甘肃省安定区李家堡初级中学人教版九年级数学下册27-3位似导学案(无答案)

合集下载

人教版九年级数学下册:27.3《位似》教案1

人教版九年级数学下册:27.3《位似》教案1

人教版九年级数学下册:27.3《位似》教案1一. 教材分析《人教版九年级数学下册》第27.3节“位似”是学生在学习了相似三角形的基础上,进一步研究位似图形的性质。

本节内容通过具体的实例,让学生理解位似的定义,掌握位似图形的性质,并能够运用位似的概念解决实际问题。

教材通过丰富的图片和实例,激发学生的学习兴趣,培养学生观察、思考、归纳的能力。

二. 学情分析九年级的学生已经学习了相似三角形的性质,对图形的相似性有一定的认识。

但在实际应用中,学生可能对位似的概念理解不够深入,难以运用位似知识解决生活中的问题。

因此,在教学过程中,教师需要关注学生的认知水平,通过实例分析,引导学生深入理解位似的概念,提高学生的实际应用能力。

三. 教学目标1.了解位似的定义,掌握位似图形的性质。

2.能够识别生活中的位似图形,并运用位似知识解决实际问题。

3.培养学生的观察能力、思考能力和归纳能力。

四. 教学重难点1.重点:位似的定义,位似图形的性质。

2.难点:运用位似知识解决实际问题。

五. 教学方法1.情境教学法:通过生活中的实例,引导学生观察、思考,激发学生的学习兴趣。

2.启发式教学法:教师提问,学生回答,引导学生主动探究位似的概念。

3.小组合作学习:学生分组讨论,共同完成实践任务,提高学生的合作能力。

六. 教学准备1.准备相关的图片和实例,用于教学演示。

2.准备练习题,用于巩固所学知识。

3.准备黑板,用于板书关键知识点。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的位似图形,如放大或缩小的图片、相似的建筑等。

引导学生观察这些图形,并提出问题:“你们认为这些图形有什么共同的特点?”让学生思考并回答,从而引出位似的概念。

2.呈现(10分钟)介绍位似的定义,并用具体的实例进行分析。

讲解位似图形的性质,如对应边的比例关系、对应角的相等性等。

让学生通过观察实例,理解并掌握位似的概念。

3.操练(10分钟)学生分组讨论,找出生活中的位似图形,并运用位似知识进行分析。

九年级数学下册27_3位似教案新版新人教版

九年级数学下册27_3位似教案新版新人教版
(4)按序连接A′B′、B′C′、C′D′、D′A′,取得所要画的四边形A′B′C′D′,如图3.
作法 三:(1)在四边形ABCD内任取一点O;
(2)过点O别离作射线OA,OB,OC,OD;
(3)别离在射线OA,OB, OC,O D上取点A′、B′、C′、D′,
使得 ;Байду номын сангаас
(4)按序连接A′B′、B′C′、C′D′、D′A′,取得所要画的四 边形A′B′C′D′,如图4.
三、例题的用意
本节课安排了两个例题,例1是补充的一个例题,通过度辨位似图形,巩固位似图形的概念,让学生明白得位似图形必需知足两个条件:(1)两个图形是相似图形;(2)两个相似图形每对对应点所在的直线都通过同一点,二者缺一不可.例2是教材P61例题,通过例2 的教学,使学生把握位似图形的画法,能够利用作位似图形的方式将一个图形放大或缩小.讲解例2时,要注意引导学生能够用不同的方式画出所要求作的图形,要让学生通过作图明白得符合要求的图形不惟一,这和所作的图形与所确信的位似中心的位置有关(如位似中心O可能选在四边形ABCD外,可能选在四边形ABCD内,可能选在四边形ABCD的一条边上,可能选在四边形ABCD的一个极点上).而且同一个位似中心的双侧各 有一个符合要求的图形(如例2 中的图2与图3),因此,位似中心的确信是作出图形的关键.要及时强调注意的问题(见难点的冲破方式④),及时总结作图的步骤(见例2),并让学生练习找 所给图形的位似中心的题目(如 课堂练习2),以使学生真正把握位似图形的概念与作图.
(当点O在四边形ABCD的一条边上或在四边形ABCD的一个极点上时,作 法略——能够让学生自己完成)
六、课堂练习
1.教材P61.一、2
2.画出所给图中的位似中心.

