蒲丰投针实验原理
蒲丰投针试验讲解课件

该试验不仅在理论上具有重要意义,对 于理解随机性和几何规律的本质有重要 贡献,而且在实际应用中也有广泛的应
用价值。
蒲丰投针试验可以应用于统计学、物理 学、计算机科学等多个领域,为相关领
域的研究提供了重要的启示和工具。
蒲丰投针试验的局限性
01
02
03
04
蒲丰投针试验虽然是一个经典 的试验,但是它也存在一些局
针方向与平行线垂直。
重复投掷蒲丰投针N次,记录每 次投掷的结果。
测量与计算阶段
测量投掷后蒲丰投针 与平行线之间的距离 ,记录下来。
根据公式π=2*n/N ,计算π的近似值, 其中n为相交次数, N为投掷次数。
根据记录的数据,计 算蒲丰投针与平行线 相交的次数。
CHAPTER 03
试验结果分析
蒲丰投针试验的预期结果
蒲丰投针试验是一种估算π值的方法,其预期结果是通过投掷 一根针到一张白纸上,然后统计针与白纸边缘相交的次数, 来估算π的值。
蒲丰投针试验的预期结果是根据概率论和几何学原理推导出 来的,即当投掷次数足够多时,针与白纸边缘相交的频率接 近于π/4。
实际结果与预期结果的比较
在实际进行蒲丰投针试验时,需要记录针与白纸边缘相交的次数,并计 算出相应的π值。
限性。
首先,该试验的结果受到投针 方式、试验环境等因素的影响 ,可能导致结果存在误差。
其次,蒲丰投针试验的应用范 围相对有限,主要适用于一些 特定的几何形状和随机性问题
。
最后,蒲丰投针试验的结论仅 适用于理想化的模型,与实际
情况可能存在差异。
未来研究方向与展望
随着科学技术的发展和研究的深入, 蒲丰投针试验在未来仍有广阔的研究 前景。
蒲丰投针试验讲解课 件
蒲丰投针问题

蒲丰投针问题1.蒲丰简介蒲丰有的时候翻译成布丰,是18世纪法国著名的博物学家。
他喜欢研究数学和生物学。
主要的贡献有:(1)翻译了牛顿的《流数法》,流数法按现在的说法就叫微积分。
(2)写了一本巨著,这部巨著的名字叫《自然史》,因为他特别喜欢研究生物。
这个自然史一共有44卷,其中他生前写了36卷,后来他学生又完成了。
这本书对后来的世界有很大的影响,尤其影响到一个人叫达尔文,所以蒲丰这个人其实是很厉害的。
2.蒲丰投针1777年,在蒲丰晚年的时候,他有一次举行了一个家庭宴会。
邀请了一大堆他的朋友来帮他做实验。
做什么实验呢,就“投针”。
那朋友来了之后发现,就是桌子上有很多根间距相等的平行线。
然后蒲丰就说了,给你们同样大的针,你把这些针随机扔到这个桌子上。
然后宾客就随便扔吗,有可能这样,有可能这样……,随便扔是吧,这都有可能,什么情况都有可能。
有的针就没有跟平行线相交,比如这个,这个,这个,就没有相交,也有相交的,比如这个,这个,这个,这是相交的,对吧,然后他就数,他说这个针一共投了多少个呢?一共投了n =2212个。
其中与这个平行线相交的针有多少个,数了一下有m =704个。
然后他说,我现在可以计算圆周率了,别人都不信,他说你看我圆周率怎么算,我只要把这两个数相除就行了。
我用n 除以m ,这个数除完了大概是3.142,这个就是圆周率了。
别人说好神奇,这怎么回事儿,蒲丰说我给你解释解释这个原理是什么?其实这个原理并不复杂,我们来看一下它的原理是什么。
3. 蒲丰投针原理(1)首先,它这个平行线是严格平行的,那平行线之间的距离是固定的,是a 。
然后我随意地把一根针投上去,也许相交,也许不相交,这不一定。
比如说这个针投上去了,投上去了之后,针的总长是b ,针有一个中点叫M ,对吧,这个M 到它比较近的平行线之间的距离我们设为x ,大家注意,这个是针的中点到比较近的平行线的距离是x ,所以我们应该知道x 的范围。
x 的最小值就是这个终点正好落在平行线上,那最小值是0,对吧。
简述蒲丰投针的原理

简述蒲丰投针的原理蒲丰投针,又称为“蒲扇投针”,是一种古老的传统技艺,源于中国民间,被列为国家级非物质文化遗产。
它以独特的技巧和准确度令人惊叹,是一项需要长时间的训练和精确动作的艺术表演。
