13.2.2用坐标表示轴对称教案集体备课

合集下载

用坐标表示轴对称教案

用坐标表示轴对称教案

嘉祥县教学能手评选教案13.2.2 用坐标表示轴对称20XX年10月16日13.2.2 用坐标表示轴对称教学目标(一)知识和技能1、在平面直角坐标系中,学生会画出关于x轴、y轴对称的点,进而探求关于x轴、y轴对称点的坐标规律。

2.利用关于x轴、y轴对称的点的坐标的规律,能作出关于x轴、y•轴对称的图形。

(二)过程和方法在找两点关于坐标轴对称的坐标规律的过程中,培养学生的语言表达能力、观察能力、归纳能力、养成良好的自觉探索的习惯,体会数形结合的思想。

(三)情感、态度与价值观在探索活动过程中,学会与人合作,并能与他人交流探究的过程与结论,从中体验成功的乐趣,获得成功的体验。

教学重点1、直角坐标系中关于x轴、y轴对称点的坐标变换规律.2、利用坐标变换规律在平面直角坐标系中作一个图形的轴对称图形.教学难点找关于坐标轴对称的点坐标之间的关系、规律教学方法探索发现法,动手操作,讲练结合教具准备多媒体课件教学过程一、创设情境、引入新课出示投影片:北京故宫鸟瞰图、老北京城示意图师:老北京的示意图中,其中西直门和东直门是关于中轴线对称的,如果以天安门为原点,分别以长安街和中轴线为x轴和y轴建立平面直角坐标系,对应于如图所示的东直门的坐标,你能找到西直门的位置,说出西直门的坐标吗? 生:观察,回答。

根据是什么师:要解答这个问题,就需要本节课的知识。

今天我们一起来学习《用坐标表示轴对称》二、合作探究,共同学习探究1:如图,在平面直角坐标系中你能画出点A(2,3)关于x轴的对称点吗? 并说出你是怎么操作的?这么操作的依据是什么?设计意图:数学知识环环相扣,数学新知的学习需建立在旧知的基础之上。

复习如何做一个点的轴对称图形,即作对称轴的的垂线,在垂线上截取等长的线段,可得与原点对称的点。

操作步骤也为后面例2的教学做好知识上的铺垫。

2、观察:点A与点A’的坐标有什么关系?3、在平面直角坐标系中画出点B、点C关于x轴的对称点B’、C’4、思考:关于x轴对称的点的坐标有怎样的关系?并尝试用数学语言表述出来。

初中数学《用坐标表示轴对称》教案

初中数学《用坐标表示轴对称》教案
检验一下你发现的规律。
二、新课讲授






由此可以得到:
在平面直角坐标系中,关于x轴对称的点横坐标_____,,纵坐标_________________。
点(x,y)关于x轴的对称点的坐标为__________.
例1、已知点P(2a+b,-3a)与点P’(8,b+2).
若点p与点p’关于x轴对称,则a=_____ b=_______.
难点:能运用坐标中的轴对称特点解决简单的问题。
课时






一、情境导入
1、如图,在平面直角坐标系中,
1)分别写出点A、B、C的坐标。
2)在坐标系中标出点A、B、C关于x轴的对称点
A1、B1、C1、。
3)写出A1、B1、C1、的坐标。
4)观察每对对称点的坐标,你发现了什么规律?
5)再找几个点,分别作出它们关于x轴的对称点,
中学集体备课教案设计
年级学科总第课时
时间
年月日
第周星期
个性化补充
课题
13.2.2用坐标表示轴对称




1、掌握在平面直角坐标系中,关于x轴和y轴对称点的坐标特点。
2、能在平面直角坐标系中画出一些简单的关于x轴和y轴的对称图形。
3、能运用坐标中的轴对称特点解决简单的问题。
重点
难点
重点:在平面直角坐标系中画出一些简单的关于x轴和y轴的对称图形。
点(3,6)、(-7,9)关于x轴的对称点分别是什么?
点(-3,-5)、(0,10)关于y轴的对称点分别是
设计
备注:年级、学科、课时、时间、周次、个性化补充、作业设计、教后记、板书设计为任课教师必填项目。

