整式的乘除的法则及公式
专题04 整式的乘除(原卷版)

专题04整式的乘除【热考题型】【知识要点】知识点一幂的运算同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。
nm n m a a a +=·(其中m、n 为正整数)【注意事项】1)当底数为负数时,先用同底数幂乘法法则计算,再根据指数的奇偶来确定结果的正负,并且化简到底。
2)不能疏忽指数为1的情况。
例:a·a 2=a 1+2=a 33)乘数a 可能是有理数、单项式或多项式。
4)如果底数互为相反数时可先变成同底后再运算。
5)逆用公式:n m n m a a a ·=+(m,n 都是正整数)【扩展】三个或三个以上同底数幂相乘时,也具有这一性质,即pn m p n m a a a a ++=··(m,n,p 都是正整数)考查题型一同底数幂的乘法典例1.(2022·浙江嘉兴·中考真题)计算a 2·a ()A.aB.3aC.2a2D.a3变式1-1.(2022·河南·中考真题)《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿,则1兆等于()A.810B.1210C.1610D.2410变式1-2.(2022·内蒙古包头·中考真题)若42222m ⨯=,则m 的值为()A.8B.6C.5D.2变式1-3.(2022·湖南邵阳·中考真题)5月29日腾讯新闻报道,2022年第一季度,湖南全省地区生产总值约为11000亿元,11000亿用科学记数法可表示为1210a ⨯,则a 的值是()A.0.11B.1.1C.11D.11000易错点总结:幂的乘方法则:幂的乘方,底数不变,指数相乘.mnnm a a =)((其中m,n 都是正整数).【注意事项】1)负号在括号内时,偶次方结果为正,奇次方为负,负号在括号外结果都为负。
专题03 整式的运算与因式分解篇(解析版)-2023年中考数学必考考点总结

知识回顾专题03整式的运算与因式分解2023年中考数学必考考点总结1.合并同类型:法则:“一相加,两不变”,即系数相加,字母与字母的指数不变照写。
2.整式的加减的实质:合并同类项。
3.整式的乘除运算:①单项式×单项式:系数相乘,同底数幂相乘,其中一个因式单独存在的字母连同它的指数作为积的一个因式。
②单项式×多项式:单项式乘以多项式的每一项,变成单项式乘以单项式。
③多项式×多项式:用其中一个多项式的每一项乘以另一个多项式的每一项,变成单项式乘以单项式。
④单项式÷单项式:系数相除,同底数幂相除,被除数中单独存在的字母连同它的指数作为商的一个因式。
4.乘法公式:①平方差公式:()()22b a b a b a -=-+。
②完全平方公式:()2222b ab a b a +±=±。
5.因式分解的方法:①提公因式法:()c b a m cm bm am ++=++;②公式法:平方差公式:()()b a b a b a -+=-22完全平方公式:()2222b a b ab a ±=+±。
③十字相乘法:在c bx x ++2中,若()均为整数,且n m b n m mn c =+=,则:()()n x m x c bx x ++=++2。
专题练习31.(2022•湖北)先化简,再求值:4xy﹣2xy﹣(﹣3xy),其中x=2,y=﹣1.【分析】先去括号,再合并同类项,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:4xy﹣2xy﹣(﹣3xy)=4xy﹣2xy+3xy=5xy,当x=2,y=﹣1时,原式=5×2×(﹣1)=﹣10.32.(2022•盐城)先化简,再求值:(x+4)(x﹣4)+(x﹣3)2,其中x2﹣3x+1=0.【分析】根据平方差公式、完全平方公式、合并同类项法则把原式化简,整体代入即可.【解答】解:原式=x2﹣16+x2﹣6x+9=2x2﹣6x﹣7,∵x2﹣3x+1=0,∴x2﹣3x=﹣1,∴2x2﹣6x=﹣2,∴原式=﹣2﹣7=﹣9.33.(2022•长春)先化简,再求值:2+a)(2﹣a)+a(a+1),其中a=2﹣4.【分析】先去括号,再合并同类项,然后把a的值代入化简后的式子进行计算即可解答.【解答】解:(2+a)(2﹣a)+a(a+1)=4﹣a2+a2+a=4+a,当a=﹣4时,原式=4+﹣4=.34.