工程经济学计算题

合集下载

一级建造师《工程经济》必考计算题

一级建造师《工程经济》必考计算题

2020年一级建造师《工程经济》必考计算题1.利息的计算单利(利不生利)F=P(1+n*i)复利(利生利) F=P(1+i)^n;【典型例题】某施工企业从银行借款100万元,期限3年,年利率8%,按年计息并于每年末付息,则第3年末企业需偿还的本利和为( )万元。

A.100B.124C.108D.126【答案】C【解析】本题考查的是利息的计算——单利计息。

本题,第3年末企业需偿还的本利和为:100+100×8%=108万元。

【典型例题】某施工企业每年年末存入银行100万元,用于3年后的技术改造,已知银行存款年利率为5%,按年复利计息,则到第3年末可用于技术改造的资金总额为( )。

A.331.01B.330.75C.315.25D.315.00【答案】C【解析】本题考查等值计算。

已知年金A 求终值F, 每年年末存100万为年金A, 第3年末可取出的金额为终值F,F=100×[(1+5%)^3-1]/5%=315.25 万元。

【考点来源】资金时间价值的计算及应用2.有效利率和名义利率有效利率=(1+计息周期利率)^m-1m-所求期限(问题)内的计息次数【典型例题】已知年名义利率为10%,每季度计息1次,复利计息,则年有效利率为()。

A. 10.00%B.10.25%C. 10.38%D.10.47【答案】C【解析】年有效利率= )4-1=10.38%【考点来源】资金时间价值的计算及应用3.总投资收益率的计算式中EBIT——技术方案正常年份的年息税前利润或运营期内年平均息税前利润;TI——技术方案总投资(包括建设投资、建设期贷款利息和全部流动资金)。

【典型例题】某工业项目建设投资额8250万元(不含建设期贷款利息),建设期贷款利息为1200万元,全部流动资金700万元,铺底流动资金为200万元,项目投产期的息税前利润为300万元/年,项目达产期的息税前利润为500万元/年,则该项目的总投资收益率为( )。

工程经济学综合计算题

工程经济学综合计算题

《工程经济学》计算题一、贷款与利率1.年初存入银行100万元,若年利率为12%,年计息12次,每季度支付一次,问每季度能支付多少?(已知:P=100万, r=12%, m=12, n=4;求A.)答:实际季利率=(1+r/m)^3-1=(1+1%)^3-1=%=100*[%(1+%)^4]/[(1+%)^4-1]=100*=万元2.银行提供的五年期居民住房按揭贷款,按月计复利。

每100万元贷款,月等额偿还款额为5万元(五年还清本息)。

计算月利率、年名义利率和年实际利率?答:A=P(A/P,i,n)求得(A/P,i,n)=,通过试算i=4%,(A/P,i,n)=;i=5%,(A/P,i,n)=,采用内插法求得i=%;年实际利率=(1+月利率)^12-1=%年名义利率=月利率*12=%3.某家庭以抵押贷款的方式购买了一套价值为45万元的住宅,如果该家庭首期付款为房价的30%,其余为在15年内按月等额偿还抵押贷款,年贷款利率为12%,按月计息。

问月还款额为多少?答:P=45*(1-30%)=万元,i=12%/12=1%,n=15*12=180A=P(A/P,i,n)=*=万元4.某房地产公司借款5000万元投资于一个房地产项目,约定第一年末开始分10年均等返还,但还到第五年末时,一次性把尾款还清了。

若年利率为12%,每月计息一次,这笔尾款是多少?(若约定第二年末开始分10年均等返还这笔尾款是多少?)答:年实际利率i=(1+12%/12)^12-1=%(A/P,%,10)=1-5.某企业获得800万元贷款,偿还期10年,年利率为10%,试就以下4种还款方式,分别计算还款额及10年还款总额。