九年级数学下册27-3位似学案1(无答案)(新版)新人教版

九年级数学下册27-3位似学案1(无答案)(新版)新人教版

九年级数学下册27-3位似学案1(无答案)(新版)新人教版课题:27.3位似(1)序号:学习目标:1、知识和技能:(1)了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质。

(2)掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小。

2、过程和方法:经历利用位似将图形放大或缩小的过程,提高学生的动手操作能力。

3、情感、态度、价值观:在实际操作和探究过程中让学生感受体会到几何图形之美。

学习重点:位似图形的有关概念、性质与作图学习难点:利用位似将一个图形放大或缩小导学方法:自主探索法课时:2课时导学过程一、课前预习预习教材P59-60的有关内容,完成《导学案》中的教材导读和自主测评。

二、课堂导学1.导入在日常生活中,我们经常见到这样一类的图形,如:放映幻灯片时,通过光源把幻灯片上的图形放大到屏幕上,观察它们的形状、大小是否发生了变化?他们是什么图形?它们还有什么特征?2.出示任务,自主学习:(教材P59)图中有多边形相似吗?如果有,这种相似有什么特征?(教材P60)要把一个四边形缩小到原来的一半,该怎样做?3.合作探究探究:位似图形及其有关的概念:探究:利用位似可以将一个图形放大或缩小:三、展示反馈与图形各顶点的线段上取一点,使得形对应的顶点的距离的比等于某一常数,即可得到相应的位似图形。

)在图形外任取一点O与图形各顶点并反向延长,在延长线上取一点,使得)在图形内取一点四、学习小结1.位似图形:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。

2.掌握位似图形概念,需注意:①位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;②两个位似图形的位似中心只有一个;③两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;④位似比就是相似比.利用位似图形的定义可判断两个图形是否位似。

2019-2020学年九年级数学下册27.3位似导学案(新人教版)

2019-2020学年九年级数学下册27.3位似导学案(新人教版)

2019-2020学年九年级数学下册27.3位似导学案(新人教版)【学习目标】我能了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质;我能掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小. 学习重点:位似图形的有关概念、性质与作图.学习难点:利用位似将一个图形放大或缩小. 学习过程:一、自主学习:活动1 教师活动:提出问题:生活中我们经常把自己好看的照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.。

(教材P47页思考)观察图27.3-1图中有多边形相似吗?如果有,那么这种相似什么共同的特征?图27.3-1 学生活动:学生通过观察了解到有一类相似图形,除具备相似的所有性质外,还有其特性,学生自己归纳出位似图形的概念:如果两个图形不仅是相似图形,而且是每组对应点连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形. 这个点叫做位似中心.这时的相似比又称为相似比.(位似中心可在形上、形外、形内.) 每对位似对应点与位似中心共线;不经过位似中心的对应线段平行。

活动2 教师活动:提出问题:利用位似,可以将一个图形放大或缩小:(教材P47)把图1中的四边形ABCD 缩小到原来的21. 二、 合作交流探究与展示:分析:把原图形缩小到原来的21,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 .作法一:(1)在四边形ABCD 外任取点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 上取点A ′、B ′、C ′、D ′, 使得21OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C ′D ′,如图2.问:此题目还可以如何画出图形?作法二:(1)在四边形ABCD 外任取一点O ;(2)过点O 分别作射线OA , OB ,OC ,OD ;(3)分别在射线OA , OB , OC ,OD 的反向延长线上取点A ′、B ′、C ′、D ′,使得21OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C ′D ′,如图3.三、当堂检测:1.课本P48练习1、2题。

