景和特点。

在实际操作中,可以根据具体情况选择合适的方法进行故障查找,以确保能够及时准确地排除电缆故障,保障电力系统的正常运行。

10kV配电线路电缆故障查找方法

10kV配电线路电缆故障查找方法

10kV配电线路电缆故障查找方法10kV配电线路电缆故障是电力系统中常见的问题,一旦出现故障可能会造成停电、损坏设备等严重后果。

及时准确地查找和修复电缆故障对于维护电力系统的稳定运行至关重要。

本文将介绍一些关于10kV配电线路电缆故障查找的方法,希望可以帮助相关工作人员提高工作效率,提高故障查找的准确性。

一、外观检查在进行故障查找之前,需要对10kV配电线路的电缆进行外观检查。

外观检查是最基本的一步,可以通过目测发现一些电缆外部的损坏情况,比如绝缘层的破损、接头处的漏油等。

如果发现了这些问题,需要及时进行修复或更换,以免引起更大的故障。

二、断路器查找接下来,可以通过断路器查找的方法来定位电缆故障的位置。

断开配电线路上游的断路器,然后使用线路测试仪器查找到断路器后的电压值。

如果发现后方的电压为零,即可初步判断故障点位于断路器后。

然后逐步移动测试仪器,直至找到断路器前的电压为零的位置,即为故障点所在。

在使用该方法时需要小心谨慎,以免对线路造成进一步损坏。

三、局部放电检测另外一种方法是利用局部放电检测技术来查找电缆故障。

局部放电是电介质中的局部放电现象,主要是由于电压应力或绝缘层缺陷引起的。

局部放电检测可以通过检测电缆的局部放电信号来定位故障点,比如利用放大器和高频探头来捕捉放电信号,再通过分析放电信号的波形和幅值来确定故障点。

这种方法适用于查找绝缘层损坏或接头处的故障。

四、超声波检测超声波检测是一种非接触的故障检测方法,可以用来查找电缆中导体之间或导体与绝缘层之间的故障。

通过使用超声波探头来扫描电缆,当波束遇到故障点时,会发生反射和散射,从而被探测仪器捕获。

通过分析捕获的信号可以准确地确定故障点的位置。

这种方法对于查找电缆内部的故障非常有效,但需要专业的人员和设备来操作。

五、热红外检测热红外检测是利用红外热像仪来检测电缆故障的一种方法。

当电缆出现故障时,会产生热量,而红外热像仪可以将这些热量转化为图像显示出来,从而可以清晰地看到故障点的位置。

说说使用电缆故障测试仪的测试方法

说说使用电缆故障测试仪的测试方法

说说使用电缆故障测试仪的测试方法仪器在测定电缆故障之间,测试人员除掌握本机性能与操作方法之外,必须首先确定电缆故障的性质,以便采用适当的工作方法与测试方法。

首先用兆欧或万用表在电缆一端测量各相对地及相之间的绝缘电阻,根据阻值高低确定是低阻短路或断线开路,或者是高阻闪络性故障。

操作方法1、当阻值低于200〜300欧姆为低阻故障,。

〜几十欧为短路故障,阻值极高到无限大为开路或断线故障。

是否断线,还可以将电缆终端相连用表在始端测量被短路接两相的阻值加以确认。

此类故障可用低脉冲法直接测定。

2、当阻值很高(数百兆和千兆)且在作高压实验时有瞬间放电现象,此类故障一般称为闪络性故障,可采用直流高压闪测法确定。

3、高阻故障:阻值高于低阻故障,且在作高压试验时直流高压闪测法确定。

4、按一定方式粗略测试之后再进行确定点,必要时需找电缆路径,丈量电缆长度或距离。

主要特点1、功能齐全,测试故障安全、迅速、准确。