⑴每年年末还80万元本金和所欠利息;⑵每年年末只还所欠利息,本金在第10年末一次还清;⑶每年末等额偿还本金和利息;⑷第10年末一次还清本金和利息。

第10年末一次还清本金和利息=800*(1+10%)^10=答案正确,方法可简单1-6.某构件厂欲购买设备,现有四家银行可以提供货款。

工程经济学计算题及答案

工程经济学计算题及答案

1、某项目的原始投资为20000元(发生在零期),以后各年净现金流量如下: 第一年获得净收益3000元,第二年至第十年每年均收益5000元。

项目计算期为10年,基准收益率为10%。

(1)请绘制该现金流量图;(2)按需要完善现金流量表;(3)计算静态投资回收期(Pt);(4)计算净现值(NPV);(5)计算内部收益率(IRR);(6)判断该项目是否可行。

(计算结果保留小数后两位)(20分)解:1)绘制该现金流量图:2分2)完善现金流量表现金流量表万元1分3)计算静态投资回收期(Pt ) Pt=累计净现金流量出现正值的年份-1+当年净现金流量绝对值上年累计净现金流量的 2分=5-1+年4.450002000=- 1分4)计算净现值(NPV )NPV(10%)=-20000+3000(P/F.10%.1)+5000(P/A.10%.9)(P/F.10%.1) 2分 =-20000+3000×0.9091+5000×5.759×0.9091=8904.83万元 1分 5)计算内部收益率(IRR )设1i =15% 1分 NPV 1(15%)=-20000+3000(P/F.15%.1)+5000(P/A.15%.9)(P/F.15%.1) 1分 =-20000+(3000+5000×4.7716)×0.8696 =3355.72万元 1分 设2i =20% 1分 NPV 2(20%)=-20000+3000(P/F.20%.1)+5000(P/A.20%.9)(P/F.20%.1) 1分 =-20000+(3000+5000×4.0310)×0.8333 =-704.94万元 1分∵IRR=1i +(2i -1i )211NPV NPV NPV +2分∴IRR=15%+(20%-15%)3355.723355.72704.94+=0.1913=19.13%1分6)判断该项目是否可行∵ Pt=4.4年<10年NPV(10%)=8904.83万元>0 IRR=19.13%>10%∴该项目可行 2分2、某建设项目现金流量如下表所示,若基准收益率i c=10%。

(完整word版)工程经济学计算题

(完整word版)工程经济学计算题

工程经济学计算题),,/(,),,/(,),i ,/(,),i ,/(,),,/(,),,/(,n i P A P A A P n i A P A P P A n F A F A A F n A F A F F A n i F P F P P F n i P F P F F P ======:求已知:求已知:求已知:求已知:求已知:求已知1. 南桥跨越幅度较大,要建吊桥,其投资为3000万元,建桥购地80万元,年维修费1.5万元,水泥桥面每10年翻修一次5万元;北桥跨越幅度较小,可建木行架桥,预计投资1200万元,年维修费8000元,该桥每三年粉刷一次需一万元,每10年喷砂整修一次,需4.5万元,购地用款1030万元。

若年利率为6%,试比较两方案何者为优? 解:年值法: AC 南=3080×6%+1.5+5(A/F ,6%,10)=187AC 北=2230×6%+0.8+1(A/F ,6%,3)+4.5(A/F ,6%,10)=135 因为AC 南>AC 北,所以北桥的方案为优。

2. 某项目生产某种产品的设计能力为年产量100000件,产品出厂单价为200元,单位产品可变成本为100元,正常生产年份的年固定成本为680万元,试对该项目进行盈亏平衡分析。

解:Q *=Cv P Cf -=1002006800000-=68000B *=P ·Cv P Cf -=200×1002006800000-=13600000E *=QdQ *=68000/100000×100%=68%P *=Q C f +Cv=1000006800000+100=1683. 某工程方案设计生产能力为1.5万t/年,产品销售价格为3000元/t ,销售税金及附加为150元/t ,增值税为70元/t ,年总成本为3600万元,其中固定成本为1500万元。