13.2.2用坐标表示轴对称教学设计

13.2.2用坐标表示轴对称教学设计

人教版数学八年级上册13.2.2用坐标表示轴对称 -----教学设计用坐标表示轴对称教材选择:人教版八(上)13.2画轴对称图形(2)一、内容和内容解析1.内容用坐标表示轴对称2.内容解析本节分为两课时,这是第二课时的新授课.是在学生学习了轴对称及轴对称变换的基础进行的,体现了轴对称在平面直角坐标系中的应用,体现了数形结合的数学思想.教材从观察和实验入手,归纳得出坐标平面上一个点关于x轴或y 轴对称所引起的点的坐标的变化规律,并探讨了如何利用这种坐标的变化规律在平面直角坐标系中画出一个图形关于x轴或y轴对称的图形.为满足不同层次学生的学习需求,又进一步探究了关于直线x=m和直线y=n对称的点坐标之间的关系.本节课目的在于让学生感受图形轴对称变换之后的坐标的变化,把“形”和“数”紧密的结合在一起,把坐标思想和图形变换的思想联系起来,为后面函数的知识的学习打下基础.通过这节课学生进一步掌握轴对称图形的知识技能,领悟数学在实际生活中的对称美.基于以上分析,确定本节课的教学重点是:探索点关于x轴或y轴对称点的坐标的变化规律,并会利用这种坐标的变化规律在平面直角坐标系中画出一个图形关于x轴或y轴对称的图形.二、目标和目标解析1.目标(1)探究点或图形的轴对称变换引起的点的坐标的变化规律,能利用这些变化规律作出一个图形关于对称轴的轴对称图形.(2)通过对用坐标表示轴对称的学习,体会对应的思想、数形结合的思想.(3)通过探究关于轴对称的点坐标之间的对应关系,培养学生的语言表达能力、观察能力、分析和归纳能力,养成良好的合作交流意识和科学研究习惯.2.目标解析(1)首先通过复习画轴对称图形,引导学生在平面直角坐标系中画出一些点关于坐标轴的对称点,然后通过观察、分析、归纳得出关于坐标轴对称的坐标规律.并探讨总结出如何利用这种坐标的变化规律在平面直角坐标系中画出一个图形关于x轴或y轴对称的图形的方法.为了满足不同层次学生的学习需求,再通过一系列的变式训练,进一步引导学生探究出关于直线x=m和直线y=n对称的点坐标之间的关系.因此在平面直角坐标系中正确画出一些点的对称点是前提条件,学生上节课已经学过画一些图形的轴对称图形,有一定的经验,因此,学生能比较容易的达到本节课学习的重点目标.(2)通过在平面直角坐标系中画轴对称点和轴对称图形总结出对称点的坐标规律,体会对应思想和数形结合的思想.通过一系列的变式练习探究出关于直线x=m和直线y=n对称的点坐标之间的关系,同样体现从特殊到一般的数学思想.(3)在平面直角坐标系中探究对称点之间的坐标规律的过程中,教师利用一系列直观图象,通过动手操作、观察、分析、小组交流,利用数形结合的数学思想,归纳概括出规律,所以整个探究过程培养了学生的合作交流意识和科学研究习惯.三、教学问题诊断分析在平面直角坐标系中关于x轴对称、关于y轴对称的两点的坐标特征,这个知识内容在初一年级的时候就已学过,本课的学习看起来好像是重复,其实,深入研究,学生还是很可能遇到的问题有:1.学生在利用关于x轴、y轴对称点的坐标规律解决问题时,由于不擅长数形结合理解记忆,而只是死记硬背,因此两个坐标规律很容易记混淆.2.由于学生的学习主动性究意识不够,观察能力和空间想象能力比较薄弱。

人教版八年级上册13.2.2用坐标表示轴对称教学设计

人教版八年级上册13.2.2用坐标表示轴对称教学设计

人教版八年级上册13.2.2用坐标表示轴对称教学设计1.教学目标•了解坐标系中的轴对称概念•能用坐标表示轴对称•能通过图形变换方法解决数学问题2.教学重点难点•鉴别轴对称图形•能够用坐标表示轴对称•能够解决用坐标表示轴对称的问题3.教学准备•教师:教案、笔记本电脑、投影仪、智能板、音响等。