仪器采用低压脉冲法和高压闪络法进行探测,可测试电缆的各种故障,对电力电缆的闪络及高阻故障无需烧穿而直接测试。

如配备声点仪,可准确测定故障点的位置2、测试精度高。

仪器采用高速数据采样技术,读取分辨率标。

智能化程度高。

测试结果以小型及数据自动显示在大屏幕液晶显示屏上,判断故障直观。

并配有菜单显示操作功能,无需对操作人员作专门的训练。

3、具有波开及参数存储、调出功能。

采用非易失性器件,关机后波形、数据不易失。

4、具有双踪显示功能。

可将故障电缆的测试波形与正常波形进行对比,有利于对故障的进一步判断。

5、具有波形扩展比例功能。

改变波形比例,可扩展波形进行精确测试。

6、控制测量光标,可自动沿线搜索,并在故障波形的拐点处自动停下。

7、可任意改变双光标的位置,直接显示故障点与测试点的直接距离或相对距离。

8、具有打印功能。

将测试的结果打印存档。

技术参数1.测试距离不小于10公里。

2.故障点定位误差小于0.5米。

3.电缆路径探测不小于10公里。

10kv电力电缆故障测寻的详细步骤

10kv电力电缆故障测寻的详细步骤

10kv电力电缆故障测寻详细步骤
一、确定故障类型
在进行故障测寻之前,首先要确定故障的类型,如开路、短路、断路等。

可以通过测量电缆的绝缘电阻和导体电阻等参数,初步判断故障的性质和程度。

二、预定位
预定位是初步确定故障的大致位置,常用的方法有:
1. 电桥法:通过测量电缆线路的电阻和电容,计算出故障点到测试点的距离。

该方法简单可靠,但精度较低。

2. 脉冲法:通过向电缆发送高压脉冲信号,根据反射回来的脉冲信号时间差,计算出故障点的距离。

该方法精度较高,但需要较高的测试设备和经验。

三、精确定位
精确定位是在预定位的基础上,进一步精确确定故障点的位置。

常用的方法有:
1. 音频法:通过听取电缆中声音的差异,判断故障点的位置。

该方法简单易行,但需要经验丰富的操作人员。

2. 声磁同步法:通过测量电缆中的声音和磁场信号,利用时间差原理确定故障点的位置。

该方法精度较高,但需要特殊的测试设备。

四、修复故障
根据故障的性质和程度,可以采用不同的修复方法。

常用的方法有:1. 直通接法:对于短路、断路等简单故障,可以直接将电缆两头连
接在一起,恢复正常的电气性能。

2. 绕接法:对于损坏较轻的故障点,可以采用绕接的方式进行修复。

3. 替换法:对于损坏严重的电缆段,需要整段替换电缆。

五、测试验收
修复完成后,需要对电缆进行测试验收,确保故障已经完全排除,电缆电气性能恢复正常。

测试内容包括绝缘电阻、导体电阻、耐压试验等。

验收合格后,方可投入使用。

电力电缆故障探测

电力电缆故障探测

电力电缆故障查找方法与应用电力电缆具有供电安全可靠,受自然气象条件影响少,运行和维护成本相对较少等优点,但在实际的运行中由于城市的施工,电缆附件安装工艺不良,长期过负荷运行等因素致使电缆发生故障,影响供电安全。

如何快速查找故障点,恢复电缆正常供电,是运行维护人员面临的一个挑战。

笔者总结多年的工作经验,给出以下分享。

电力电缆故障点查找一般分四步骤进行:1.故障类型判断2.故障点预定位3.路径确认4.精确定点一、故障类型判断故障判断:用万用表、兆欧表测量电缆的故障电阻,并根据故障电阻大小,判断电缆的故障性质;进一步了解该故障的原因、电缆敷设环境及运行情况等。