试求以产量、销售收入、生产能力、生产能力利用率、销售价格和单位产品变动成本表示的盈亏平衡点。

《工程经济学》计算题

《工程经济学》计算题

《工程经济学》计算题●某新建项目,建设期为3年,分年均衡进行贷款,第一年贷款300万元,第二年600万元,第三年400万元,年利率为12%,建设期内利息只计息不支付,计算建设期贷款利息。

答:q1=1/2×300×12%=18(万元)q2=(300+18+1/2×600)×12%=74.16(万元)q3=(300+18+600+74.16+1/2×400)×12%=143.06(万元)所以,建设期贷款利息=18+74.16+143.06=235.22(万元)●某企业技术改造有两个方案可供选择,各方案的有关数据见表,设基准收益率为12%。

问:采用那个方案有利?A、B方案的数据案投资额(万元)年净收益(万元)寿期A 800 360 6B 1200 480 8NPVA=-800-800(P/F,12%,6)-800(P/F,12%,12)-800(P/F,12%,18)+360(P/A,12%,24)NPVB=-1200-1200(P/F,12%,8)-1200(P/F,12%,16)+480(P/A,12%,24)=1856.1(万元)由于NPVA < NPVB,故方案B优于方案A。

●某八层住宅工程,结构为钢筋混凝土框架,材料、机械、人工费总计为216357.83元,建筑面积为2091.73m2,。

各分部工程所占费用如下表,试用ABC分析法选择该住宅工程的研究对象。

分部名称代号费用(元)%基础 A 29113.01 13.46墙体 B 41909.53 19.37框架 C 75149.86 34.73楼地面 D 10446.04 4.83装饰 E 20571.49 9.51门窗 F 33777.31 15.61其他G 5390.59 2.49总计216357.83 100答:按费用(或其百分比)大小排序:分部名称代号费用(元)% 累计百分比(%)框架 C 75149.86 34.73 34.73墙体 B 41909.53 19.37 54.1门窗 F 33777.31 15.61 69.71基础 A 29113.01 13.46 83.17装饰 E 20571.49 9.51 92.68楼地面 D 10446.04 4.83 97.51其他G 5390.59 2.49 100 总计216357.83 100 —由上表可知:应选框架、墙体、门窗或包含基础作为研究对象。

工程经济学计算题及答案

工程经济学计算题及答案

1、某项目的原始投资为20000元(发生在零期),以后各年净现金流量如下: 第一年获得净收益3000元,第二年至第十年每年均收益5000元。

项目计算期为10年,基准收益率为10%。

(1)请绘制该现金流量图;(2)按需要完善现金流量表;(3)计算静态投资回收期(Pt);(4)计算净现值(NPV);(5)计算内部收益率(IRR);(6)判断该项目是否可行。

(计算结果保留小数后两位)(20分)解:1)绘制该现金流量图:2分2)完善现金流量表现金流量表万元1分3)计算静态投资回收期(Pt)Pt=累计净现金流量出现正值的年份-1+当年净现金流量绝对值上年累计净现金流量的2分=5-1+年4.450002000=- 1分4)计算净现值(NPV )NPV(10%)=-20000+3000(P/F.10%.1)+5000(P/A.10%.9)(P/F.10%.1) 2分 =-20000+3000×0.9091+5000×5.759×0.9091=8904.83万元 1分 5)计算内部收益率(IRR )设1i =15% 1分 NPV 1(15%)=-20000+3000(P/F.15%.1)+5000(P/A.15%.9)(P/F.15%.1) 1分 =-20000+(3000+5000×4.7716)×0.8696 =3355.72万元 1分 设2i =20% 1分NPV 2(20%)=-20000+3000(P/F.20%.1)+5000(P/A.20%.9)(P/F.20%.1) 1分 =-20000+(3000+5000×4.0310)×0.8333 =-704.94万元 1分 ∵IRR=1i +(2i -1i )211NPV NPV NPV + 2分∴IRR=15%+(20%-15%)3355.723355.72704.94+=0.1913=19.13% 1分6)判断该项目是否可行 ∵ Pt=4.4年<10年NPV(10%)=8904.83万元>0 IRR=19.13%>10%∴该项目可行 2分2、某建设项目现金流量如下表所示,若基准收益率i c=10%。