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.【分析】先去括号,再合并同类项,然后把x2+2x=2代入化简后的式子进行计算即可解答.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x 2+2x ﹣2=0,∴x 2+2x =2,∴当x 2+2x =2时,原式=2(x 2+2x )+1=2×2+1=4+1=5.35.(2022•广西)先化简,再求值:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x ,其中x =1,y =21.【分析】根据平方差公式和多项式除以单项式,可以将题目中的式子化简,然后将x 、y 的值代入化简后的式子计算即可.【解答】解:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x=x 2﹣y 2+y 2﹣2y=x 2﹣2y ,当x =1,y =时,原式=12﹣2×=0.36.(2022•衡阳)先化简,再求值.(a +b )(a ﹣b )+b (2a +b ),其中a =1,b =﹣2.【分析】根据平方差公式以及单项式乘多项式的运算法则化简后,再把a =1,b =﹣2代入计算即可.【解答】解:(a +b )(a ﹣b )+b 2a +b )=a 2﹣b 2+2ab +b 2=a 2+2ab ,将a =1,b =﹣2代入上式得:原式=12+2×1×(﹣2)=1﹣4=﹣3.37.(2022•丽水)先化简,再求值:(1+x )(1﹣x )+x (x +2),其中x =21.【分析】先根据平方差公式和单项式乘多项式的运算法则化简,再把x =代入计算即可.【解答】解:(1+x )(1﹣x )+x (x +2)=1﹣x 2+x 2+2x=1+2x ,当x =时,原式=1+=1+1=2.38.(2022•南充)先化简,再求值:(x +2)(3x ﹣2)﹣2x (x +2),其中x =3﹣1.【分析】提取公因式x +2,再利用平方差公式计算,再代入计算.【解答】解:原式=(x +2)(3x ﹣2﹣2x )=(x +2)(x ﹣2)=x 2﹣4,当x =﹣1时,原式=(﹣1)2﹣4=﹣2.39.(2022•安顺)(1)计算:(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣3|﹣12.(2)先化简,再求值:(x +3)2+(x +3)(x ﹣3)﹣2x (x +1),其中x =21.【分析】(1)先化简各式,然后再进行计算即可解答;(2)先去括号,再合并同类项,然后把x 的值代入化简后的式子,进行计算即可解答.【解答】解:(1)(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣|﹣=1+1+2×+﹣1﹣2=2++﹣1﹣2=1;(2)(x +3)2+(x +3)(x ﹣3)﹣2x (x +1)=x 2+6x +9+x 2﹣9﹣2x 2﹣2x=4x ,当x =时,原式=4×=2.40.(2022•岳阳)已知a 2﹣2a +1=0,求代数式a (a ﹣4)+(a +1)(a ﹣1)+1的值.【分析】先化简所求的式子,再结合已知求解即可.【解答】解:a (a ﹣4)+(a +1)(a ﹣1)+1=a 2﹣4a +a 2﹣1+1=2a 2﹣4a=2(a 2﹣2a ),∵a 2﹣2a +1=0,∴a 2﹣2a =﹣1,∴原式=2×(﹣1)=﹣2.41.(2022•苏州)已知3x 2﹣2x ﹣3=0,求(x ﹣1)2+x (x +32)的值.【分析】直接利用整式的混合运算法则化简,进而合并同类项,再结合已知代入得出答案.【解答】解:原式=x 2﹣2x +1+x 2+x=2x 2﹣x +1,∵3x 2﹣2x ﹣3=0,∴x 2﹣x =1,∴原式=2(x 2﹣x )+1=2×1+1=3.42.(2022•荆门)已知x +x1=3,求下列各式的值:(1)(x ﹣x 1)2;(2)x 4+41x .【分析】(1)利用完全平方公式的特征得到:(a ﹣b )2=(a +b )2﹣4ab ,用上述关系式解答即可;(2)将式子用完全平方公式的特征变形后,利用整体代入的方法解答即可.