人教版九年级数学下册第二十七章 27.3位似学案设计

人教版九年级数学下册第二十七章 27.3位似学案设计

人教版九年级数学下册第二十七章 27.3位似 学案学习要求1.理解位似图形的有关概念,能利用位似变换将一个图形放大或缩小. 2.能用坐标表示位似变形下图形的位置.学习过程(一). 预习导学前面我们已经学习了图形的哪些变换? 1、平移:平移的方向,平移的距离. 2、轴对称:轴对称,轴对称图形3、旋转:(中心对称)旋转中心,旋转方向,旋转角度.4、相似:相似比.注:图形这些不同的变换是我们学习几何必不可少的重要工具,它不但装点了我们的生活,而且是学习后续知识的基础.下面请欣赏如下图形的变换1、问题1:观察:若△ABC ∽△A'B'C'那么进行一次旋转,请问,两个三角形是否相似?得到概念:如果一个图形上的点 A 、B 、C … 和另一个图形上的点 A'、B' 、C'… 分别对应,并且它们的连线AA'、BB' 、CC'…都经过同一点O,OA OA'=OB OB'=OCOC'…,那么这两个图形叫做位似图形,点O 叫做位似中心.(二)课堂学习检测1.已知:四边形ABCD及点O,试以O点为位似中心,将四边形放大为原来的两倍.(1) (2)(3) (4)2.如图,以某点为位似中心,将△AOB进行位似变换得到△CDE,记△AOB与△CDE对应边的比为k,则位似中心的坐标和k的值分别为( )A.(0,0),21B.(2,2),2C.(2,2),2D.(2,2),33.在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O为位似中心,相似比为,把△EFO缩小,则点E的对应点E'的坐标是()A.(-2,1)B.(-8,4)C.(-8,4)或(8,-4)D.(-2,1)或(2,-1)综合、运用、诊断4.已知:如图,四边形ABCD的顶点坐标分别为A(-4,2),B(-2,-4),C(6,-2),D(2,4).试以O 点为位似中心作四边形A'B'C'D′,使四边形ABCD与四边形A′B′C′D′的相似比为1∶2,并写出各对应顶点的坐标.5.已知:如下图,是由一个等边△ABE和一个矩形BCDE拼成的一个图形,其B,C,D点的坐标分别为(1,2),(1,1),(3,1).(1)求E点和A点的坐标;(2)试以点P(0,2)为位似中心,作出相似比为3的位似图形A1B1C1D1E1,并写出各对应点的坐标;(3)将图形A1B1C1D1E1向右平移4个单位长度后,再作关于x轴的对称图形,得到图形A2B2C2D2E2,这时它的各顶点坐标分别是多少?拓展、探究、思考6.已知△ABC的三个顶点坐标如下表:(1)将下表补充完整,并在直角坐标系中,画出△A′B′C′;(2)观察△ABC与△A′B′C′,写出有关这两个三角形关系的一个正确结论.7.如图,已知△DEO与△ABO是位似图形,△OEF与△OBC是位似图形. 求证:OD·OC=OF·OA.人教版九年级数学下册第二十七章 27.3位似答案与提示1.略. 2.C .3.D4.图略.A '(-2,1),B '(-1,-2),C '(3,-1),D '(1,2). 5.(1));32,2(),2,3(+A E(2)).332,6(1+A B 1(3,2),C 1(3,-1),D 1(9,-1),E 1(9,2); (3)),332,10(2--A B 2(7,-2),C 2(7,1),D 2(13,1),E 2(13,-2).6.解:(1)(2)△A′B′C′是△ABC 放大2倍的位似图形.也可写出有关两三角形形状、大小、位置等关系,如△ABC ∽△A′B′C′、周长比、相似比、位似比等. 7.证明:∵△DEO 与△ABO 是位似图形,∴= .又∵△OEF 与△OBC 是位似图形, ∴=.∴=,即OD ·OC =OF ·OA .。

2024九年级数学下册第27章相似27.3位似(位似图形)教学设计(新版)新人教版

2024九年级数学下册第27章相似27.3位似(位似图形)教学设计(新版)新人教版
教学方法/手段/资源:
- 自主学习法:引导学生自主完成作业和拓展学习。
- 反思总结法:引导学生对自己的学习过程和成果进行反思和总结。
作用与目的:
- 巩固学生在课堂上学到的位似图形的性质和应用。
- 通过拓展学习,拓宽学生的知识视野和思维方式。
- 通过反思总结,帮助学生发现自己的不足并提出改进建议,促进自我提升。
六、学生学习效果
1. 知识与技能:
- 学生能够理解位似图形的概念,掌握位似图形的性质,并能够运用位似图形的性质解决实际问题。
- 学生能够理解位似变换的应用,并能够运用位似变换来解决实际问题。
- 学生能够通过实际问题,理解和掌握位似图形在实际中的应用,提高解决实际问题的能力。
2. 过程与方法:
- 学生能够通过自主学习,提高自学能力和独立思考能力。
3. 题型三:位似比的计算
题目:一个三角形通过位似变换变成了另一个三角形,位似比为2:1。求原三角形的面积。
答案:设原三角形面积为S,则新三角形面积为4S。由于位似比为2:1,原三角形的面积为新三角形面积的1/4,即S = (1/4) * 4S = S。
4. 题型四:位似图形的问题解决
题目:一个房间的设计图是实际房间尺寸的1:5缩小模型。如果设计图中的房间面积是50平方米,实际房间的面积是多少?
这些题型和答案仅供参考,实际教学中应根据学生的具体情况和教材内容进行调整和扩展。
八、作业布置与反馈
1. 作业布置:
(1)题目:请根据位似图形的定义和性质,完成以下题目:
- 判断下列两个图形是否为位似图形,并解释原因。
- 确定下列位似变换中的位似比,并说明如何计算。
- 利用位似图形的性质,求解实际问题中的相关量。