蒲丰投针是通过将一枚针射出,然后立即由另一只折扇迅速击落这枚针。
表演者通常会用嘴巧妙地抓住一枚针,然后用手迅速将其放入弹弓设备中。
然后他们会用嘴接住折起来的扇子,并将其放在弹弓的侧面。
最后,当他们用力按下弹弓时,针会被迅速射出,被折叠的扇子迅速击中,使针钉在靶上。
这个过程,虽然看似简单,但实际上非常考验投针者精湛的技巧和敏捷的反应能力。
他们必须在非常短的时间内完成将针射出和击中的动作,并且必须非常准确。
这需要长时间的练习和耐心,才能达到高超的水平。
蒲丰投针的原理基于物理学中的一些基本原理。
首先,投针者在将针放入弹弓时,需要精确掌握弹弓的力度和方向。
这样才能使针以合适的速度射出并朝向目标。
其次,投针者在接住折扇时,需要准确而迅速地将其放在弹弓的侧面。
这样才能确保喷出的空气流能够迅速击中针,并使其飞向目标。
最后,针需要在短短的瞬间内被击中,因此需要投针者具备快速反应和敏锐的观察能力。
除了物理原理外,蒲丰投针还依赖于投针者的技巧和经验。
投针者需要通过长时间的训练和反复练习,熟练掌握每一个动作的细节,从而能够准确地完成整个过程。
投针者还需要在训练过程中不断提高反应能力和准确度,以便在表演中达到更好的效果。
蒲丰投针不仅是一种技术,更是一门艺术。
在表演中,投针者需要将技术与表演技巧相结合,以吸引观众的眼球。
他们通常会进行一系列的吸引人的动作和花样,以展示自己的技艺和敏捷度。
这使得蒲丰投针成为一种具有观赏价值和娱乐性的表演艺术形式。
总之,蒲丰投针是一项以准确度和技巧为基础的艺术表演。
它通过将针射出并用折扇击中目标,展示了投针者的精湛技巧和敏捷度。
在演练中,投针者需要准确掌握弹弓的力度和方向,并在非常短的时间内完成各个动作。
这需要长期的训练和经验,以及反应能力和观察力的提高。
Buffon投针实验报告

Buffon投针实验一、实验目的:在计算机上用试验方法求圆周率的近似值。
二、实验原理:假设平面上有无数条距离为1的等距平行线,现向该平面随机投掷长度为L(L≤1)的针,则针与平行线相交的概率 P=。
设针的中心M与最近一条平行线的距离为x,则x~U(0,1);针与平行线的夹角为(不管相交与否),则~U(0,)如图:()在矩阵上均匀分布,且针与平行线相交的充要条件为x≤=;P=P{ x=}。
记录≤成立的次数,记为由-大数定理:≈,则=2。
在计算机上产生则=~U(0,),i=1,2,…,n;再产生,则, i=1,2,…,n三、实验方法及代码:在计算机上进行模拟实验,求出的实验值。
给定L,在计算机上利用MFC独立随机产生x和,然后判断≤是否成立.代码如下:#include "stdafx.h"#include "buffon.h"#include "ChildView.h"#include "ChoiceDlg.h"#include <ctime>#include <cmath>#ifdef _DEBUG#define new DEBUG_NEW#undef THIS_FILEstatic char THIS_FILE[] = __FILE__;#endif// CChildViewCChildView::CChildView(){Trynum=1000;}CChildView::~CChildView(){}BEGIN_MESSAGE_MAP(CChildView,CWnd )//{{AFX_MSG_MAP(CChildView)ON_WM_PAINT()ON_COMMAND(ID_TOOL_NUM, OnToolNum)ON_COMMAND(ID_TOOL_RETRY, OnToolRetry)//}}AFX_MSG_MAPEND_MESSAGE_MAP()// CChildView message handlersBOOL CChildView::PreCreateWindow(CREATESTRUCT& cs){if (!CWnd::PreCreateWindow(cs))return FALSE;cs.dwExStyle |= WS_EX_CLIENTEDGE;cs.style &= ~WS_BORDER;cs.lpszClass = AfxRegisterWndClass(CS_HREDRAW|CS_VREDRAW|CS_DBLCLKS,::LoadCursor(NULL, IDC_ARROW), HBRUSH(COLOR_WINDOW+1), NULL);return TRUE;}void CChildView::OnPaint(){CPaintDC dc(this),*pDC;pDC=&dc;CFont font, *pOldFont;font.CreatePointFont(200,"宋体");pOldFont=pDC->SelectObject(&font);pDC->SetTextColor(RGB(255,0,0));pDC->TextOut(100,5,"蒲丰投针试验");pDC->SelectObject(pOldFont);CPen myPen1,myPen2, *pOldPen1,*pOldPen2;CRect rect1(30,30,920,620);pDC->Rectangle(rect1);myPen1.CreatePen(PS_SOLID, 1, RGB(0,0,255));pOldPen1=pDC->SelectObject(&myPen1);for(int i=100;i<600;i+=50){pDC->MoveTo(50,i);pDC->LineTo(900, i);}pDC->SelectObject(pOldPen1);myPen2.CreatePen(PS_SOLID, 1, RGB(0,255,0));pOldPen2=pDC->SelectObject(&myPen2);srand(time(0));int a,b,q,a1,b1,su,flag;np=0;for(int j=0;j<Trynum;j++){a=rand()%850+50;b=rand()%450+100;q=rand()%180;a1=25*cos(q);b1=25*sin(q);su=pow(-1,rand()%2);pDC->MoveTo((a-su*a1),(b-su*b1));pDC->LineTo((a+su*a1),(b+su*b1));if( (b%50) >= 25 )flag =50-b%50;elseflag = b%50;if( 25*sin(q) >= flag )np++;}pDC->SelectObject(pOldPen2);CString str;int c=Trynum/(np*1.0);int d=(int)((Trynum/(np*1.0)*100000))%100000;str.Format("投针次数:%d;\n相交次数:%d;\nπ的估算值:%d.%d",Trynum,np,c,d);MessageBox(str,"实验数据信息");}void CChildView::OnToolNum(){CChoiceDlg mydlg;if(mydlg.DoModal()==IDOK){this->Trynum = mydlg.m_Trynum ;this->RedrawWindow();}}void CChildView::OnToolRetry(){// TODO: Add your command handler code herethis->RedrawWindow();}四、实验数据处理与分析:根据实验数据,得到近似值为3.2313,可得相对误差为δ=(3.2313-π)/π≈0.02856;运行截图:五、实验小结:本次实验,通过MFC进行模拟投针,模拟效果较好,随着投针次数模拟的增多,实验结果逼近于π的真实值,但是实验程序有待优化,在较多投针次数的模拟中,实验程序运行速度较慢,可以改进相关算法来做适当调节。
蒲丰投针原理

/4.因为对于每一个z,这个概率都为(π-2)/4,因此对于任意的正数x,y,z,有P=(π-2)/4,命题得证。