【解答】解:(1)∵,∴===﹣4x •=32﹣4=5;(2)∵=,∴=+2=5+2=7,∵=,∴=﹣2=49﹣2=47.43.(2022•无锡)计算:(1)|﹣21|×(﹣3)2﹣cos60°;(2)a (a +2)﹣(a +b )(a ﹣b )﹣b (b ﹣3).【分析】(1(2)根据单项式乘多项式,平方差公式化简,去括号,合并同类项即可.【解答】解:(1)原式=×3﹣=﹣=1;(2)原式=a 2+2a ﹣(a 2﹣b 2)﹣b 2+3b=a 2+2a ﹣a 2+b 2﹣b 2+3b=2a +3b .44.(2022•安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【分析】(1)根据题目中等式的特点,可以写出第5个等式;(2)根据题目中等式的特点,可以写出猜想,然后将等式左边和右边展开,看是否相等,即可证明猜想.【解答】解:(1)因为第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2,故答案为:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)第n个等式:(2n+1)2=[(n+1)×2n+1]2﹣[(n+1)×2n]2,证明:左边=4n2+4n+1,右边=[(n+1)×2n]2+2×(n+1)×2n+12﹣[(n+1)×2n]2=4n2+4n+1,∴左边=右边.∴等式成立.45.(2022•西宁)八年级课外兴趣小组活动时,老师提出了如下问题:将2a﹣3ab﹣4+6b因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式=(2a﹣3ab)﹣(4﹣6b)=a(2﹣3b)﹣2(2﹣3b)=(2﹣3b)(a﹣2)解法二:原式=(2a﹣4)﹣(3ab﹣6b)=2(a﹣2)﹣3b(a﹣2)=(a﹣2)(2﹣3b)【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将x2﹣a2+x+a因式分解;【挑战】(2)请用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解;【应用】(3)“赵爽弦图”是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,“赵爽弦图”是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1.根据以上信息,先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值.【分析】(1)用分组分解法将x2﹣a2+x+a因式分解即可;(2)用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解即可;(3)先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值即可.【解答】解:(1)原式=(x2﹣a2)+(x+a)=(x+a)(x﹣a)+(x+a)=(x+a)(x﹣a+1);(2)原式=(ax﹣bx)+(a2﹣2ab+b2)=x(a﹣b)+(a﹣b)2=(a﹣b)(x+a﹣b);(3)原式=(a4+2a2b2+b4)﹣(2ab3+2a3b)=(a2+b2)2﹣2ab(a2+b2)=(a2+b2)(a2+b2﹣2ab)=(a2+b2)(a﹣b)2,∵直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1,∴a2+b2=32=9,(a﹣b)2=1,∴原式=9.。
第一讲整式的乘除(教案)

在今天的教学中,我发现学生们对整式的乘除运算表现出较大的兴趣,但同时也存一些问题。在导入新课环节,通过日常生活中的实例引入整式的乘除概念,学生们能够很快地进入学习状态,这让我觉得这个切入点是成功的。
然而,在理论介绍和案例分析环节,我发现部分学生对分配律和乘法公式的理解还不够透彻,导致在实际运算中容易出现错误。在今后的教学中,我需要更加注重对这部分内容的讲解和巩固,可以通过更多的例题和练习来加强学生对这些概念的理解。
突破方法:通过具体例题演示分配律的应用,让学生反复练习,加深理解。