工程经济学计算题

工程经济学计算题

1、时间价值及等值计算某人得了5000元,打算在48个月中以等额月末支付分期付款,在归还25次之后,他想第26次以一次支付立即归还余下借款,年利率为24%,每月计息一次,问此人归还的总金额为多少?解:每月利率为i=24%÷12=2%前25次中,每次支付金额为A=P ×(A/P,i,n)=5000×(A/P,2%,48)=5000×0.03264=163.2前 25 次支付的现值为 P1=A×(P/A,i,n)=163.2×(P/A,2%,25)=163.2×19.5235=3186.2(元)前 25 次支付后欠款的现值为 P2=P-P1=5000-3186.2=1813.8前 25 次应偿还的金额为F=P2×(F/P,i,n)=1813.8×1.6734=3035.2总还款金额为=F+25×A=3035.2+25×163.2=7115.22、按揭还款计算某人购买一套10平方米的住房,单价1.5万/平方米,当付50万元后,贷款100万元,贷款利率为5%,贷款期限为15年,采用等额还款抵押贷款的公式计算,每月贷款的金额是多少万元?前三个月还款中每个月的应付利息和应还的本金各是多少万元?若分期还款5年后,则贷款余额还剩下多少万元?(1)100=A*年金现值系数(P/A,5%/12,180) =A*126.455A=7907.95(2)第一个月本金=100万元/ 180 = 5555.56元第一个利息=100万元*(5%/12) = 4166.67元第一月= 5555.56+4166.67=9722.23元(3)还款5年后总还=5555.56*12*5=333333.6贷款余额=1000000-333333.6=666666.43、项目经济评价指标计算(现在、投资回收期、内部收益率)①某项目初始投资为8000万元,第一年末的现金流入为2000万元,第二年末的现金流入为3000万元,第三年、四年末的现金流入均为4000万元,设基准收益率为10%,请计算该项目的静态投资回收期,动态投资回收期,净现值,净年值,净现值率,内部收益率?(一)NPV(净现值)=-8000+2000(P/F,10%,1)+3000(P/F,10%,2)+4000(P/F,10%,3)+4000(P/F,10%,4)=2035.9(二)NAV(净年值)=NPV(A / P,10%,4)=2035.9×0.3154=642.3(元)(三)NPVR(净现值率)=NPV / I P = 2035.9 / 8000 = 0.254 =25.4%>0(方案可行)(四)内部收益率NPV1(15%)=-8000+2000(P / F,15%,1)+3000(P / F,15%,2)+4000(P / A,15%,2)(P / F,15%,2)=-8000+2000×0.8696+3000×0.7561+4000×1.626×0.7561=925(元)>0NPV2(20%)= -8000+2000(P / F,20%,1)+3000(P / F,20%,2)+4000(P / A,20%,2)(P / F,20%,2)= -8000+2000×0.8333+3000×0.6944+4000×1.528×0.6944= -6.03<0由NPV1(15%)=925(元)>0NPV2(20%)= -6.03<0及(i2-i1)=20%- 15%=5%(符合《5%)得:IRR= i1+(NPV1/NPV1+|NPV2|)×(i2-i1)=15%+(925/925+|-6.03|)×(20%-15%)= 0.1997 ≈ 0.20 = 20%(五)静态投资回收期Pt=(T-1)+|第(T-1)年的累计净现金流量|/第T年的净现金流量Pt=3-1+|-3000|/4000=2.75动态投资回收期Pd=(T-1)+|第(T-1)年的累计折现值|/第T年净现金流量的折现值Pd= = 4 — 1 +∣— 698∣/ 2732= 3 + 0.26 = 3.26 (年)②某开发公司购买空地一块,拟开发住宅小区,地价800万元一次付清,预计建设期两年,第一年建设投资800万元,第二年建设投资1000万元,住宅建筑总面积15000平方米,预计平均售价3000元/平方米,销售计划为:建设期第一、二年分别预售房屋的10%和5%,销售期第一、二年分别销售40%和35%,销售税、代理费等占销售收入的10%,基准收益率为10%,根据上述材料,要求:(1)绘制该项目的现金流量图;总销售金额=1.5×3000×(1-10%)=4050(万元)第一年净现金=4050×10%-800=-395第二年净现金=4050×5%-1000=-797.5第三年净现金=4050×40%=1620第四年净现金=4050×35%=1417.5(2)计算该项目的静态投资回收期和动态投资回收期;Pt=4-1+|-372.5|/1417.5=3.26Pd=4-1+|-601.03|/968.15=3.62(3)计算该项目的净现值为多少万元?净现值=968.15+1217.11-659.05-359.09-800=367.12(4)该项目是否经济合理,其依据有哪些?净现值=367.12大于0,动态投资回收期为3.62年小于4年,说明内部收益率大于基准收益率为10%。