为了估算π的值,我们需要通过实验来估计它的概率,这一过程可交由计算机编程来实现,事实上x+y>z,x²+y²;﹤z²;等价于(x+y-z)(x²+y²-z²;)﹤0,因此只需检验这一个式子是否成立即可。
若进行了m 次随机试验,有n次满足该式,当m足够大时,n/m趋近于(π-2)/4,令n/m=(π-2)/4,解得π=4n/m+2,即可估计出π值。
值得注意的是这里采用的方法:设计一个适当的试验,它的概率与我们感兴趣的一个量(如π)有关,然后利用试验结果来估计这个量,随着计算机等现代技术的发展,这一方法已经发展为具有广泛应用性的蒙特卡罗方法。
计算π最稀奇方法之一计算π的最为稀奇的方法之一,要数18世纪法国的博物学家C·布丰和他的投针实验:在一个平面上,用尺画一组相距为d的平行线;一根长度小于d的针,扔到画了线的平面上;如果针与线相交,则该次扔出被认为是有利的,否则则是不利的.布丰惊奇地发现:有利的扔出与不利的扔出两者次数的比,是一个包含π的表示式.如果针的长度等于d,那么有利扔出的概率为2/π.扔的次数越多,由此能求出越为精确的π的值.公元1901年,意大利数学家拉兹瑞尼作了3408次投针,给出π的值为3.1415929——准确到小数后6位.不过,不管拉兹瑞尼是否实际上投过针,他的实验还是受到了美国犹他州奥格登的国立韦伯大学的L·巴杰的质疑.通过几何、微积分、概率等广泛的范围和渠道发现π,这是着实令人惊讶的!证明下面就是一个简单而巧妙的证明。
找一根铁丝弯成一个圆圈,使其直径恰恰等于平行线间的距离d。
可以想象得到,对于这样的圆圈来说,不管怎么扔下,都将和平行线有两个交点。
实验说明一:蒲丰投针

实验说明1:蒲丰投针一、 实验目的1、 运用基本采样技术计算积分;2、 体会用随机模拟方法解决实际问题。
二、 问题描述在历史上人们对π的计算非常感兴趣性,发明了许多求π的近似值的方法。
1777年法国科学家蒲丰(Buffon )提出并解决了如下的投针问题来近似求解π。
蒲丰投针问题如图1所示。
桌面上画有间隔为a (a >0) 的一些平行线,向平面任意投一枚长为l (l <a )的针,可以通过求针与任一平行线相交的概率,进而求得π的近似值。
用X 表示针的中点与最近一条平行线的距离,Y 表示针与此直线间的夹角。
如果sin 2X l Y <,或sin 2l X Y <时,针与一条直线相交。
图1:蒲丰投针示意图由于向桌面投针是随机的,所以可以用二维随机向量(X ,Y )来确定针在桌面上位置。
并且X 在0,2a ⎛⎞⎜⎜⎜⎝上服从均匀分布, Y 在0,2π⎛⎞⎟⎜⎟⎜⎟⎜⎝⎠上服从均匀分布, X 与Y 相互独立。
由此可以写出的联合概率密度函数为: ()40,0,220a x y f x y a ππ⎧⎪⎪<<<<⎪=⎨⎪⎪⎪⎩其他。
用随机事件A 针与平行线相交,则事件A 发生的概率为{}()sin 2200sin 242sin ,2l y l x y l l A X Y f x y dxdy dxdy a aπππ<⎧⎫⎪⎪=<===⎨⎬⎪⎪⎪⎪⎩⎭∫∫∫∫P P 。
如果{}A P 已知,则有该概率得到{}2l a A π=P 。
当蒲丰的实验中,通过投针N 次,其中针与平行线相交n 次,用频率n N 作为{}A P 的估计值,于是得到2Nl anπ≈。
三、 实验内容1、上述概率{}A P 为积分计算,可用Monte Carlo 积分近似。
通过从分布(),f x y 中产生随机数,近似积分{}A P ,从而计算π;2、当样本数N (N =50、100、1000、10000、50000)时,每个N 重复10次实验。
布丰投针数学分析与实验设计(原创)

l 由(1)和(2)我们可以得出一些结论: n 根长度为 的小 n 针仍出去后压线的概率之和与一根长为 l 的针扔出去后压线 l 的概率相等;将 n 根长为 的小针连接成任意形状后扔出去 n 压线的概率与长为 l 的针扔出去压线的概率相等;当 n ,线就是曲线,所以结论可以进一步推广:随机投