人教版九年级数学下册27.3位似优秀教学案例

人教版九年级数学下册27.3位似优秀教学案例
在教学实践中,我将注重将知识与技能、过程与方法、情感态度与价值观有机地结合起来,使学生在掌握位似知识的同时,提高空间想象能力、抽象思维能力和数学表达能力。通过丰富多样的教学活动,让学生在轻松愉快的氛围中学习,感受数学的魅力,增强学习数学的自信心。
三、教学策略
(一)情景创设
1.以生活实例引入,如建筑设计中的相似图形、照片放大缩小等,让学生感受位似在现实生活中的应用,激发学习兴趣。
3.运用合作学习的方式,培养团队协作精神和沟通能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学习热情,提高自主学习能力。
2.培养学生勇于探究、积极思考的科学精神,增强解决实际问题的信心。
3.通过对位似的深入学习,感受数学在生活中的重要作用,提高数学素养。
在教学过程中,我将关注每一个学生的成长,充分尊重他们的个性差异。针对不同学生的学习需求,制定合理的教学策略,让每一个学生都能在课堂上得到充分的锻炼和发展。同时,注重激发学生的创新思维,培养他们独立思考和解决问题的能力。
在制定教学案例时,我充分考虑了学生的年龄特点和学习需求,以实际问题为导入,激发学生的学习兴趣。通过设计丰富的教学活动,引导学生主动探究,发现并总结位似的性质。同时,注重培养学生运用数学语言表达和解决问题的能力,提高他们的数学素养。
在教学过程中,我还将充分利用多媒体教学资源,如图片、动画等,以形象直观的方式展示位似的变化,使学生能够更好地理解和掌握位似的本质。同时,设计适量难度的练习题,让学生在实践中巩固知识,提高他们的应用能力。
3.举例说明位似在现实生活中的应用,如建筑设计、照片放大缩小等,提高学生的学习兴趣。
(三)学生小组讨论
1.组织学生进行小组讨论,共同探究位似的性质。