(2)乘法公式的记忆与运用:学生对乘法公式的记忆容易混淆,导致在计算过程中公式应用错误。
突破方法:通过对比、归纳总结,帮助学生记忆乘法公式,并通过大量练习巩固应用。
(3)整式除法的步骤:整式除法的步骤相对复杂,学生容易在运算过程中出现错误。
在总结回顾环节,学生对整式的乘除运算有了更为全面的掌握,但仍有个别学生存在疑问。在课后,我会鼓励这部分学生主动提问,及时解答他们的疑惑,帮助他们更好地消化和吸收所学知识。
1.强化学生对基本概念和公式的理解和记忆。
2.通过丰富多样的教学手段,提高学生的学习兴趣和参与度。
3.加强对学生的个别辅导,关注他们的学习需求。
第一讲整式的乘除(教案)
一、教学内容
本讲主要围绕初中数学教材中“整式的乘除”这一章节展开。内容包括:
1.单项式乘单项式:介绍相同字母相乘、不同字母相乘的运算规则,以及如何简化乘积。
2.单项式乘多项式:通过分配律展开乘法运算,解决实际应用问题。
3.多项式乘多项式:运用分配律和结合律进行乘法运算,掌握乘积的简化方法。
在新课讲授过程中,我尽量将重点和难点内容进行详细讲解,但发现学生在实践活动和小组讨论中,还是会对一些细节问题产生疑惑。这说明我在教学中可能没有充分考虑到学生的接受程度,或者讲解方式不够通俗易懂。为此,我将在接下来的课程中尝试用更简洁明了的语言进行讲解,并加强对学生的个别辅导。
第14章整式的乘除和因式分解-(教案)

在今天的教学过程中,我发现学生们对于整式的乘除和因式分解这一章节的内容普遍感到有些吃力。在讲解整式的乘法法则时,我注意到有的学生在进行多项式乘多项式的运算时,容易混淆同类项和如何正确合并它们。这让我意识到,需要通过更多的例题和练习来加强他们的这部分能力。
在因式分解的教学中,我发现十字相乘法对学生来说是一个难点。他们往往在寻找能够相乘得到多项式系数的两个数时遇到困难。我尝试通过一些具体的例题和分解步骤来引导学生,但感觉效果并不如预期。这可能是因为我需要在课堂上提供更多的时间和机会,让学生自己尝试和探索,而不仅仅是观看我的演示。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了整式的乘除和因式分解的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在解决实际代数问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
1.培养学生的逻辑推理能力,使其能够理解和运用整式的乘除法则,以及因式分解的各种方法;
2.提升学生的数学运算能力,熟练掌握整式乘除和因式分解的运算技巧;
3.增强学生的数学抽象思维,通过解决实际问题,体会数学在现实生活中的应用;
4.培养学生的团队合作意识,通过小组讨论和合作,共同解决复杂的整式乘除和因式分解问题;
第14章整式的乘除和因式分解-(教案)
一、教学内容
第14章整式的乘除和因式分解:
1.单项式乘单项式、单项式乘多项式、多项式乘多项式;
2.乘法公式:平方差公式、完全平方公式;
3.整式的除法:整式除以单项式、整式除以多项式;
人教版八年级数学上册14.整式的乘除与因式分解--复习课件

例2 把下列各式分解因式. (1)(a+b)2-4a2 ; (2)1-10x+25x2; (3)(m+n)2-6(m+n)+9
解:(1)(a+b)2-4a2=(a+b)2-(2a)2 =(a+b+2a)(a+b-2a) =(3a+b)(b-a)
(2)1-10x+25x2 =1-10x+(5x)2 =(1-5x)2 (3)(m+n)2-6(m+n)+9=(m+n-3)2.
5, 求(a
1 )2的值. a
(2)若x y2 2, x2 y2 1, 求xy的值.
(3)如果(m n)2 z m2 2mn n2 ,
则z应为多少?
(4)(x 3y 2z)(x 3y 2z)
(5)19992, (6)20012 19992
练习:计算下列各题。
(1)( 1 a6b4c) ((2a3c) 4
1、 205×195 2、 (3x+2) (3x-2) 3、(-x+2y) (-x-2y) 4 、 (x+y+z)(x+y-z)
(2)、完全平方公式
一般的,我们有:
(a b)2 a2 2ab b2;
(a b)2 a2 2ab b2 其中a, b既可以是数, 也可以是代数式.