电缆故障类型可分为以下5种:1、开路(断线)故障:电缆有一芯或多芯导体断裂或者金属护层断裂。

断线故障一般都伴有经电阻接地的现象。

2、短路故障:电缆的一芯或多芯对地绝缘电阻或者线芯之间绝缘电阻低于10Ω,其中电缆的一芯或多芯对地绝缘电阻低于10Ω的故障也叫死接地故障。

3、低阻故障:电缆的一芯或多芯对地绝缘电阻或者线芯之间绝缘电阻大于10Ω,不高于200Ω(非标准值)。

4、高阻泄露性故障:电缆的一芯或多芯对地绝缘电阻或者线芯之间绝缘电阻大于200Ω。

5、高阻闪络性故障:电缆的一芯或多芯对地绝缘电阻或者线芯之间绝缘电阻非常高,但对电缆进行耐压试验时,当电压加到某一数值,突然出现绝缘击穿的现象。

二、故障点预定位上述故障类型分类的目的是为了选择合适的测试方法,目前电缆故障测距的常用方法主要有电桥法和波反射法(脉冲法)两种。

1、电桥法:测距方法是基于电缆沿线均匀,电缆长度与缆芯电阻成正比的特点。

并根据惠斯通电桥的原理,将电缆短路接地故障点两侧的环线电阻引入电桥回路,测量其比值。

由测得的比值和已知的电缆全长,计算出测量端到故障点的距离。

此方法需要一个截面相同长度相等的完好的相线作为测试辅助相。

适用于短路、低阻与高阻泄露性故障。

2、波反射法(脉冲法):又分为低压脉冲法、二次(多次)脉冲法、脉冲电流法。

电力电缆高阻故障的探测技术

电力电缆高阻故障的探测技术

电力电缆高阻故障的探测技术
电力电缆的高阻故障是指电缆某一部分出现了电阻大于正常值的情况,导致电流通过
受阻,电压下降,甚至造成线路短路。

如果高阻故障得不到及时发现和处理,可能会导致
电缆发生过热、烧毁甚至引发火灾的严重后果。

电力电缆高阻故障的探测技术显得十分重要。

电缆高阻故障的探测技术主要可以分为五大类:继电保护、无损检测、红外热像仪、
电缆局部放电监测和超声波检测。

继电保护是一种常用的高阻故障探测技术,通过监测电缆的电流和电压变化情况,判
断是否存在高阻故障。

当电流和电压发生异常时,继电保护会及时发出警报,并切断电源,避免进一步的事故发生。

无损检测是一种不需要破坏电缆绝缘层的方法来检测故障的技术。

常用的无损检测方
法有超声波、红外热像仪和电缆局部放电监测。

超声波通过发送超声波并观察返回的信号
来判断电缆是否存在高阻故障;红外热像仪则通过测量电缆表面的温度分布来发现电缆是
否存在过热故障;电缆局部放电监测是通过对电缆进行局部放电检测,当出现高阻故障时,会伴随着局部放电的发生。

红外热像仪是利用红外线热成像技术来检测电缆高阻故障的一种无损检测方法。

红外
热像仪可以通过检测电缆表面的热辐射来发现电缆是否存在异常的温度升高,从而判断是
否存在高阻故障。

红外热像仪的优势是可以在不接触电缆的情况下进行检测,无需切断电源。

超声波检测是通过发送超声波并观察返回的信号来判断电缆是否存在高阻故障。

超声
波检测可以检测电缆内部的物理状态,当电缆出现高阻故障时,会产生反射超声波信号。

通过对超声波信号的分析,可以判断电缆是否存在高阻故障。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电缆故障的探测方法与仪器
本文综述了电缆故障的探测方法与仪器。