工程经济学综合计算题(已做)

工程经济学综合计算题(已做)

《工程经济学》计算题一、贷款与利率1.年初存入银行100万元,若年利率为12%,年计息12次,每季度支付一次,问每季度能支付多少?(已知:P=100万, r=12%, m=12, n=4;求A.)答:实际季利率=(1+r/m)^3-1=(1+1%)^3-1=3.03%=100*[3.03%(1+3.03%)^4]/[(1+3.03%)^4-1]=100*0.2692=26.92万元2.银行提供的五年期居民住房按揭贷款,按月计复利。

每100万元贷款,月等额偿还款额为5万元(五年还清本息)。

计算月利率、年名义利率和年实际利率?答:A=P(A/P,i,n)求得(A/P,i,n)=0.05,通过试算i=4%,(A/P,i,n)=0.044201845;i=5%,(A/P,i,n)=0.052828185,采用内插法求得i=4.67%;年实际利率=(1+月利率)^12-1=72.93%年名义利率=月利率*12=56.04%3.某家庭以抵押贷款的方式购买了一套价值为45万元的住宅,如果该家庭首期付款为房价的30%,其余为在15年内按月等额偿还抵押贷款,年贷款利率为12%,按月计息。

问月还款额为多少?答:P=45*(1-30%)=31.5万元,i=12%/12=1%,n=15*12=180A=P(A/P,i,n)=31.5*0.012=0.378万元4.某房地产公司借款5000万元投资于一个房地产项目,约定第一年末开始分10年均等返还,但还到第五年末时,一次性把尾款还清了。

若年利率为12%,每月计息一次,这笔尾款是多少?(若约定第二年末开始分10年均等返还这笔尾款是多少?)答:年实际利率i=(1+12%/12)^12-1=12.68%(A/P,12.68%,10)=0.1819第一年末还款,第五年末一次性还款4135.49万元1-5.某企业获得800万元贷款,偿还期10年,年利率为10%,试就以下4种还款方式,分别计算还款额及10年还款总额。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程经济学计算题————————————————————————————————作者:————————————————————————————————日期:2第一章7、某工程投资100万元,第三年开始投产,需要流动资金300万元,投产后,每年销售收入抵销经营成本后为300万元,第5年追加投资500万元,当年见效且每年销售收入抵销经营成本后为750万元,该项目的经济寿命为10年,残值100万元,绘制该项目的现金流量图?解:9.某工程项目需要投资,现在向银行借款为100万元,年利率为10%,借款期为5年,一次还清。

问第五年年末一次偿还银行的资金是多少?解:(1)画现金流量图(2)计算nF = P1i= P(F/P , i , n) = 100(F/P , 10% , 5) = 100×1.6105 = 161.05(万元)答:5年末一次偿还银行本利和161.05万元。

10.某工厂拟在第5年年末能从银行取出2万元,购置一台设备,若年利率为10%。

那么现在应存入银行多少钱?解:(1)作图(2)计算1P = F = F(P/F , i , n) = 2(P/F , 10% , 5) = 2×0.6209 = 1.2418(万元)1ni答:现在应存入银行的现值为1.2418万元。