即: (a b)2 a2 2ab b2
探索与创新题 例4 若9x2+kxy+36y2是完全平方式,则k= —
分析:完全平方式是形如:a2±2ab+b2即两数 的平方和与这两个数乘积的2倍的和(或差).
∵9x2+kxy+36y2=(3x)2+kxy+(6y)2 ∴±kxy=2·3x·6y=36xy ∴k=±36
整式的乘除知识点整理

一、知识点归纳: (一)幂的四种运算:1、同底数幂的乘法:⑴语言叙述:同底数幂相乘,底数不变,指数相加; ⑵字母表示:a m ·a n = a m+n ;(m ,n 都是整数) ;⑶逆运用:a m+n = a m ·a n2、幂的乘方:⑴语言叙述:幂的乘方,底数不变,指数相乘; ⑵字母表示:(a m ) n = a mn ;(m ,n 都是整数); ⑶逆运用:a mn =(a m )n =(a n )m ;3、积的乘方:⑴语言叙述:积的乘方,等于每个因式乘方的积; ⑵字母表示:(ab)n = a n b n ;(n 是整数); ⑶逆运用:a n b n = (a b)n ;4、同底数幂的除法:⑴语言叙述:同底数幂相除,底数不变,指数相减;⑵字母表示:a m ÷a n = a m-n ;(a≠0,m 、n 都是整数); ⑶逆运用:a m-n = a m ÷a n .(二)整式的乘法:1、单项式乘以单项式:⑴语言叙述:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
⑵实质:分三类乘:⑴系数乘系数;⑵同底数幂相乘;⑶单独一类字母,则连同它的指数照抄; 2、单项式乘以多项式:⑴语言叙述:单项式与多项式相乘,就是根据分配律用单项式去乘多项式中的每一项,再把所得的积相加。
⑵字母表示:c)=ma +mb +mc ;(注意各项之间的符号!) 3、多项式乘以多项式:(1)语言叙述:多项式与多项式相乘,先用一个多项式的每一项去乘另一个多项式的每一项,再把所得的积相加;(2)字母表示:=mn +mb +an +ab ;(注意各项之间的符号!) 注意点:⑴在未合并同类项之前,积的项数等于两个多项式项数的积。
⑵多项式的每一项都包含它前面的符号,确定乘积中每一项的符号时应用“同号得正,异号得负”。
⑶运算结果中如果有同类项,则要 合并同类项(三)乘法公式: 1、平方差公式:(1)语言叙述:两数和与这两数差的积,等于这两个数的平方差。
八整式的乘除讲义-整章

一 整式的乘除一、同底数幂的乘法1.同底数幂的乘法法则同底数幂相乘,底数不变,指数相加。
即:mnm na a a +⋅=(m ,n 都是正整数)。
这个公式的特点是:左边是两个或两个以上的同底数幂相乘,右边是一个幂,指数相加。
注意:(1)同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.(2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.公式拓展:p n m a a a ⋅⋅= 。
【典型例题】例1:计算:(1)821010⨯; (2)23x x ⋅-(-)(); (3)32)(x x -⋅例2:计算:(1))()()(32b a a b b a +⋅+⋅+ (2)23x 2y y x -⋅()(2-)(3))()()(25y x x y y x -⋅-⋅- (4)n 2n 1n a a a a ++⋅⋅⋅总结()()(),n nn a n a a n ⎧⎪-=⎨-⎪⎩为偶数,为奇数 ()()()()()n nnb a n a b b a n ⎧-⎪-=⎨--⎪⎩为偶数为奇数例3、计算:31213)(2x x x x x x n n n ⋅+⋅--⋅-+ 4236)()()()(a a a a -⋅-⋅-⋅-例4:已知x 22m +=,用含m 的代数式表示x 2。