首先列举了电缆故障探测的传统方法并分析了传统方法的不足,然后介绍了电缆故障探测的新方法及其特点。

随着电缆用量在整个电力传输线路和因特网中所占的比例日益提高,电缆故障出现的几率越来越大。

电缆故障对生产造成的危害较大,轻者会造成单台电气设备不能运行,重者会导致整个变电所停电,所以电缆故障点的快速测定和精确定位问题变得非常重要。

一、电缆故障探测的传统方法
(一)电缆故障测距的传统方法
电缆故障测距的传统方法主要有以下四种:
电桥法:这是电力电缆的测距的经典方法。

该方法比较简单,但需要事先知道电缆线长度等数据,且只适用于低阻及短路故障。

但是,在实际运行中,故障常常为高阻及闪络性故障,因故障电阻很高造成电桥电流很小,因此一般的灵敏度仪表很难探测。

脉冲回波法:针对低阻与断路类型的故障,利用低压脉冲反射方法来测电缆故障比起上面的电桥法简单直接,只需通过观察故障点反射与发射脉冲的时间差来测距。

测试时将一低压脉冲注入电缆,当脉冲传播到故障点时会发生反射,脉冲被反射送回到测量点。

利用仪器记录发射和反射脉冲的时间差,只需知道脉冲传播速度就可计算出故障发生点的距离。

该方法简单直观,不需知道电缆长度等原始数据,还可根据反射波形识别电缆接头与分支点的位置。

脉冲电压法。

该方法可用于测量高阻与闪络故障。

首先将电缆故障在直流或脉冲高压信号下击穿,然后通过记录放电脉冲在测量点与故障点往返一次所需的时间来测距。

脉冲电压法的一个重要优点是不必将高阻与闪络性故障烧穿,直接利用故障击穿产生的瞬时脉冲信号,测试速度快,测量过程也得到简化。

但缺点是:①仪器通过一个电容电阻分压器分压测量电压脉冲信号,仪器与高压回路有电耦合,很容易发生高压信号串人,造成仪器损坏,故安全性较差;
②在利用闪测法测距时,高压电容对脉冲信号呈短路状态,需要串一个电阻或电感以产生电压信号,增加了接线复杂性,使故障点不容易击穿;③在故障放电时,特别在冲闪时,分压器耦合的电压波形变化不尖锐,难以分辨。

脉冲电流法:该方法安全、可靠、接线简单。

其方法是将电缆故障点用高压击穿,使用仪器采集并记录下故障点击穿产生的电流行波信号,根据电流行波信号在测量端与故障点往返一趟的时间来计算故障距离。

该方法用互感器将脉冲电流耦合出来,波形较简单,较安全。

这种方法也包括直闪法及冲闪法两种。

与脉冲电压法使用电阻、电容分压器进行电压取样不同,脉冲电流法使用线性电流耦合器平行地放置在低压测地线旁,与高压回路无直接电器连接,对记
录仪器与操作人员来说,特别安全、方便。

所以人们一般使用此方法。

"
(二)电缆故障定点的传统方法
这里简要介绍一下声磁同步法。

该方法使用高压设备使电缆故障点击穿放电,利用接收器记录放电声音,并用磁场信号对其进行同步,通过分析声音波形及测试人员通过耳机听声进行故障定点。

此方法是目前常用的电力电缆定点的方法,但该方法只能获得距离故障点附近2~3m左右距离的声音信号,且对现场操作人员的技术素质要求较高。

二、电缆故障探测的新方法
(一)电缆故障测距的新方法
因果网:因果网描述故障元件、继电器、开关之间内在的动作关系。

它利用比传统专家系统更深入的知识及面向对象技术,对电力系统故障进行定位。

它具有简单、明确、通用性强等优点。

利用小波变换进行故障选相:在脉冲法电缆故障定位检测中不可避免地存在各种电磁干扰。

脉冲信号输出引线引起的高频振荡,采集系统本身固有的高频干扰,以及使用现场的空间电磁干扰都会通过暴露在定位仪外的信号引线进入测试系统,严重时可淹没反射脉冲的起始点,给故障定位带来误差。

为此,必须采用有效的数字信号处理方法消除这些干扰的影响,提高故障定位精度。

小波变换是20世纪80年代后期发展起来的应用数学分支,被誉为信号分析的数学显微镜,是信号处理的前沿课题。

小波变换在数字信号处理领域,如滤波、奇异信号检测、边缘检测等方面应用广泛。

小波的多尺度分析方法能将各种交织在一起的不同频率组成的混合信号分解成不相同频率的信号,并直接在时域上反映出来,信号的位置、幅值和波形都十分直观,能有效地实现信噪分离。