•学生:笔记本、教材、练习本等。

4.教学过程4.1.导入使用智能板展示一个图像,提问学生该图像是否对称。

4.2.课堂讲解•由教师介绍轴对称概念,如什么是轴对称、轴对称的特点等。

•由教师通过引导学生思考,讲解如何用坐标表示轴对称。

4.3.讲解引导学生思考以下问题:若点P的坐标是(x,y),如何求点P关于x轴的轴对称点的坐标?答案:点P关于x轴的轴对称点的坐标为(x,−y)。

若点P的坐标是(x,y),如何求点P关于y轴的轴对称点的坐标?答案:点P关于y轴的轴对称点的坐标为(−x,y)。

4.4.练习•让学生根据所学知识自行练习。

•在练习的过程中,教师可以设置答题环节,引导学生分别求轴对称图形的坐标,并检查答案。

4.5.归纳总结教师可请学生回忆轴对称的概念,及用坐标表示轴对称,同时也要引导学生总结该知识点的解决方法。

4.6.作业布置课后作业,要求学生解决一些有关轴对称的题目。

5.教学资源教材、练习本、录制好的视频教学等。

6.板书设计板书设计可根据所涉及的知识点进行设计,如:坐标系x轴对称y轴对称7.教学反思•本节课教学重点难点是用坐标表示轴对称,本教学设计是按照该知识点进行设计的,但是否满足学生的学习需要是需要反思的。

13.2.2画轴对称图形教案

13.2.2画轴对称图形教案

于X 轴的对称点并写出坐标,观察关于X 轴对称的两个点的坐标有什么规律?归纳:关于横轴对称的点的坐标规律是:横坐标相同,纵坐标互为相反数。

3.在同一平面直角坐标系内描出以上各点关于Y 轴的对称点并写出坐标,观察关于Y 轴对称的两个点的坐标有什么规律?归纳:关于纵轴对称的点的坐标规律是:纵坐标相同,横坐标互为相反数。

4.按以上规律,说出点P(X , Y )经X 轴对称的对称点P 1的坐标,再说出P 1经Y 轴对称的对称点P 2坐标,观察点P 经过两次轴对称所得点P 2的坐标有什么规律?归纳:一个点经历关于横轴、纵轴两次轴对称得到的对称点坐标规律是:横坐标互为相反数,纵坐标也互为相反数. 在以后学了“中心对称”后,两点被称为关于原点对称. 例题解析:【例1】已知)4,(),,2(b B a A -,分别根据下列条件求b a ,的值.(1)B A ,关于y 轴对称; (2)B A ,关于x 轴对称;(3)C A ,关于x 轴对称,C B ,关于y 轴对称. 解析】(1)B A ,关于y 轴对称,说明纵坐标相同,横坐标相反,2,4==b a ;(2) B A ,关于x 轴对称,说明横坐标相同,纵坐标相反,2,4-=-=b a ; (3) C A ,关于x 轴对称,C B ,关于y 轴对称,说明B A ,经过横、纵两次对称变换,即关于原点对称,横、纵坐标各互为相反数,2,4=-=b a .【例2】如图,ABC ∆中,C B A ,,的坐标分别为)2,3(),0,4(),0,0(C B A ,以D B A ,,为顶点的三角形与ABC ∆全等,求平面直角坐标系中所有符合题意的点D 的坐标. 【解析】符合题意的点的 有:点C 关于x 轴的对称点 (3,-2);点C 关于直线x =2 的对称点(1,2);还有经上述 两次轴对称变换的对称点质描点,然后观察、归纳坐标规律。