k
称作这个连分式的第 k 个渐进分数。同时,
k
它也是所有分母不超过
q 的分数中最接近实数 x 的分数,
k
k
是实数 x 的第 k 个最佳渐进分数。
k
求渐进连分式,当然可以用上面分式求出,下面给出第
p k 个渐进连分式 的递推求法: q p a q 1 p a a 1 q a a p p ( k 2) p q a q q ( k 2 )
如上图所示,AB 针的长度为 2l ,CD 针长度为 l 。在 AB 针 或 AB 针的延长线与直线的夹角为 ,AB 针的中点 M 的取
角 相等,所以 M ' , M ' ' 是 m' , m' ' 的两倍,于是 CD 与直线相交的概率是 AB 与直线相交的概率的一半。对于其 余任意夹角都有这个结论。所以:长度为 l 的针与直线相交 的概率是长度为 2l 的针与直线相交概率的一半。
产生误差原因 1:m/n 的精度问题,这个是数学造 成的误差。解决办法:选取合适的 m 值,使 m/n 的有 效数字达到要求的精度。 产生误差原因 2:如果针的端点与直线非常接近, 例如相距万分之一毫米,用肉眼无法判断针是否与直线 相交,造成误差。解决办法:该次事件无效,不予统计, 继续进行下一次实验。 产生误差原因 3:l/d 的精度问题,这是测量问题。 产生误差的原因 1 和 2,我们都可以解决,使之达
投针试验详解

一、问题的提出在人类数学文化史中,对圆周率兀精确值的追求吸引了许多学者的研究兴趣。
在众多的圆周率计算方法中,最为奇妙的是法国物理学家布丰(Boffon)在1777年提出的“投针实验”。
与传统的“割圆术”等儿何计算方法不同的是,“投针实验”是利用概率统讣的方法讣算圆周率的值,进而为圆周率计算开辟了新的研究途径,也使其成为概率论中很有影响力的一个实验。
本节我们将借助于MATLAB仿真软件,对“投针实验”进行系统仿真,以此来研究类比的系统建模方法和离散事件系统仿真。
二、系统建模“投针实验”的具体做法是:在一个水平面上画上一些平行线,使它们相邻两条直线之间的距离都为然后把一枚长为;(0<;<a)的均匀钢针随意抛到这一平面上。
投针的结果将会有两种,一种是针与这组平行线中的一条直线相交,一种是不相交。
设力为投针总次数,&为相交次数,如果投针次数足够多,就会发现公式竺讣算出来的值就是圆周率兀。
当然汁算精度与投针次数有关,一般情ak况下投针次数要到成千上万次,才能有较好的计算精度。
有兴趣的读者可以耐心地做一下这个实验。
为了能够快速的得到实验结果,我们可以通过编写计算机程序来模拟这个实验,即进行系统仿真。
所谓的系统仿真是指以计算机为工具,对具有不确定性因素的、可模型化的系统的一种研究方法。
建立能够反映实验情况的数学模型是系统仿真的基础。
系统建模中需解决两个问题,一个是如何模拟钢针的投掷结果,另一个是如何判断钢针与平行线的位置关系。
这里,设0为钢针中点,y为0点与最近平行线之间的距离,&为钢针与平行线之间的夹角(0 S&V180 )。
首先,山于人的投掷动作是随机的,钢针落下后的具体位置也是随机的,因此可用按照均匀分布的两个随机变量y和&来模拟钢针投掷结果。
其次,人工实验时可以用眼睛直接判断出钢针是否与平行线相交,而计算机仿真实验则需要用数学的方法来判别。
如下图所示,如果八2和&满足关系式y<-/sin^,那么钢针就与平行线相交,否则反之,进而可以判断钢针与平行线2的位置关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蒲丰投针实验原理
蒲丰投针实验是一种检测泥沙粒径分布的实验方法,它是利用悬浮在水中的粒度分布模拟藉由空气流抛掷及落入平板上的控制情形来模拟河流中悬浮颗粒的粒径分布,从而进行检测的。
该实验流程是:将检测的粒料悬浮于水中,利用抛掷及落入平板上的控制条件来模拟河流中悬浮颗粒的粒径分布,然后借助投针实验来观测平面上粒料的分布情况。
最后,根据获得的结果计算出每种粒径的百分率,从而可以得出泥沙粒径分布情况。