11.某项改扩建工程,每年向银行借款为 100万元,3年建成投产,年利率为 10%,问投产 时一次还款多少钱?解:(1)作图(2)计算F = A(F/A , i , n)(F/P, i, n) = 1000(F/A , 10% ,3) (F/P,10%,1)= 100×3.310×1.10 = 364.1(万元)答:投产时需一次还清本利和 364.1万元。

12.某工厂计划自筹资金于 5年后新建一个生产车间,预计需要投资为 5 000万元,若年利 率为 5%,从现在起每年年末应等额存入银行多少钱才行?解:(1)作图 (2)计算i 1= F(A/F , i , n) = 5000(A/F , 5% ,5) = 5000×0.181 = 905(万元) A = F 1 i n 答:每年年末应等额存入银行 905万元。

13.某项投资,预计每年受益为 2万元,年利率为 10%时,10年内可以全部收回投资,问 期初的投资是多少钱?解:(1)作图 (2)计算1 i 1 n P = A = A(P/A , i , n) = 2(P/A , 10% ,10) = 2×6.1446 = 12.2892(万元) i 1i n答:期初投资为 12.2892万元。

14.某项工程投资借款为 50万元,年利率为 10%,拟分 5年年末等额偿还,求偿还金额是 多少?解:(1)作图 (2)计算i 1i nA = P = P(A/P , i , n) = 50(A/P , 10% , 5) = 50×0.2638 = 13.19(万元) 1 i n 1 答:偿还金额是 13.19万元。

15、某借款金额 1万元,利率 8%,分 5年于年末等额偿还,问每年的偿付值?若在每年初 偿还,每期偿付值又是多少?解:(1)作图 图 1.年末等额偿还图 2.年初等额偿还(2)计算①A = P(A/P, i, n) = 1(A/P, 8%, 5) = 0.2505万元②P = A +A(P/A, i, n)PA = = 0.2319万元1 (P / A ,8%,4) 答:若年末等额偿还,每年偿还 0.2505万元,若在每年初偿还,每期偿还 0.2594万元。

16、某项目第 1~4年平均投资 50万元,第 4年建成投产,年净收益 40万元,第 5~10年生 产达产后年均净收益 70万元。

第 11~12年生产约有下降,年均净收益 50万元,在年利率 8%时,求终值、现值、第 4年期末的等值资金?解:(1)作图(2)计算P = -50+(-50)(P/A, 8%, 3)+40(P/F, 8%, 4)+70(P/A, 8%, 6)(P/F, 8%,4)+50(P/A, 8%,2)(P/F, 8%, 10) = 129.6142万元F = P(F/P, 8%, 12) = 326.3686万元F = P(F/P, 8%, 4) = 176.2753万元4 第四章1.某建设项目方案表明,该项目在建设的第一年完工,投资为 10 000元,第二年投产并获 净收益为 2 000元,第三年获净收益为 3 000元,第四年至第十年获净收益为 5 000元,试 求该项目的静态投资回收期。

解:(1)作图(2)计算p t CI CO = -10000+2000+3000+5000 =0 t t 1 p = 4t 3.某项目的各年金现金流量如表 4-17所示,收益率在 15%时,试用净现值判断项目的经济 性。

(表 4 -17见书 p95)解:(1)作图(2)计算 n F 1 i t =-40-10 115%1+8(P/A , 15%, 2)(P/F, 15%, 1)+ NPV =t n t 013(P/A, 15%, 16)(P/F, 15%, 3)+33(P/F, 15%, 20)=-40-10×0.8696+8×1.6257×0.8696+13×5.9542×0.6575+33×0.0611= 15.52>0合理4.甲、乙两项目的有关费用支出如表 4-18所示,在收益率为 10%时,试用费用现值法选择 方案。

(表 4 -18见书 p95)解:(1)作图(2)计算 PC = 8001 0.1 +320(P/A, 0.1, 9)(1+0.1) 1 1 甲 = 800×0.9091+320×5.759×0.9091 = 2402.64 PC = 9001 0.1 +300(P/A, 0.1, 9)(1+0.1) 1 1 乙 = 900×0.9091+300×5.759×0.9091 = 2388.84PC > PC 乙 甲因此乙方案好5.某方案需要投资为 1 995元,当年见效年收益为 1 500元,年成本支出为 500元,第四年 有 1 000元追加投资,服务期为 5年,在收益率为 10%时,用净现值率法评价方案。