教师板书关于X 轴、Y 轴对称的两个点的坐标规律。

人教版八年级数学(上册)教案:13.2.2用坐标表示轴对称

人教版八年级数学(上册)教案:13.2.2用坐标表示轴对称
3.应用问题:将轴对称的知识应用于解决实际问题,如平面图形的折叠与展开,以及相关几何问题的求解。
二、核心素养目标
1.培养学生的逻辑推理能力:通过学习用坐标表示轴对称,使学生能够理解和运用坐标变换的规律,从而培养其逻辑推理和抽象思维能力。
2.提升空间想象力:借助坐标系和对称性质,增强学生对平面图形及其对称关系的空间想象力和直观感知能力。
2.教学难点
-难点内容:本节课的难点在于理解坐标与图形对称之间的关系,以及如何将这一关系应用于具体的坐标变换。
-详细内容:
-理解对称轴方程的推导过程,特别是如何从对称性质中抽象出数学表达式。
-在求解对称点坐标时,正确应用坐标变换公式,避免混淆和计算错误。
-对于一些复杂的轴对称问题,如非垂直或水平对称轴,学生可能难以理解其坐标变换的规律。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“轴对称在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
最后,在总结回顾环节,我对本节课的教学内容进行了简要梳理,希望学生们能够巩固所学知识。但同时,我也意识到在课堂上对于学生的疑问解答还不够充分,今后需要更加关注学生的需求,及时为他们提供帮助。
在实践活动环节,分组讨论和实验操作使学生能够将理论知识与实际应用相结合。通过动手操作,他们更加直观地感受到了轴对称的魅力。然而,我也发现部分小组在讨论过程中存在依赖心理,个别成员不够积极参与。为了提高讨论效果,我考虑在下次活动中增加一些互动环节,鼓励每个学生都发表自己的观点。

13.2.2用坐标表示轴对称2公开课教案教学设计课件


x
探究二
例:已知△ABC的三个顶点的坐标分别为A (-4,1),B(- 1,1),C(-3,2),分别作出 △ABC关于y轴和x轴对称的图形。
归纳解:步点骤A:(-4,1),B(-1,1),
①先C(求-3,2出),已关知于图y轴形对中称的一些
· 特应②殊点描点BB于’’(、y的点的出1轴,C坐1坐这(对)如’,标三C标些称多’分点(的对3边别,,2就△称)为形.得依A点A’的到次B’(’△4连顶C,1’A接.)点,BAC)’的、关对
已知点
A(-4,2)
关于x轴 对称点
A’ (4, 2)
y
C’(-2,3) 4
A (-4, 2) 3
2
1
C (2,3) A’ (4, 2)
B(3,-4) B’(-3, -4) C(2, 3) C’(-2, 3)
-4 -3 -2 -1-10 -2
B’(-3, -4) -3
-4
1234x
B(3, -4)
x
4
A (-4,·2)
3
2
1
-4· -3
-2
-1
0 -1
-2
A”
-3
-4
· B”
C (2,3)
1234y
C·’’
B(3, -4)
已知点
A(-4, 2) B(3, -4) C(2,3)
关于x轴的对称点 A” (-4, -2) B”(3, 4) C’’(2,-3)
学了就用
1、抢答
已知点 (-2,6) (1,-3) (-1,3) (-4,-2) (0,-3) (4,0)
快乐大解密
一名游客在天安 门广场向小明问 西直门的位置, 但他只知道东直 门的位置,可是 聪明的小明想了 想,就准确的告 诉了她,你知道 原因吗?

人教版八年级上册13.2.2用坐标表示轴对称课程设计

人教版八年级上册13.2.2用坐标表示轴对称课程设计一、教学目标通过本节课的学习,学生应该能够掌握以下知识和能力: 1. 掌握点关于x轴、y轴和原点对称的坐标变化规律; 2. 了解轴对称图形的特征; 3. 能够通过坐标表示图形的轴对称轴。

二、教学重难点1.轴对称图形的特征;2.坐标表示轴对称轴的方法。

三、教学方法1.通过具体图形进行演示;2.借助数字图例分析轴对称图形的关系;3.小组合作解决课堂问题。

四、教学过程1.导入新知通过介绍图形的轴对称特征,引出本节课的主题。

2.演示轴对称图形选择一个具有轴对称特征的图形,如三角形或四边形,在黑板上或投影屏幕上进行演示。

强调图形的轴对称轴,并通过形象化演示,向学生阐述轴对称变换的规律。

3.对称图形探究让学生通过数学考察问答的形式,确定具有轴对称特征的各种图形的对称中心,并分析具有轴对称特征的图形的结构特征。

4.轴对称轴的表示方法介绍通过坐标表示轴对称轴的方法,让学生掌握这种方法,并通过具体例子进行演示和练习。

5.课堂小组讨论划分学生小组,让他们分析轴对称图形的图形特征,设计一个简单的轴对称图形,然后设计轴对称轴的表示方法并给出详细的解决方案。

五、教学效果的检测1.课堂练习;2.复习个别学生;3.作业检查。

六、课堂作业1.完成课后练习;2.制作一个具有轴对称特征的图形,并标出其对称轴;3.设计一个更为复杂的轴对称图形,然后通过坐标表示该图形的轴对称轴。

七、板书设计定义轴对称图形的特征和结构轴对称轴的坐标表示方法八、教学反思通过本节课的学习和活动实践,学生能够更好地理解轴对称图形的特征和结构特点,并且掌握了通过坐标表示轴对称轴的方法。