【变式练习】(1) –x2·(-x3) (2) –a·(-a)2·a3(3) –b2·(-b)2·(-b)3(4) x·(-x2)·(-x)2·(-x3)·(-x)3(5) 1+-•n n x x x (6)x 4-m ·x 4+m·(-x)(7) x 6·(-x)5-(-x)8·(-x)3(8) -a3·(-a)4·(-a)52 逆用同底数幂的法则逆用法则为:n m nm a a a •=+(m 、n 都是正整数)【典型例题】1.(1)已知x m=3,x n=5,求x m+n。
整式的乘除

整式的乘除一、同底数幂的乘法1.幂:求几个相同因数积的运算叫做乘方,乘方的结果叫作幂。
2. 一般地,对于任意底数a与任意正整数m,n,都有a m・a n=a m+n 语言叙述:同底数幂相乘,底数不变,指数相加注意:(1)同底数幂的乘法性质只有在底数相同时才能使用(2)单个字母或数字可以看成是指数为1的幂。
(3)底数可以是单项式或多项式。
3.推广:a m・a n・a p=a m+n+p (m,n,p都是正整数)4.逆用:a m+n =a m・a n5.当互为相反数的底数幂相乘时,要化为相同底数再乘(-a)n =a n(n为偶数)(-a)n =-a n(n为奇数)二、幂的乘方1.意义:幂的乘方是指几个相同的幂相乘。
(a m)n 读作a的m次幂的n次方,表示n个a m相乘。
2.性质:一般地,对于任意底数a与任意正整数m,n,都有(a m)n =a mn 语言叙述:幂的乘方,底数不变,指数相乘3.推广:[(a m)n]p=a mnp(m,n,p都是正整数)4.逆用:a mn=(a m)n (m,n,都是正整数)三、积的乘方1.意义:积的乘方是指底数是乘积形式的乘方,如(ab)3,(ab)n2.性质:一般地,对于任意底数a,b与任意正整数n,都有(ab)n =a n b n语言叙述:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
3.推广:(abc)n =a n b n c n(n都是正整数)4.逆用:a n b n=(ab)n (n都是正整数)四、同底数幂的除法1.性质:一般地,对于不为0的底数 a与任意正整数m,n(m>n),都有a m÷a n=a m-n语言叙述:同底数幂相除,底数不变,指数相减注意:(1)同底数幂的除法性质只有在底数相同时才能使用(2)单个字母或数字可以看成是指数为1的幂。
(3)底数a可以是不为0的单项式或多项式。
2.推广:a m÷a n÷a p=a m-n-p (a≠0,m,n,p都是正整数且m>n+p)3.逆用:a m-n =a m÷a n(a≠0,m,n都是正整数且m>n)五、零指数幂和负指数幂1.规定:a0=1(a≠0)语言叙述:任何不等于0的0次幂都等于1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
……………………………………………………………最新资料推荐…………………………………………………
整式的乘除的法则及公式
1、同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。
(、为正整数)
2、幂的乘方法则:幂的乘方,底数不变,指数相乘。
(为正整数)
3、积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,在把所得的幂相乘。
(、为正整数)
4、单项式与单项式相乘的法则;单项式与单项式相乘,把它们的系数、同底数幂分别
相乘,其余字母连同它的指数不变,作为积的因式。
5、单项式与多项式相乘法则:单项式与多项式相乘,就是用单项式去乘多项式的每
一项,再把所得的积相加。
a(b-2a)=ab-2am
6、多项式与多项式相乘法则:多项式与多项式相乘,先用一个多项式的每一项乘另
一个多项式的每一项,再把所得的积相加,如果有同类项
要合并同类项。
(a+n)(b+m)=ab+an+nb+nm
7、平方差公式:两数和与这两数差的积等于这两数的平方差。
8、两数和(差)完全平方公式:两数和(差)的平方,等于这两数的平方和(差),
加上(减去)这两数积的2倍。
9、整式化简:应遵循先乘方,再乘除,最后算加减的顺序,能运用乘法公式的则运
用乘法公式。
1 / 11 / 11 / 1。