九年级数学下册 第二十七章 相似 27.3 位似 位似图形导学案(新版)新人教版

九年级数学下册 第二十七章 相似 27.3 位似 位似图形导学案(新版)新人教版

位似图形学习目标:1.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.2.能说出平移、轴对称、旋转和位似这四种变换的异同,并能在复杂图形中找出这些变换.一、学前准备1.如图3,四边形和四边形位似,位似比,四边形和四边形位似,位似比.四边形和四边形是位似图形吗?位似比是多少?由此你能得到什么结论?二、探究活动(一)自主学习(阅读教材P48-P50内容,有疑问请记录下来,供合作学习时讨论)1.(1)如图在直角坐标系中,矩形的顶点坐标分别为(0,0),(6,0),(6,4),(0,4).如果将点O,A,B,C的横﹑纵坐标都缩小一半,得到点,,,,顺次连接点,,,,得到的图形是______________.(2)四边形与矩形是_________图形,位似中心是点_________,它们的相似比是_________.(3)如图1-34,已知△的顶点是坐标原点,顶点A,B的坐标分别为(-1,2),(-3,0).把△各个顶点的横﹑纵坐标都扩大到原来的3倍,得到点,,.连接,,.△与△OAB是位似图形吗?如果是,位似中心是哪点?(4)由(1)(2)(3)你能得出什么结论?2.在平面直角坐标系中,如果将一个多边形的顶点坐标扩大(或缩小)相同的倍数,所得的图形与原图形是______________.3.一般地,在平面直角坐标系中,如果以原点为位似中心,新图形与原图形的相似比为k,那么与原图形上的点(x,y)对应的位似图形上的点的坐标是_____________或_____________. 4.检查预习:(1)课本P50练习1.(2)课本P50练习2:__________,__________,__________.5.如图1-35,四边形OABC的顶点坐标分别为(0,0),(2,0),(4,4),(-2,2).(1)如果四边形与四边形OABC位似,位似中心是原点,它的面积等于四边形OABC面积的倍,分别写出点,,坐标.(2)画出四边形.(二)合作学习:6.已知:在坐标平面内,△ABC三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度)(1)画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;(2)以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2∶1,并直接写出C2点的坐标及△A1BC2的面积.三、归纳总结:1.你有什么收获?(从知识、方法、规律方面总结)2.你还有哪些疑惑?3.你认为老师上课过程中还有哪些需要注意或改进的地方?4.在展示中,哪位同学是你学习的榜样?哪个学习小组的表现最优秀?教(学)后记:感谢您的支持,我们会努力把内容做得更好!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.只能选在原图形的外部B.只能选在原图形的内部
C.只能选在原图形的边上D.可以选择在任意位置
3.在平面直角坐标系中有两点A(1,0),B(2,0),以原点O为位似中心,把线段放大2倍,则放大后的线段A`B`的长为;A`的坐标是或;B`的坐标是或;
4.如图所示,指出下列各图中的两个图形是否是位似图形,如果是请指出其位似中心;
探究:(1)在方法一中,A’的坐标是,B’的坐标是,对应点坐标之比是 ;(2)在方法二中,A’’的坐标是,B’’的坐标是,对应点坐标之比是-
归纳:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于;
3.图形变换我们学习过的图形变换包括:,轴对称,旋转和;
点拨:相似图形不一定是位似图形,但位似图形一定是相似图形;
2.位似图形的性质
(1)位似图形具有图形的一切性质;(2)位似图形任意一对对应到位似中心的距离之比都位似比;
3.位似图形与坐标
在平面直角坐标系中有两点A(6,3),B(6,0),以原点O为位似中心,相似比为1:3,把线段AB缩小
方法一: 方法二:
(二)新知我尝试
1.下列关于位似图形的表述中,正确的是;(填序号)
①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,这个两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比;
2.用位似作图的方法,可以将一个图形放大或缩小,位似中心()
5.△ABO的顶点坐标是A(-3,3)、B(3,3)、O(0,0),试将△ABO放大,使放大后的△EFO与△ABO对应边的比为2:1,则E、F的坐标分别是()
A.(-6,6)(6,6)B.(6,-6)(6,6)
C.(-6,6)(6,-6)D.(6,6)(-6,-6)
6.如图,O为原点,B,C两点坐标分别为
九年级数学(下册)27.3位似导学案
学习目标:
1.认识位似以及概念;2.掌握常见位似图形的作法;
课程重点:
1.认识位似以及概念;2.掌握位似图形的性质;
课程难点:
1.位似图形的性质;2.位似图形的作法;
(一)基础我梳理
1.探究:观察下列相似图形,归纳其特点
归纳:(1)两个图形是;(2似图形,对应点连线的交点是位似中心。
5如图所示,△ABC与△A`B`C`是位似图形,
且位似比是1:2,若AB=2cm,则A`B`=
cm,并在图中画出位似中心O;
6.如最右图所示,在下列四种图形变换中,
本题图案不包含的变换是()
A.位似B.旋转
C.轴对称D.平移
(三)达标我能行
1.如图所示,左图与右图是相似图形,如果左图上一个顶点坐标是(a,b),那么右图上对应顶点的坐标是()
A.(-a,-2b) B.(-2a,-b) C.(-2a,-2b) D.(-2b,-2a)
2.如图所示,已知△OAB与△OA1B1是相似比为1:2的人位似图形,点O是位似中心,若△OAB内的点P(x,y)与△OA1B1内的点P1对应,则P1的坐标是;
3.如图所示,AB∥A`B`,BC∥B`C`,且OA`:A`A=4:3,则△ABC与是位似图形,位似比是;
4.按如下方法将△ABC的三边缩小为原来的二分之一,如图所示,任取一点O,连结OA、OB、OC并取它们的中点D、E、F,得△DEF,
则下列说法正确的个数是()
①△ABC和△DEF是位似图形;②△ABC和△DEF
是相似图形;③△ABC和△DEF的周长比是4:1;
④△ABC和△DEF的面积比是4:1
A.1个B.2个C.3个D.4个
(3,-1)(2,1)
(1)以O为位似中心在y轴左侧将△OBC放大两
倍,并画出图形;(2)分别写出B,C两点的对应
点B`,C`的坐标;(3)已知M(x,y)为△OBC
内部一点,写出M的对应点M`的坐标;
相关文档
最新文档