但是,一些学生在操作过程中出现了困难,需要进一步练习和指导。

在后续的活动和课堂中,需要更加关注这些问题并加以解决。

人教版八年级上册数学13.2.2《用坐标表示轴对称》优秀教学案例

在教学设计中,我充分考虑了学生的认知规律和兴趣,将课堂导入与生活实际紧密结合,激发学生的学习兴趣。通过设置具有启发性的问题,引导学生主动探索、合作交流,从而提高学生的动手操作能力和思维能力。在教学过程中,我注重对学生的引导和激励,鼓励他们发表自己的观点,培养他们的自主学习和解决问题的能力。同时,我将现代教育技术与传统教学手段相结合,为学生提供丰富的学习资源,提高课堂的教学效果。
四、教学内容与过程
(一)导入新课
1.利用数学软件展示轴对称图形,引导学生关注轴对称现象。
2.呈现生活中的轴对称实例,如剪纸、建筑等,激发学生的学习兴趣。
3.提出问题:“什么是轴对称?轴对称在生活中的应用有哪些?”引导学生思考。
在导入环节,我会利用数学软件展示轴对称图形的动态变化,引导学生关注轴对称现象。同时,我会呈现生活中的轴对称实例,如剪纸、建筑等,激发学生的学习兴趣。通过提出问题:“什么是轴对称?轴对称在生活中的应用有哪些?”引导学生思考,为后续新知的讲授做好铺垫。
在教学过程中,我引导学生对自己的学习过程进行反思,培养学生的自我评价能力。例如,在课堂的最后环节,我让学生总结本节课所学的内容,并分享自己的学习体会。这样的反思与评价环节有助于培养学生的自我评价能力,提高学生的自信心。
5.专业素养的展现:通过运用现代教育技术和几何画板等软件,直观地展示轴对称图形的动态变化,提高学生的学习效果。
在教学过程中,我充分利用现代教育技术和几何画板等软件,直观地展示轴对称图形的动态变化。例如,我在讲授坐标表示轴对称图形时,利用几何画板展示了坐标的变化规律。这样的展示不仅提高了学生的学习效果,还展现了我的专业素养。
二、教学目标
(一)知识与技能
1.理解轴对称的概念,掌握轴对称图形的特征。