解:(1)作图 (2)计算3 NPV =-1995-1000(1+0.1)+(1500-500)(P/A, 0.1, 5)=-1995-753.3+1000×3.7908 = 1042.5K = 1995+1000(1+0.1)= 1995+753.3 = 2748.3p 1042.5 NPVR = = 0.38 > 10%合理 2748.36.某项目需要投资为2万元,经济寿命为5年,残值为0.4万元,每年收益为1万元,每年支出成本费用为0.44万元,若基准收益率为8%,用效益成本比率法确定方案是否可取?解:(1)作图(2)计算B t1 i= 1(P/A, 8%, 5)+0.4(P/F, 8%, 5)= 3.9927+0.4×0.6806 = 4.265 tC t1 i= 2+0.44×3.9927 = 3.757 t4.265B/C = = 1.13523.757此方案可取,除收回投资外,还可获得相当于投资总成本现值总额0.1352倍的净值。

7.某投资项目,投资额为1万元,在5年中每年的平均收入为0.6万元,每年的费用支出为0.3万元,期末残值为0.2万元,若投资收益率为10%,试用净未来值法评价方案。

解:(1)作图(2)计算NFV =-1(F/P, 0.1, 5)+0.3(F/A, 0.1, 5)+0.2=-1.611+0.3×6.105+0.2 = 0.4205 > 0因此该方案可行8.某项目投资为700万元,每年的净收益均为200万元,寿命期为5年,基准收益率为10 %,试用内部收益率判断方案。

解:(1)作图(2)计算设NPV = -700+200(P/A, I , 5) NPV = 0(P/A,I,5) = 3.5查表可知12%与15%可以作为比较值。

i = 12% NPV 1 = -700+200(P/A, I , 5) = 20.96>0i = 15% NPV 2 = -700+200(P/A, I , 5) = -29.56<020.96i 0= 0.12+(0.15-0.12) = 13.2%>i n 可行20.96 29.569.有两个投资方案A和B,其投资分别为1.8万元和 1.6万元,年净收益分别为0.34万元和0.3万元,项目寿命期均为20年,基准收益率为10%,用差额投资收益率比较方案。

解:(1)作图(2)计算A-B: -0.2 0.04 0.04……0.04判断方法如上题:i1= 15% NPV = -0.2+0.04(P/A,15%,20) = 0.05>01i 2 =20% NPV = -0.2+0.04(P/A,20%,20) = -0.005<020.05i’ = 0.15+(0.2-0.15)×= 19.5% > i n则投资大的方案A优0.05 0.00510.某项目总产量为 6 000吨,产品售价为 1 335元/吨,其固定成本为 1 430 640元,单位可变成本为930.65元。

试求盈亏平衡点产量和盈亏平衡点时的生产能力利用率。

(分别用计算法和作图法求解)。

解:(1)作图法①画直角坐标图②在纵坐标轴上找点 B ,C ,S ,F 。

已知:B = 1430640元,F = B 则C = B + VQ = 1430640 + 930.65×6000 = 7014540元S = PQ = 1335×6000 = 8010000元③连接 FB ,FC ,OS 三线。

④找出 FC 与 OS 的交点 G ,其对应的产量为 3500吨,即为所求盈亏平衡点产量(2)计算法B 1430640 BEP = = =3538.123吨 Q P V 1335930.65 BEP Q Q i 3538.123×100%=58.97% ×100%= 6000BEP = i11.生产某种产品有三种工艺方案,采用方案 A ,年固定成本为 800万元,单位变动成本为 10元;采用方案 B ,年固定成本为 500万元,单位变动成本为 20元;采用方案 C ,年固定 成本为 300万元,单位变动成本为 30元。

相关文档
最新文档