小波变换具有很好的时频局部特性,对分析信号上奇异点的位置非常有效,这一特性适用于电缆故障定位中寻找反射脉冲的起始点。

基于整个输电网GPS行波故障定位:全球定位系统GPS是近年发展起来的用于通信系统的最新技术。

输电线路行波故障定位具有很高的精度,但需要高速A/D采集、大量数据存储、复杂的行波波头辨识,且对发展性故障、近距离故障的测量处理比较困难。

如用专用行波波头检测传感器、高精度的GPS时钟及存储行波波头时刻的高效存取方法,在每个变电站安装一台专门设计的行波波头记录仪,与调度通信构成输电网GPS行波测量网络,则可直接测量故障行波波头到达各个变电站的准确时刻,由调度进行故障定位。

跨步电压法:利用脉冲跨步方式对低压电缆故障进行定向与定位,该方法接线简单、操作方便,可对直埋电力电缆故障快速定向、精确定点。

它是利用电缆沿线的土壤中或地面产生沿电缆走向依次递减或递增的"跨步"电压脉冲,确定故障点的方向和具体位置。

因为根据以往的经验,低压电力电缆故障,90%以上故障点的电缆护层都是破损的,这样即可利用在电缆一端
施加一个周期的脉冲信号,沿电缆敷设走向快速确定故障点的方向和精确确定故障点的位置。

一般土壤情况下,在距离故障点20-30m,就可以指示故障点方向,在水泥或硬化路面条件下,在距离故障点l0m,就可以指示故障点方向。

与现有技术比较,利用脉冲跨步方式对低压电缆故障进行定向与定位的方法的优点是:①可以大范围确定故障点的方向,节省测试故障的时间;
②施加在故障电缆上的中压脉冲并不要求被试电缆在故障点产生续弧,并且脉冲宽度仅有几ms 到几十ms,因此不会对电缆造成损伤;③所使用的测量设备使用方便、操作简单,并且直观;
④定位精度高。

利用发光二极管束或指针式表头指示故障点的方向和该电压脉冲的大小,根据仪器上的指示方向,沿电缆探测,即可迅速、精确地找到故障点。

(二)电缆故障定点的新方法
高频感应法:利用高频信号发生器向电缆输入高频电流,这样会产生高频电磁波,然后在地面上用探头沿电缆路径接收电缆周围高频电磁场,电磁场的变化经接收处理后直接在液晶屏幕上显示出来,根据显示出数值的大小直接判断故障点位置。

高频感应法与传统音频感应法相比有如下很多优点。

高频信号源本身就比音频信号源容易实现,制造容易,可以减少定点探测装置的体积和重量,为设备的小型化和便携创造有利条件。

高频信号的频谱抗干扰性能较强。

该方法可以直接将结果显示出来,比靠人耳辨别更可靠,更方便。

用高频感应法比音频感应法要优越得多,而且它可在不停电情况下用耦合式接线来实施在线故障探测。

红外热象技术:基于电缆一旦过载,线芯的温度将会急剧上升这一现象,人们可对电缆的线芯温度进行监测来判断故障位置。

步骤如下:首先采用红外热象仪扫描电缆表面,拍摄出电缆的表面温度场分布图象,进一步处理可得出温度场的具体数值分布,然后根据已建立的传热数学模型,根据电缆结构参数,物性参数,环境温度及表面温度对电缆线芯温度进行反演计算,从而实现电缆线芯温度的非接触的故障探测。

正是红外技术不需接触设备,不要求设备停运,且具有操作简便,检测速度快,工作效率高等优点,在未来的电缆故障检测中,红外热象技术必将发挥更大的作用。

相关文档
最新文档