用坐标表示轴对称(教学设计)八年级数学上册同步备课系列

13.2.2用坐标表示轴对称教学设计一、教学目标:1.探究在平面直角坐标系中关于x轴和y轴对称点的坐标特点.2.能在平面直角坐标系中画出一些简单的关于x轴和y轴的对称图形.3.能根据坐标系中轴对称点的坐标特点解决简单的问题.二、教学重、难点:重点:能够作轴对称图形,能够经过探索利用坐标来表示轴对称,能够用轴对称的知识解决相应的数学问题.难点:用轴对称知识解决相应的数学问题.三、教学过程:情境引入一位外国游客在天安门广场询问小明西直门的位置,但他只知道东直门的位置,聪明的小明想了想,就准确的告诉了他,你能猜到小明是怎么做的吗?知识精讲思考:如图,是一幅老北京城的示意图,其中西直门和东直门是关于中轴线对称的.如果以天安门为原点,分别以长安街和中轴线为x轴和y轴建立平面直角坐标系,根据如图所示的东直门的坐标,你能说出西直门的坐标吗?探究:找规律在平面直角坐标系中,画出以上列表中已知点及其关于坐标轴的对称点,并把它们的坐标填入表格中,看看每对对称点的坐标有怎样的规律.再找几个点,分别画出它们的对称点,检验一下你发现的规律.归纳:在平面直角坐标系中,关于x轴对称的点横坐标_____,纵坐标___________;关于y轴对称的点横坐标___________,纵坐标_____.点(x,y)关于x轴对称的点的坐标为(___,___)点(x,y)关于y轴对称的点的坐标为(___,___)典例解析例1.如图,四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C(-2,5),D(-5,4),分别画出与四边形ABCD关于y轴和x轴对称的图形.解:点(x,y)关于y轴对称的点的坐标为(-x,y),因此四边形ABCD的顶点A、B、C、D关于y轴对称点的坐标分别为A'(__,__),B'(__,__)C'(__,__),D'(__,__)依次连接A'B',B'C',C'D',D'A',就可得到与四边形ABCD关于y轴对称的四边形A'B'C'D'.类似地,我们可以得到与四边形ABCD关于x轴对称的四边形A″B″C″D″.例2.如图,在直角坐标系中,A(0,5),B(-2,0),C(-3,3).(1)在直角坐标系中作出△ABC关于x轴对称的△A'B'C',并相应写出△A'B'C'三个顶点的坐标;(2)将△A'B'C'沿x轴方向向右平移3个单位后得到△A"B"C",并相应写出△A"B"C"三个顶点的坐标.解:(1)如图,△A'B'C'为所求,A'(O,-5),B'(-2,0),C'(-3,-3);(2)如图,△A"B"C"为所求,A"(3,-5),B"(1,0),C"(0,-3).【针对练习】平面直角坐标系中,△ABC的三个顶点坐标分别为A(0,4),B(2,4),C(3,-1).(1)试在平面直角坐标系中,标出A、B、C三点;(2)若△ABC 与△A 'B 'C '关于x 轴对称,画出△A 'B 'C ',并写出A '、B '、C '的坐标.解:如图所示:例3.已知点A (2a -b ,5+a ),B (2b -1,-a +b ).(1)若点A 、B 关于x 轴对称,求a 、b 的值;(2)若A 、B 关于y 轴对称,求(4a +b )2016的值.解:(1)∵点A 、B 关于x 轴对称,∴2a -b =2b -1,5+a -a +b =0,解得a =-8,b =-5;(2)∵A 、B 关于y 轴对称,∴2a -b +2b -1=0,5+a =-a +b ,解得a =-1,b =3,∴(4a +b )2016=1.例4.已知点P (a +1,2a -1)关于x 轴的对称点在第一象限,求a 的取值范围.解:依题意得P 点在第四象限,+10210.a a ⎧⎨-⎩><解得112a -<<【点睛】解决此类题,一般先写出对称点的坐标或判断已知所在的象限,再由各象限内点的坐标的符号,列不等式(组)求解.课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?【设计意图】培养学生概括的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双井中学八年级(数学)备课组
集体备课教案主备:辅备:
看谁脑子转得快!
1.说出下列各点关于X
轴、y轴对称的点的坐标:
(-2,6),(1,-2),(-1,
3),(-4,-2),(1,0)
2.如下图,△ABC关于X
轴对称,点A的坐标为(1,-2),
说出点B的坐标.
3.如下图,四边形ABCD的四个顶点的坐标分别为A(-5,1)、B(-2,1)、C(-2,5)、D(-5,4),分别作出与四边形关于x轴和y轴对称的图形.
变式探究,提升思维
1.分别作出△PQR关于直线x=1(记为m)和直线y=-1(记为n)对称的图形.2.你能发现它们的对应点的坐标之间分别有什么关系吗?
3.如果作关于直线x=3(记为m)和直线y=-4(记为n)对称的图形,你能发现对应点的坐标之间的关系吗?
巩固练习:
如下图.1.请你画出下图
关于y轴对称的图形,猜猜是
什么图案?并说出一些对应点
的坐标.
2.再画出此图案关于直
线x=-2对称的图形.说出各
点的坐标.
教师小结:
1.点关于某条直线对称的点的坐标可以通过寻找线段之间的关系来求。

2.点(x,y)关于x轴对称的点的坐标为(x,-y),即横坐标相等,纵坐标互为相反数;
点(x,y)关于y轴对称的点的坐标为(-x,y),即横坐标互为相反数,纵坐标相等.
布置作业:教科书习题13.2第2、3题.
板书设计:
13.2 .2 用坐标表示轴对称
点(x,y)关于x轴对称的点的坐标为(x,-y),即横坐标相等,纵坐标互为相反数;点(x,y)关于y轴对称的点的坐标为(-x,y),即横坐标互为相反数,纵坐标相等.教学反思:。

相关文档
最新文档